Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities
Rongzhen Qiao, Meijun Li, Donglin Zhang, Hong Xiao, Wenqiang Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102000.
Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities
Large igneous provinces (LIPs), a critical area in Earth science, are closely related to paleoenvironmental evolution and biodiversity. The Permian Tarim large igneous province (TLIP) provides an ideal laboratory for correlational research. Previous reports show that the TLIP formed ∼300–262 Ma. Based on igneous lithology and the upper limit of single magmatic activity (<5 Ma), the TLIP can be divided into five main magmatic episodes. Core logging, seismic sections, lithofacies observations, and in-situ calcite U-Pb dating indicate diabase intrusions and a hydrothermal upwelling event (∼295.9–273 Ma) resulted from TLIP magmatic activity. The results indicate that polycyclic aromatic compounds (PACs) in oil are powerful proxies of magmatic intrusion and hydrothermal activity in the Permian TLIP. The existing diabase intrusion (EDI) samples show a higher concentration of high-molecular-weight (HMW) PACs (≥5-ring PACs) and greater combustion-derived PAC ratios. The distribution coupling between the diabase intrusion and PACs indicates that the HMW PACs are mainly derived from the cycloaddition reactions by the pyrogenic source (i.e., diabase intrusion). The conversion of phenanthrene (Phe), biphenyl (Bp), and dibenzothiophene (DBT) series compounds indicates that the oil is altered by hydrothermal activity. The hydrogenium and sulfur carried by the hydrothermal upwelling process promote the heteroatom incorporation of PACs. The cycloaddition and heteroatom incorporation reactions of PACs during the formation of LIPs offer a new perspective for evaluating their impact. PACs serve as effective proxies for LIPs and may also contribute to biological crises associated with LIPs.
Large igneous province / Igneous intrusions / Hydrothermal / U-Pb dating / Polycyclic aromatic compounds
I. Aarnes, H. Svensen, J.A.D. Connolly, Y.Y. Podladchiko. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim. Acta, 74 (25) (2010), pp. 7179-7195,
CrossRef
Google scholar
|
S.E. Bryan, R.E. Ernst. Revised definition of large igneous provinces (LIPs). Earth-Sci. Rev., 86 (1–4) (2008), pp. 175-202,
CrossRef
Google scholar
|
S.E. Bryan, L. Ferrari. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. GSA Bulletin, 125 (7–8) (2013), pp. 1053-1078,
CrossRef
Google scholar
|
S.D. Burgess, S.A. Bowring, T.H. Fleming, D.H. Elliot. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett., 415 (2015), pp. 90-99,
CrossRef
Google scholar
|
C. Cai, W. Hu, R.H. Worden. Thermochemical sulphate reduction in Cambro–Ordovician carbonates in Central Tarim. Mar. Pet. Geol., 18 (2001), pp. 729-741,
CrossRef
Google scholar
|
C. Cai, K. Li, H. Li, B. Zhang. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl. Geochem., 23 (2008), pp. 2226-2235,
CrossRef
Google scholar
|
C. Cai, C. Zhang, R.H. Worden, T. Wang, H. Li, L. Jiang, S. Huang, B. Zhang. Application of sulfur and carbon isotopes to oil–source rock correlation: a case study from the Tazhong area, Tarim Basin, China. Org. Geochem., 83–84 (2015), pp. 140-152,
CrossRef
Google scholar
|
C. Cai, Q. Xiao, C. Fang, T. Wang, W. He, H. Li. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China. Org. Geochem., 101 (2016), pp. 49-62,
CrossRef
Google scholar
|
C. Cai, H. Li, K. Li, D. Wang. Thermochemical sulfate reduction in sedimentary basins and beyond: A review. Chem. Geol., 607 (2022), Article 121018,
CrossRef
Google scholar
|
J. Cartwright, M. Huuse, A. Aplin. Seal bypass systems. AAPG Bulletin, 91 (8) (2007), pp. 1141-1166,
CrossRef
Google scholar
|
K.V. Cashman, R.S.J. Sparks, J.D. Blundy. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355 (2017), p. 3055,
CrossRef
Google scholar
|
J. Chen, J. Fu, G. Sheng, D. Liu, J. Zhang. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oil. Org. Geochem., 25 (1996), pp. 179-190,
CrossRef
Google scholar
|
J. Chen, Y. Xu. Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies. Gondwana Res., 75 (2019), pp. 68-96,
CrossRef
Google scholar
|
Z. Cheng, Z. Zhang, Q. Xie, T. Hou, S. Ke. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet. Sci. Lett., 489 (2019), pp. 100-110,
CrossRef
Google scholar
|
X. Cheng, H.X. Wu, D. Sun, W. Huang, H. Chen, X. Lin, K. Zhu, F. Zhang. The Permian mafic intrusive events in the northwestern margin of the Tarim Basin and their tectonic significance. Acta Petrologica Sinica, 38 (3) (2022), pp. 743-764, 10.18654/1000-0569/2022.03.09
|
K. Chukwuma, H. Tsikos, B. Horsfield, H.M. Schulz, N.B. Harris, M. Frazenburg. The effects of Jurassic igneous intrusions on the generation and retention of gas shale in the Lower Permian source-reservoir shales of Karoo Basin, South Africa. Int. J. Coal Geol., 269 (2023), Article 104219,
CrossRef
Google scholar
|
M.F. Coffin, O. Eldholm. Large igneous provinces-crustal structure dimensions, and external consequences. Rev. Geophys., 32 (1) (1994), pp. 1-36,
CrossRef
Google scholar
|
G.R. Davies, L.B. Smith. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull, 90 (11) (2006), pp. 1641-1690,
CrossRef
Google scholar
|
S. Dong, D. Chen, H. Qing, X. Zhou, D. Wang, Z. Guo, M. Jiang, Y. Qian. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Mar. Pet. Geol., 46 (2013), pp. 270-286,
CrossRef
Google scholar
|
S. Dong, D. Chen, X. Zhou, Y. Qian, M. Tian, H. Qing. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China. Sedimentology, 64 (2017), pp. 1079-1106,
CrossRef
Google scholar
|
M. Duffy, N. Farrell, R. Raeside, D. Muirhead, D. Healy, A. Brasier, N. Schofield. Observations of reservoir quality alteration in proximity to igneous intrusions for two distinct sandstones in Scotland. Mar. Pet. Geol., 129 (2021), Article 105071,
CrossRef
Google scholar
|
Z. Feng, F. Hao, J. Tian, S. Zhou, D. Dong, S. Huang. Shale gas geochemistry in the Sichuan Basin, China. Earth-Sci. Rev., 232 (2022), Article 104141,
CrossRef
Google scholar
|
C.P. Fox, J.H. Whiteside, P.E. Olsen, K. Grice. Flame out! End-Triassic mass extinction polycyclic aromatic hydrocarbons reflect more than just fire. Earth Planet. Sci. Lett., 584 (2022), Article 117418,
CrossRef
Google scholar
|
S.V. Frolov, G.G. Akhmanov, E.A. Bakay, N.V. Lubnina, N.I. Korobova, E.E. Karnyushina, E.V. Kozlova. Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins. Precambrian Res., 259 (2015), pp. 95-113,
CrossRef
Google scholar
|
He, J., Ding, W., Huang, W., Cao, Z., Chen, E.n., Dai, P., Zhang, Y., 2019. Petrological, geochemical, and hydrothermal characteristics of Ordovician cherts in the southeastern Tarim Basin, NW China, and constraints on the origin of cherts and Permian tectonic evolution. J. Asian Earth Sci. 170, 294–315. https://doi.org/10.1016/j.jseaes.2018.10.030.
|
M.W. Hitzman, N. Oreskes, M.T. Einaudi. Geological characteristics and tectonic setting of Proterozoic iron oxides (Cu–U–Au–REE) deposits. Precambrian Res., 58 (1992), pp. 241-287,
CrossRef
Google scholar
|
V. Hudspith, A.C. Scott, M.E. Collinson, N. Pronina, T. Beeley. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the late Permian, Kuznetsk Basin, Russia. Int. J. Coal Geol., 89 (2012), pp. 13-25,
CrossRef
Google scholar
|
H. Jacob. Classification, structure, genesis and practical importance of natural solid oil bitumen. Int. J. Coal Geol., 11 (1989), pp. 65-79,
CrossRef
Google scholar
|
S. Jiao, H. Zhang, Y. Cai, J. Chen, Z. Feng, S. Shen. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction. Earth Planet. Sci. Lett., 614 (2023), Article 118193,
CrossRef
Google scholar
|
A.T. Karp, A.I. Holman, P. Hopper, K. Grice, K.H. Freeman. Fire distinguishers: refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim. Cosmochim. Acta, 289 (2020), pp. 93-113,
CrossRef
Google scholar
|
A.H. Knoll, R.K. Bambach, D.E. Canfield, J.P. Grotzinger. Comparative earth history and Late Permian mass extinction. Science, 273 (5274) (1996), pp. 452-457,
CrossRef
Google scholar
|
B.S. Langhorne. Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York. AAPG Bulletin, 90 (11) (2006), pp. 1691-1718,
CrossRef
Google scholar
|
K. Li, C. Cai, X. Tan, H. Jiang, J. Fan. Multiple fluid flow events and diversity of hydrothermal minerals in Neoproterozoic to lower Paleozoic carbonate reservoirs, Tarim Basin, NW China. J. Asian Earth Sci., 233 (2022), Article 105260,
CrossRef
Google scholar
|
H. Li, T. Lü, H. Pu. LA-ICP-MS zircon U-Pb age of dykes from central Tarim Basin and its geological significance. Geological Bulletin of China, 36 (6) (2017), pp. 1010-1021
|
H. Li, J. Gao, Z. Cao, X. Zhu, X. Guo, S. Zeng. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin.. Earth Sci. Front., 30 (6) (2023), pp. 316-328, 10.13745/j.esf.sf.2023.2.36
|
Z. Li, C.M. Powell. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev., 53 (2001), pp. 237-277,
CrossRef
Google scholar
|
Y. Li, W. Su, P. Kong, Y. Qian, K. Zhang, M. Zhang, Y. Chen, X. Cai, D. You. Zircon U–Pb ages of the Early Permian magmatic rocks in the Tazhong–Bachu region, Tarim Basin by LA–ICP–MS. Acta Petrologica Sinica, 23 (5) (2007), pp. 1097-1107,
CrossRef
Google scholar
|
H. Liu, Y. Xu, Y. Zhong, Z. Luo, R. Mundil, T.R. Riley, L. Zhang, W. Xie. Crustal melting above a mantle plume: Insights from the Permian Tarim Large Igneous Province, NW China. Lithos, 326–327 (2019), pp. 370-383,
CrossRef
Google scholar
|
J.E. Lovelock, A. Zlatkis, R.S. Becker. Affinity of polycyclic aromatic hydrocarbons for electrons with thermal energies: Its possible significance in carcinogenesis. Nature, 193 (1962), pp. 540-541,
CrossRef
Google scholar
|
L. Lu, Y. Zhang, Z. Li, K. Zhang. Petrogenesis of the alkali basalt and trachy-andesite suite in the northern Tarim Basin, NW China: Implications for crust-mantle interactions controlled by the Permian mantle plume. Gondwana Res., 119 (2023), pp. 86-103,
CrossRef
Google scholar
|
T.M. McCollom, J.S. Seewald, B.R.T. Simoneit. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta, 65 (2001), pp. 455-468,
CrossRef
Google scholar
|
F.R. Monreal, H.J. Villar, R. Baudino, D. Delpino, S. Zencich. Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Mar. Pet. Geol., 26 (2009), pp. 590-605
|
W.J. Morgan. Convective plumes in the lower mantle. Nature, 230 (1971), pp. 42-43,
CrossRef
Google scholar
|
W.L. Orr. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation—Study of Big Horn Basin Paleozoic oils. AAPG Bulletin, 58 (1974), pp. 2295-2318,
CrossRef
Google scholar
|
R. Othmana, K.R. Arouri, C.R. Ward, D.M. McKirdy. Oil generation by igneous intrusions in the northern Gunnedah Basin, Australia. Org. Geochem., 32 (2001), pp. 1219-1232,
CrossRef
Google scholar
|
M.R. Palmer, H. Elderfield. Sr isotope composition of sea water over the past 75 Myr. Nature, 314 (1985), pp. 526-528,
CrossRef
Google scholar
|
C.H. Peterson. Long-term ecosystem response to the Exxon Valdez Oil Spill. Science, 302 (5653) (2003), pp. 2082-2086,
CrossRef
Google scholar
|
P.J. Pollard. An intrusion related origin for Cu–Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineral. Deposita, 41 (2006), pp. 179-187,
CrossRef
Google scholar
|
M.P.M. Prasanth, J.G. Shellnutt, T.Y. Lee. Secular variability of the thermal regimes of continental flood basalts in large igneous provinces since the Late Paleozoic: Implications for the supercontinent cycle. Earth-Sci. Rev., 226 (2022), Article 103928,
CrossRef
Google scholar
|
W. Püttmann, C. Merz, S. Speczik. The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of Southwest Poland. Appl. Geochem., 4 (1989), pp. 151-161,
CrossRef
Google scholar
|
M.A. Richards, R.A. Duncan, V.E. Courtillot. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246 (1989), pp. 103-107,
CrossRef
Google scholar
|
N. Schofield, S. Holford, J. Millett, D. Brown, D. Jolley, S.R. Passey, D. Muirhead, C. Grove, C. Magee, J. Murray, M. Hole. Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill Complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Res., 29 (1) (2015), pp. 41-63,
CrossRef
Google scholar
|
J.G. Shellnutt, G.M. Bhat, K. Wang, M.E. Brookfield, B.M. Jahn, J. Dostal. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle. Lithos, 204 (2014), pp. 159-171,
CrossRef
Google scholar
|
A. Shen, A. Hu, T. Cheng, F. Liang, W. Pan, Y. Feng, J. Zhao. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development, 46 (6) (2019), pp. 1127-1140
|
B.R.T. Simoneit, S. Brenner, K.E. Peters, I.R. Kaplan. Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic—II. Effects on bitumen and kerogen. Geochim. Cosmochim. Acta, 45 (9) (1981), pp. 1581-1602,
CrossRef
Google scholar
|
B.R.T. Simoneit, J.C. Fetzer. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org. Geochem., 24 (1996), pp. 1065-1077,
CrossRef
Google scholar
|
S.V. Sobolev, A.V. Sobolev, D.V. Kuzmin, N.A. Krivolutskaya, A.G. Petrunin, N.T. Arndt, V.A. Radko, Y.R. Vasiliev. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477 (2011), pp. 312-316,
CrossRef
Google scholar
|
J.B. Spacapana, J.O. Palmab, O. Gallandc, R. Mancedad, E. Rochae, A. D'Odoricoe, H.A. Leanzaf. Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Mar. Pet. Geol., 91 (2018), pp. 519-531,
CrossRef
Google scholar
|
A. Su, Z. Wang, H. Chen, Y. Feng, J. Zhao, H. Jiang, A.D. Nguyen, P. Sun. Temporal constraints on hydrothermal circulation associated with strike-slip faulting in the Permian Maokou carbonates, central Sichuan Basin (SW China). Mar. Pet. Geol., 160 (2024), Article 106643,
CrossRef
Google scholar
|
H. Svensen, S. Planke, A. Malthe-Sørenssen. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429 (2004), pp. 542-545,
CrossRef
Google scholar
|
D. Wang, I. Kutuzov, H. Zhang, Z. Cao, Q. Wang, A. Amrani, C. Cai. Application of sulfur isotopes of volatile organic sulfur compounds to determine the natural gas secondary alterations and possible sources in the Tarim Basin, NW China. Mar. Pet. Geol., 169 (2024), Article 107078,
CrossRef
Google scholar
|
C. Wang, H. Wu, Y. Dilek, Y. Li, F. Zhang, W. Huang, H. Deng, H. Chen, X. Lin, X. Cheng. Basin filling and magmatic response to the migration of two-stage rifts: New insights into the late Neoproterozoic tectonics of the northern Tarim Craton. Precambrian Res., 397 (2023), Article 107175,
CrossRef
Google scholar
|
X. Wei, Y. Xu, B. He, L. Zhang, X. Xia, X. Shi. Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume. Gondwana Res., 76 (2019), pp. 290-302,
CrossRef
Google scholar
|
D. Wiedemeier, S. Brodowski, G. Wiesenberg. Pyrogenic molecular markers: linking PAH with BPCA analysis. Chemosphere, 119 (2015), pp. 432-437,
CrossRef
Google scholar
|
P.B. Wignall. Large igneous provinces and mass extinctions. Earth-Sci. Rev., 53 (2001), pp. 1-33,
CrossRef
Google scholar
|
Wu, H., Huang, W., Li, Y., Lin, X., Chen, H., Cheng, X., Zhang, F., 2020. Discovery of Permian mafic sills intrusion event in the Sinian system, Northwest Tarim block. Acta Geologica Sinica 94(6), 1869–1882 (in Chinese with English abstract). https://doi.org/10.3724/SP.J.0001-571720200615.
|
L. Wu, Z. Jin, K. Liu, Z. Chu, P. Yang. Evolution of a deeply-buried oil reservoir in the north Shuntuoguole Low Uplift, Tarim Basin, western China: Insights from molecular geochemistry and Re–Os geochronology. Mar. Pet. Geol., 134 (2021), Article 105365,
CrossRef
Google scholar
|
H. Xu, Q. Liu, D. Zhu, Q. Meng, Z. Jin, Q. Fu, S.C. George. Hydrothermal catalytic conversion and metastable equilibrium of organic compounds in the Jinding Zn/Pb ore deposit. Geochim. Cosmochim. Acta, 307 (2021), pp. 133-150,
CrossRef
Google scholar
|
H. Xu, Q. Liu, D. Zhu, W. Peng, Q. Meng, J. Wang, J. Shi, Z. Jin. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem. Geol., 608 (2022), Article 121045,
CrossRef
Google scholar
|
H. Xu, Q. Liu, Z. Jin, D. Zhu, Q. Meng, X. Wu, P. Li, B. Zhu. Organic compounds in geological hydrothermal systems: A critical review of molecular transformation and distribution. Earth-Sci. Rev., 252 (2024), Article 104757,
CrossRef
Google scholar
|
Y. Xu, X. Wei, Z. Luo, H. Lou, J. Cao. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204 (2014), pp. 20-35,
CrossRef
Google scholar
|
X. Xu, A.V. Zuza, A. Yin, X. Lin, H. Chen, S. Yang. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49 (1) (2020), pp. 96-100,
CrossRef
Google scholar
|
J. Yang, P.A. Cawood, I.P. Montañez, D.J. Condon, Y. Du, J. Yan, S. Yan, D. Yuan. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition. Earth Planet. Sci. Lett., 534 (2020), Article 116074,
CrossRef
Google scholar
|
C. Yang, M. Li, Z. Ni, T. Wang, N. Qiu, R. Fang, L. Wen. Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis. Geosci. Front., 13 (2022), Article 101324,
CrossRef
Google scholar
|
M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, S. Sylvestre. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem., 33 (2002), pp. 489-515,
CrossRef
Google scholar
|
Zhang, H., Li, Y., Wu, G., Su, W., Qian, Y., Meng, Q., Cai, X., Han, L., Zhao, Y., Liu, Y., 2009. Isotopic geochronology of Permian igneous rocks in the Tarim Basin. Chinese Journal of Geology 44 (1), 137–158 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0563-5020.2009.01.012.
|
Y. Zhang, J. Liu, Z. Guo. Permian basaltic rocks in the Tarim basin, NW China: Implications for plume–lithosphere interaction. Gondwana Res., 18 (2010), pp. 596-610,
CrossRef
Google scholar
|
D. Zhang, Z. Zhang, M. Santosh, Z. Cheng, J. Kang. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth Planet. Sci. Lett., 361 (2013), pp. 238-248,
CrossRef
Google scholar
|
D. Zhang, M. Li, R. Qiao, H. Xiao. Applicability and limitation of aromatic maturity parameters in high-maturity oil from ultradeep reservoirs. Energy Fuel., 38 (19) (2024), pp. 18413-18430,
CrossRef
Google scholar
|
G. Zhu, K. Zhang. Did the eruption of the Tarim LIP control the formation of Paleozoic hydrocarbon reservoirs in the Tarim basin, China?. Gondwana Res., 101 (2022), pp. 224-232,
CrossRef
Google scholar
|
G. Zhu, T. Li, Z. Zhang, K. Zhao, K. Zhang, W. Chen, H. Yan, P. Wang. Distribution and geodynamic setting of the Late Neoproterozoic– Early Cambrian hydrocarbon source rocks in the South China and Tarim Blocks. J. Asian Earth Sci., 201 (2020), Article 104504,
CrossRef
Google scholar
|
/
〈 |
|
〉 |