Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities

Rongzhen Qiao , Meijun Li , Donglin Zhang , Hong Xiao , Wenqiang Wang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102000

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) :102000 DOI: 10.1016/j.gsf.2024.102000

Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities

Author information +
History +
PDF

Abstract

Large igneous provinces (LIPs), a critical area in Earth science, are closely related to paleoenvironmental evolution and biodiversity. The Permian Tarim large igneous province (TLIP) provides an ideal laboratory for correlational research. Previous reports show that the TLIP formed ∼300–262 Ma. Based on igneous lithology and the upper limit of single magmatic activity (<5 Ma), the TLIP can be divided into five main magmatic episodes. Core logging, seismic sections, lithofacies observations, and in-situ calcite U-Pb dating indicate diabase intrusions and a hydrothermal upwelling event (∼295.9–273 Ma) resulted from TLIP magmatic activity. The results indicate that polycyclic aromatic compounds (PACs) in oil are powerful proxies of magmatic intrusion and hydrothermal activity in the Permian TLIP. The existing diabase intrusion (EDI) samples show a higher concentration of high-molecular-weight (HMW) PACs (≥5-ring PACs) and greater combustion-derived PAC ratios. The distribution coupling between the diabase intrusion and PACs indicates that the HMW PACs are mainly derived from the cycloaddition reactions by the pyrogenic source (i.e., diabase intrusion). The conversion of phenanthrene (Phe), biphenyl (Bp), and dibenzothiophene (DBT) series compounds indicates that the oil is altered by hydrothermal activity. The hydrogenium and sulfur carried by the hydrothermal upwelling process promote the heteroatom incorporation of PACs. The cycloaddition and heteroatom incorporation reactions of PACs during the formation of LIPs offer a new perspective for evaluating their impact. PACs serve as effective proxies for LIPs and may also contribute to biological crises associated with LIPs.

Keywords

Large igneous province / Igneous intrusions / Hydrothermal / U-Pb dating / Polycyclic aromatic compounds

Cite this article

Download citation ▾
Rongzhen Qiao, Meijun Li, Donglin Zhang, Hong Xiao, Wenqiang Wang. Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities. Geoscience Frontiers, 2025, 16(2): 102000 DOI:10.1016/j.gsf.2024.102000

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Rongzhen Qiao: Writing – review & editing, Writing – original draft, Methodology, Conceptualization. Meijun Li: Writing – review & editing, Visualization, Supervision. Donglin Zhang: Software, Investigation, Data curation. Hong Xiao: Validation, Resources. Wenqiang Wang: Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 42173054). The author expresses gratitude to the Associate Editors, R. Damian Nance, and the four anonymous reviewers for their valuable and constructive reviews, which have significantly enhanced the manuscript.

References

[1]

I. Aarnes, H. Svensen, J.A.D. Connolly, Y.Y. Podladchiko. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim. Acta, 74 (25) (2010), pp. 7179-7195,

[2]

S.E. Bryan, R.E. Ernst. Revised definition of large igneous provinces (LIPs). Earth-Sci. Rev., 86 (1–4) (2008), pp. 175-202,

[3]

S.E. Bryan, L. Ferrari. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. GSA Bulletin, 125 (7–8) (2013), pp. 1053-1078,

[4]

S.D. Burgess, S.A. Bowring, T.H. Fleming, D.H. Elliot. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett., 415 (2015), pp. 90-99,

[5]

C. Cai, W. Hu, R.H. Worden. Thermochemical sulphate reduction in Cambro–Ordovician carbonates in Central Tarim. Mar. Pet. Geol., 18 (2001), pp. 729-741,

[6]

C. Cai, K. Li, H. Li, B. Zhang. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Appl. Geochem., 23 (2008), pp. 2226-2235,

[7]

C. Cai, C. Zhang, R.H. Worden, T. Wang, H. Li, L. Jiang, S. Huang, B. Zhang. Application of sulfur and carbon isotopes to oil–source rock correlation: a case study from the Tazhong area, Tarim Basin, China. Org. Geochem., 83–84 (2015), pp. 140-152,

[8]

C. Cai, Q. Xiao, C. Fang, T. Wang, W. He, H. Li. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China. Org. Geochem., 101 (2016), pp. 49-62,

[9]

C. Cai, H. Li, K. Li, D. Wang. Thermochemical sulfate reduction in sedimentary basins and beyond: A review. Chem. Geol., 607 (2022), Article 121018,

[10]

J. Cartwright, M. Huuse, A. Aplin. Seal bypass systems. AAPG Bulletin, 91 (8) (2007), pp. 1141-1166,

[11]

K.V. Cashman, R.S.J. Sparks, J.D. Blundy. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355 (2017), p. 3055,

[12]

J. Chen, J. Fu, G. Sheng, D. Liu, J. Zhang. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oil. Org. Geochem., 25 (1996), pp. 179-190,

[13]

J. Chen, Y. Xu. Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies. Gondwana Res., 75 (2019), pp. 68-96,

[14]

Z. Cheng, Z. Zhang, Q. Xie, T. Hou, S. Ke. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet. Sci. Lett., 489 (2019), pp. 100-110,

[15]

X. Cheng, H.X. Wu, D. Sun, W. Huang, H. Chen, X. Lin, K. Zhu, F. Zhang. The Permian mafic intrusive events in the northwestern margin of the Tarim Basin and their tectonic significance. Acta Petrologica Sinica, 38 (3) (2022), pp. 743-764, 10.18654/1000-0569/2022.03.09

[16]

K. Chukwuma, H. Tsikos, B. Horsfield, H.M. Schulz, N.B. Harris, M. Frazenburg. The effects of Jurassic igneous intrusions on the generation and retention of gas shale in the Lower Permian source-reservoir shales of Karoo Basin, South Africa. Int. J. Coal Geol., 269 (2023), Article 104219,

[17]

M.F. Coffin, O. Eldholm. Large igneous provinces-crustal structure dimensions, and external consequences. Rev. Geophys., 32 (1) (1994), pp. 1-36,

[18]

G.R. Davies, L.B. Smith. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull, 90 (11) (2006), pp. 1641-1690,

[19]

S. Dong, D. Chen, H. Qing, X. Zhou, D. Wang, Z. Guo, M. Jiang, Y. Qian. Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Mar. Pet. Geol., 46 (2013), pp. 270-286,

[20]

S. Dong, D. Chen, X. Zhou, Y. Qian, M. Tian, H. Qing. Tectonically driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, north-west China. Sedimentology, 64 (2017), pp. 1079-1106,

[21]

M. Duffy, N. Farrell, R. Raeside, D. Muirhead, D. Healy, A. Brasier, N. Schofield. Observations of reservoir quality alteration in proximity to igneous intrusions for two distinct sandstones in Scotland. Mar. Pet. Geol., 129 (2021), Article 105071,

[22]

Z. Feng, F. Hao, J. Tian, S. Zhou, D. Dong, S. Huang. Shale gas geochemistry in the Sichuan Basin, China. Earth-Sci. Rev., 232 (2022), Article 104141,

[23]

C.P. Fox, J.H. Whiteside, P.E. Olsen, K. Grice. Flame out! End-Triassic mass extinction polycyclic aromatic hydrocarbons reflect more than just fire. Earth Planet. Sci. Lett., 584 (2022), Article 117418,

[24]

S.V. Frolov, G.G. Akhmanov, E.A. Bakay, N.V. Lubnina, N.I. Korobova, E.E. Karnyushina, E.V. Kozlova. Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins. Precambrian Res., 259 (2015), pp. 95-113,

[25]

He, J., Ding, W., Huang, W., Cao, Z., Chen, E.n., Dai, P., Zhang, Y., 2019. Petrological, geochemical, and hydrothermal characteristics of Ordovician cherts in the southeastern Tarim Basin, NW China, and constraints on the origin of cherts and Permian tectonic evolution. J. Asian Earth Sci. 170, 294–315. https://doi.org/10.1016/j.jseaes.2018.10.030.

[26]

M.W. Hitzman, N. Oreskes, M.T. Einaudi. Geological characteristics and tectonic setting of Proterozoic iron oxides (Cu–U–Au–REE) deposits. Precambrian Res., 58 (1992), pp. 241-287,

[27]

V. Hudspith, A.C. Scott, M.E. Collinson, N. Pronina, T. Beeley. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the late Permian, Kuznetsk Basin, Russia. Int. J. Coal Geol., 89 (2012), pp. 13-25,

[28]

H. Jacob. Classification, structure, genesis and practical importance of natural solid oil bitumen. Int. J. Coal Geol., 11 (1989), pp. 65-79,

[29]

S. Jiao, H. Zhang, Y. Cai, J. Chen, Z. Feng, S. Shen. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction. Earth Planet. Sci. Lett., 614 (2023), Article 118193,

[30]

A.T. Karp, A.I. Holman, P. Hopper, K. Grice, K.H. Freeman. Fire distinguishers: refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim. Cosmochim. Acta, 289 (2020), pp. 93-113,

[31]

A.H. Knoll, R.K. Bambach, D.E. Canfield, J.P. Grotzinger. Comparative earth history and Late Permian mass extinction. Science, 273 (5274) (1996), pp. 452-457,

[32]

B.S. Langhorne. Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York. AAPG Bulletin, 90 (11) (2006), pp. 1691-1718,

[33]

K. Li, C. Cai, X. Tan, H. Jiang, J. Fan. Multiple fluid flow events and diversity of hydrothermal minerals in Neoproterozoic to lower Paleozoic carbonate reservoirs, Tarim Basin, NW China. J. Asian Earth Sci., 233 (2022), Article 105260,

[34]

H. Li, T. Lü, H. Pu. LA-ICP-MS zircon U-Pb age of dykes from central Tarim Basin and its geological significance. Geological Bulletin of China, 36 (6) (2017), pp. 1010-1021

[35]

H. Li, J. Gao, Z. Cao, X. Zhu, X. Guo, S. Zeng. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin.. Earth Sci. Front., 30 (6) (2023), pp. 316-328, 10.13745/j.esf.sf.2023.2.36

[36]

Z. Li, C.M. Powell. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev., 53 (2001), pp. 237-277,

[37]

Y. Li, W. Su, P. Kong, Y. Qian, K. Zhang, M. Zhang, Y. Chen, X. Cai, D. You. Zircon U–Pb ages of the Early Permian magmatic rocks in the Tazhong–Bachu region, Tarim Basin by LA–ICP–MS. Acta Petrologica Sinica, 23 (5) (2007), pp. 1097-1107,

[38]

H. Liu, Y. Xu, Y. Zhong, Z. Luo, R. Mundil, T.R. Riley, L. Zhang, W. Xie. Crustal melting above a mantle plume: Insights from the Permian Tarim Large Igneous Province, NW China. Lithos, 326–327 (2019), pp. 370-383,

[39]

J.E. Lovelock, A. Zlatkis, R.S. Becker. Affinity of polycyclic aromatic hydrocarbons for electrons with thermal energies: Its possible significance in carcinogenesis. Nature, 193 (1962), pp. 540-541,

[40]

L. Lu, Y. Zhang, Z. Li, K. Zhang. Petrogenesis of the alkali basalt and trachy-andesite suite in the northern Tarim Basin, NW China: Implications for crust-mantle interactions controlled by the Permian mantle plume. Gondwana Res., 119 (2023), pp. 86-103,

[41]

T.M. McCollom, J.S. Seewald, B.R.T. Simoneit. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta, 65 (2001), pp. 455-468,

[42]

F.R. Monreal, H.J. Villar, R. Baudino, D. Delpino, S. Zencich. Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Mar. Pet. Geol., 26 (2009), pp. 590-605

[43]

W.J. Morgan. Convective plumes in the lower mantle. Nature, 230 (1971), pp. 42-43,

[44]

W.L. Orr. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation—Study of Big Horn Basin Paleozoic oils. AAPG Bulletin, 58 (1974), pp. 2295-2318,

[45]

R. Othmana, K.R. Arouri, C.R. Ward, D.M. McKirdy. Oil generation by igneous intrusions in the northern Gunnedah Basin, Australia. Org. Geochem., 32 (2001), pp. 1219-1232,

[46]

M.R. Palmer, H. Elderfield. Sr isotope composition of sea water over the past 75 Myr. Nature, 314 (1985), pp. 526-528,

[47]

C.H. Peterson. Long-term ecosystem response to the Exxon Valdez Oil Spill. Science, 302 (5653) (2003), pp. 2082-2086,

[48]

P.J. Pollard. An intrusion related origin for Cu–Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineral. Deposita, 41 (2006), pp. 179-187,

[49]

M.P.M. Prasanth, J.G. Shellnutt, T.Y. Lee. Secular variability of the thermal regimes of continental flood basalts in large igneous provinces since the Late Paleozoic: Implications for the supercontinent cycle. Earth-Sci. Rev., 226 (2022), Article 103928,

[50]

W. Püttmann, C. Merz, S. Speczik. The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of Southwest Poland. Appl. Geochem., 4 (1989), pp. 151-161,

[51]

M.A. Richards, R.A. Duncan, V.E. Courtillot. Flood basalts and hot-spot tracks: Plume heads and tails. Science, 246 (1989), pp. 103-107,

[52]

N. Schofield, S. Holford, J. Millett, D. Brown, D. Jolley, S.R. Passey, D. Muirhead, C. Grove, C. Magee, J. Murray, M. Hole. Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill Complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Res., 29 (1) (2015), pp. 41-63,

[53]

J.G. Shellnutt, G.M. Bhat, K. Wang, M.E. Brookfield, B.M. Jahn, J. Dostal. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle. Lithos, 204 (2014), pp. 159-171,

[54]

A. Shen, A. Hu, T. Cheng, F. Liang, W. Pan, Y. Feng, J. Zhao. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development, 46 (6) (2019), pp. 1127-1140

[55]

B.R.T. Simoneit, S. Brenner, K.E. Peters, I.R. Kaplan. Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic—II. Effects on bitumen and kerogen. Geochim. Cosmochim. Acta, 45 (9) (1981), pp. 1581-1602,

[56]

B.R.T. Simoneit, J.C. Fetzer. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org. Geochem., 24 (1996), pp. 1065-1077,

[57]

S.V. Sobolev, A.V. Sobolev, D.V. Kuzmin, N.A. Krivolutskaya, A.G. Petrunin, N.T. Arndt, V.A. Radko, Y.R. Vasiliev. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477 (2011), pp. 312-316,

[58]

J.B. Spacapana, J.O. Palmab, O. Gallandc, R. Mancedad, E. Rochae, A. D'Odoricoe, H.A. Leanzaf. Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Mar. Pet. Geol., 91 (2018), pp. 519-531,

[59]

A. Su, Z. Wang, H. Chen, Y. Feng, J. Zhao, H. Jiang, A.D. Nguyen, P. Sun. Temporal constraints on hydrothermal circulation associated with strike-slip faulting in the Permian Maokou carbonates, central Sichuan Basin (SW China). Mar. Pet. Geol., 160 (2024), Article 106643,

[60]

H. Svensen, S. Planke, A. Malthe-Sørenssen. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429 (2004), pp. 542-545,

[61]

D. Wang, I. Kutuzov, H. Zhang, Z. Cao, Q. Wang, A. Amrani, C. Cai. Application of sulfur isotopes of volatile organic sulfur compounds to determine the natural gas secondary alterations and possible sources in the Tarim Basin, NW China. Mar. Pet. Geol., 169 (2024), Article 107078,

[62]

C. Wang, H. Wu, Y. Dilek, Y. Li, F. Zhang, W. Huang, H. Deng, H. Chen, X. Lin, X. Cheng. Basin filling and magmatic response to the migration of two-stage rifts: New insights into the late Neoproterozoic tectonics of the northern Tarim Craton. Precambrian Res., 397 (2023), Article 107175,

[63]

X. Wei, Y. Xu, B. He, L. Zhang, X. Xia, X. Shi. Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume. Gondwana Res., 76 (2019), pp. 290-302,

[64]

D. Wiedemeier, S. Brodowski, G. Wiesenberg. Pyrogenic molecular markers: linking PAH with BPCA analysis. Chemosphere, 119 (2015), pp. 432-437,

[65]

P.B. Wignall. Large igneous provinces and mass extinctions. Earth-Sci. Rev., 53 (2001), pp. 1-33,

[66]

Wu, H., Huang, W., Li, Y., Lin, X., Chen, H., Cheng, X., Zhang, F., 2020. Discovery of Permian mafic sills intrusion event in the Sinian system, Northwest Tarim block. Acta Geologica Sinica 94(6), 1869–1882 (in Chinese with English abstract). https://doi.org/10.3724/SP.J.0001-571720200615.

[67]

L. Wu, Z. Jin, K. Liu, Z. Chu, P. Yang. Evolution of a deeply-buried oil reservoir in the north Shuntuoguole Low Uplift, Tarim Basin, western China: Insights from molecular geochemistry and Re–Os geochronology. Mar. Pet. Geol., 134 (2021), Article 105365,

[68]

H. Xu, Q. Liu, D. Zhu, Q. Meng, Z. Jin, Q. Fu, S.C. George. Hydrothermal catalytic conversion and metastable equilibrium of organic compounds in the Jinding Zn/Pb ore deposit. Geochim. Cosmochim. Acta, 307 (2021), pp. 133-150,

[69]

H. Xu, Q. Liu, D. Zhu, W. Peng, Q. Meng, J. Wang, J. Shi, Z. Jin. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem. Geol., 608 (2022), Article 121045,

[70]

H. Xu, Q. Liu, Z. Jin, D. Zhu, Q. Meng, X. Wu, P. Li, B. Zhu. Organic compounds in geological hydrothermal systems: A critical review of molecular transformation and distribution. Earth-Sci. Rev., 252 (2024), Article 104757,

[71]

Y. Xu, X. Wei, Z. Luo, H. Lou, J. Cao. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204 (2014), pp. 20-35,

[72]

X. Xu, A.V. Zuza, A. Yin, X. Lin, H. Chen, S. Yang. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49 (1) (2020), pp. 96-100,

[73]

J. Yang, P.A. Cawood, I.P. Montañez, D.J. Condon, Y. Du, J. Yan, S. Yan, D. Yuan. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition. Earth Planet. Sci. Lett., 534 (2020), Article 116074,

[74]

C. Yang, M. Li, Z. Ni, T. Wang, N. Qiu, R. Fang, L. Wen. Paleo-oil reservoir pyrolysis and gas release in the Yangtze Block imply an alternative mechanism for the Late Permian Crisis. Geosci. Front., 13 (2022), Article 101324,

[75]

M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, S. Sylvestre. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem., 33 (2002), pp. 489-515,

[76]

Zhang, H., Li, Y., Wu, G., Su, W., Qian, Y., Meng, Q., Cai, X., Han, L., Zhao, Y., Liu, Y., 2009. Isotopic geochronology of Permian igneous rocks in the Tarim Basin. Chinese Journal of Geology 44 (1), 137–158 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0563-5020.2009.01.012.

[77]

Y. Zhang, J. Liu, Z. Guo. Permian basaltic rocks in the Tarim basin, NW China: Implications for plume–lithosphere interaction. Gondwana Res., 18 (2010), pp. 596-610,

[78]

D. Zhang, Z. Zhang, M. Santosh, Z. Cheng, J. Kang. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth Planet. Sci. Lett., 361 (2013), pp. 238-248,

[79]

D. Zhang, M. Li, R. Qiao, H. Xiao. Applicability and limitation of aromatic maturity parameters in high-maturity oil from ultradeep reservoirs. Energy Fuel., 38 (19) (2024), pp. 18413-18430,

[80]

G. Zhu, K. Zhang. Did the eruption of the Tarim LIP control the formation of Paleozoic hydrocarbon reservoirs in the Tarim basin, China?. Gondwana Res., 101 (2022), pp. 224-232,

[81]

G. Zhu, T. Li, Z. Zhang, K. Zhao, K. Zhang, W. Chen, H. Yan, P. Wang. Distribution and geodynamic setting of the Late Neoproterozoic– Early Cambrian hydrocarbon source rocks in the South China and Tarim Blocks. J. Asian Earth Sci., 201 (2020), Article 104504,

AI Summary AI Mindmap
PDF

364

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/