A comparative study of various combination strategies for landslide susceptibility mapping considering landslide types
Lanbing Yu, Biswajeet Pradhan, Yang Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101999.
A comparative study of various combination strategies for landslide susceptibility mapping considering landslide types
Landslide susceptibility mapping (LSM) assists planners, local administrations, and decision-makers in preventing, mitigating and managing associated risks. This study proposes a novel DES-based framework that effectively captures the spatial developmental patterns of different landslide types, leading to higher precision LSM. The Wanzhou district (administrative division) of Chongqing Province, southwestern China, was selected as the test area, encompassing 881 landslides classified into rockfalls, reservoir-affected (RA) landslides, and non-reservoir-affected (NRA) landslides. Subsequently, three inventory maps and sixteen environment factors were used as inputs, with multicollinearity and importance analyses used to select the best factor combination for three types of landslides. Finally, the susceptibilities of rockfalls, RA and NRA landslides were combined by six combination strategies: Maximum, Mean, Probability, Voting, Stacking, and Dynamic Ensemble Selection (DES) models, and the optimal strategy was identified by area under the receiver operating characteristic curves (AUC), confusion matrix, and landslide distribution statistic. For LSM of individual landslide types, ResNet consistently outperformed traditional machine learning models, achieving testing AUC values of 0.8925, 0.9427, and 0.6754 for rockfalls, RA, and NRA landslides, respectively. The evaluation of the combination strategies revealed that the DES model achieved the highest testing AUC value of 0.8779, followed by Stacking (0.8728), Maximum (0.8704), Probability (0.8669), and Voting (0.8653), whereas the widely-used Mean method performed the worst (0.8503), even lower than the non-classified LSM (0.8587). The findings offer a robust approach for mitigating future landslide risks and minimizing their adverse impacts, providing valuable insights for geohazard management and decision-making.
Landslide susceptibility mapping / Ensemble method / Combination strategy / Landslide types
H.A.H. Al-Najjar, B. Pradhan. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci. Front., 12 (2) (2021), pp. 625-637,
CrossRef
Google scholar
|
L. Ayalew, H. Yamagishi. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65 (2005), pp. 15-31,
CrossRef
Google scholar
|
M. Azarafza, M. Azarafza, H. Akgün, P.M. Atkinson, R. Derakhshani. Deep learning-based landslide susceptibility mapping. Sci. Rep., 11 (2021), p. 24112,
CrossRef
Google scholar
|
S. Bera, V.K. Upadhyay, B. Guru, T. Oommen. Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India. Nat. Hazards, 108 (2021), pp. 1257-1289,
CrossRef
Google scholar
|
L. Breiman. Random forests. Mach. Learn., 45 (2001), pp. 5-32,
CrossRef
Google scholar
|
W. Chen, X. Xie, J. Peng, H. Shahabi, H. Hong, D. Tien Bui, Z. Duan, S. Li, A. Zhu. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 164 (2018), pp. 135-149,
CrossRef
Google scholar
|
C. Cortes, V. Vapnik. Support-vector networks. Mach. Learn., 20 (1995), pp. 273-297,
CrossRef
Google scholar
|
D. Costanzo, E. Rotigliano, C. Irigaray, J.D. Jiménez-Perálvarez, J. Chacón. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat. Hazards Earth Syst. Sci., 12 (2012), pp. 327-340,
CrossRef
Google scholar
|
D.M. Cruden, D.J. Varnes. Landslide types and processes. A.K. Turner, R.L. Schuster (Eds.), Landslides: Investigation and Mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, DC (1996), pp. 36-75
|
R.M.O. Cruz, R. Sabourin, G.D.C. Cavalcanti, T.I. Ren. META-DES: A dynamic ensemble selection framework using meta-learning. Pattern Recogn., 48 (2015), pp. 1925-1935,
CrossRef
Google scholar
|
S. Das, S. Sarkar, D.P. Kanungo. A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat. Hazards, 115 (2023), pp. 23-72,
CrossRef
Google scholar
|
A. Dehnavi, I.N. Aghdam, B. Pradhan, M.H.M. Varzandeh. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, 135 (2015), pp. 122-148,
CrossRef
Google scholar
|
G. Esposito, C. Carabella, G. Paglia, E. Miccadei. Relationships between morphostructural/geological framework and landslide types: historical landslides in the hilly piedmont area of Abruzzo Region (central Italy). Land, 10 (2021), p. 287,
CrossRef
Google scholar
|
H. Fan, Y. Lu, S. Shao, L. Li, Y. Wang, M. Lu, J. Li, K. Yao, Y. Sun. Evaluation and analysis of statistical and coupling models for highway landslide susceptibility. Geomat. Nat. Haz. Risk., 14 (2023), Article 2167612,
CrossRef
Google scholar
|
Z. Fang, Y. Wang, L. Peng, H. Hong. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci., 35 (2021), pp. 321-347,
CrossRef
Google scholar
|
P. Frattini, G. Crosta, A. Carrara. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol., 111 (2010), pp. 62-72,
CrossRef
Google scholar
|
F. Guzzetti, A. Carrara, M. Cardinali, P. Reichenbach. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31 (1–4) (1999), pp. 181-216,
CrossRef
Google scholar
|
He, K., Zhang, X., Ren, S., Sun, J. 2016. Identity mappings in deep residual networks. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14. Springer International Publishing, pp. 630-645. https://doi.org/10.1007/978-3-319-46493-0_38.
|
H. Hong. Assessing landslide susceptibility based on hybrid multilayer perceptron with ensemble learning. Bull. Eng. Geo. Environ., 82 (2023), p. 382,
CrossRef
Google scholar
|
H. Hong, Y. Miao, J. Liu, A.X. Zhu. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena, 176 (2019), pp. 45-64,
CrossRef
Google scholar
|
J. Huang, H. Wen, J. Hu, et al.. Deciphering decision-making mechanisms for the susceptibility of different slope geohazards: a case study on a SMOTE-RF-SHAP hybrid model. J. Rock Mech. Geotech. Eng (2024),
CrossRef
Google scholar
|
F. Huang, H. Xiong, C. Yao, F. Catani, C. Zhou, J. Huang. Uncertainties of landslide susceptibility prediction considering different landslide types. J. Rock Mech. Geotech., 15 (2023), pp. 2954-2972,
CrossRef
Google scholar
|
Y. Huang, L. Zhao. Review on landslide susceptibility mapping using support vector machines. Catena, 165 (2018), pp. 520-529,
CrossRef
Google scholar
|
T. Kavzoglu, E.K. Sahin, I. Colkesen. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11 (2014), pp. 425-439,
CrossRef
Google scholar
|
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu. LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems (2017), pp. 3149-3157
|
Kira, K., Rendell, L.A., 1992. A practical approach to feature selection. Proceedings of the Ninth International Workshop on Machine Learning, pp. 249–256. https://doi.org/10.1016/B978-1-55860-247-2.50037-1.
|
Laaksonen J., Oja, E., 1996. Classification with learning k-nearest neighbors. Proceedings of International Conference on Neural Networks (ICNN'96), 3, 1480–1483. https://doi.org/10.1109/ICNN.1996.549118.
|
S. Lee, J. Choi. Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int. J. Geogr. Inf. Sci., 18 (2004), pp. 789-814,
CrossRef
Google scholar
|
C. Li, D. He, Y. Sun, J. He, Z. Jiang. Structural characteristic and origin of intra-continental fold belt in the eastern Sichuan basin, South China Block. J. Asian Earth Sci., 111 (2015), pp. 206-221,
CrossRef
Google scholar
|
Y. Li, X. Wang, H. Mao. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards, 104 (2020), pp. 2115-2151,
CrossRef
Google scholar
|
M. Loche, M. Alvioli, I. Marchesini, H. Bakka, L. Lombardo. Landslide susceptibility maps of Italy: lessons learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci. Rev., 232 (2022), Article 104125,
CrossRef
Google scholar
|
F. Marini, B. Walczak. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst., 149 (2015), pp. 153-165,
CrossRef
Google scholar
|
C. Martinello, C. Cappadonia, E. Rotigliano. Investigating the effects of cell size in statistical landslide susceptibility modelling for different landslide typologies: a test in central–northern Sicily. Appl. Sci., 13 (2023), p. 1145,
CrossRef
Google scholar
|
Z. Matougui, L. Djerbal, R. Bahar. A comparative study of heterogeneous and homogeneous ensemble approaches for landslide susceptibility assessment in the Djebahia region, Algeria. Environ. Sci. Pollut. Res., 31 (2024), pp. 40554-40580,
CrossRef
Google scholar
|
A. Merghadi, A.P. Yunus, J. Dou, J. Whiteley, B.T. Pham. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci. Rev., 207 (2020), Article 103225,
CrossRef
Google scholar
|
N. Micheletti, L. Foresti, S. Robert, M. Leuenberger, A. Pedrazzini, M. Jaboyedoff, M. Kanevs. Machine learning feature selection methods for landslide susceptibility mapping. Math. Geosci., 46 (2014), pp. 33-57,
CrossRef
Google scholar
|
R. Mind’je, L. Li, J.B. Nsengiyumva, C. Mupenzi, E.M. Nyesheja, P.M. Kayumba, A. Gasirabo, E. Hakorimana. Landslide susceptibility and influencing factors analysis in Rwanda. Environ. Dev. Sustain., 22 (2020), pp. 7985-8012,
CrossRef
Google scholar
|
V. Moosavi, Y. Niazi. Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides, 13 (2016), pp. 97-114,
CrossRef
Google scholar
|
S. Ouyang, W. Chen, H. Liu, Y. Li, Z. Xu. A novel landslide susceptibility prediction framework based on contrastive loss. Giscience Remote Sens., 61 (2024), Article 2306740,
CrossRef
Google scholar
|
M. Panahi, O. Rahmati, F. Rezaie, S. Lee, F. Mohammadi, C. Conoscenti. Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. Catena, 208 (2022), Article 105779,
CrossRef
Google scholar
|
B.T. Pham, D. Tien Bui, I. Prakash. Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotechn. Geol. Eng., 35 (2017), pp. 2597-2611,
CrossRef
Google scholar
|
B.T. Pham, D. Van Dao, T.D. Acharya, T.V. Phong, R. Costache, H.V. Le, H.B.T. Nguyen, I. Prakash. Performance assessment of artificial neural network using chi-square and backward elimination feature selection methods for landslide susceptibility analysis. Environ. Earth Sci., 80 (2021), p. 686,
CrossRef
Google scholar
|
H.R. Pourghasemi, B. Pradhan, C. Gokceoglu. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards, 63 (2012), pp. 965-996,
CrossRef
Google scholar
|
P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzztti. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., 180 (2018), pp. 60-91,
CrossRef
Google scholar
|
S.M. Ross. Introduction to Probability Models. Academic Press (2014)
|
D. Rumelhart, G. Hinton, R. Williams. Learning representations by back-propagating errors. Nature, 323 (1986), pp. 533-536,
CrossRef
Google scholar
|
S. Sachdeva, T. Bhatia, A.K. Verma. A novel voting ensemble model for spatial prediction of landslides using GIS. Int. J. Remote Sens., 41 (2020), pp. 929-952,
CrossRef
Google scholar
|
A. Shirzadi, K. Solaimani, M.H. Roshan, A. Kavian, K. Chapi, H. Shahabi, S. Keesstra, B.B. Ahmad, D. Tien Bui. Uncertainties of prediction accuracy in shallow landslide modeling: sample size and raster resolution. Catena, 178 (2019), pp. 172-188,
CrossRef
Google scholar
|
H. Shu, Z. Guo, S. Qi, D. Song, H. Pourghasemi, J. Ma. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: a case study from Lanzhou city of northwestern China. Remote Sens., 13 (2021), p. 3623,
CrossRef
Google scholar
|
K. Šilhán. Dendrogeomorphology of different landslide types: a review. Forests, 12 (2021), p. 261,
CrossRef
Google scholar
|
R.F. Silva, R. Marques, J.L. Gaspar. Implications of landslide typology and predisposing factor combinations for probabilistic landslide susceptibility models: a case study in Lajedo Parish (Flores Island, Azores—Portugal). Geosciences, 8 (2018), p. 153,
CrossRef
Google scholar
|
S. Steger, V. Mair, C. Kofler, M. Pittore, S. Schneiderbauer. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling–benefits of exploring landslide data collection effects. Sci. Total Environ., 776 (2021), Article 145935,
CrossRef
Google scholar
|
D. Sun, J. Wang, H. Wen, Y.K. Ding, C.L. Mi. Landslide susceptibility mapping (LSM) based on different boosting and hyperparameter optimization algorithms: a case of Wanzhou District, China. J. Rock Mech. Geotech. Eng., 16 (8) (2024), pp. 3221-3232,
CrossRef
Google scholar
|
X. Sun, L. Yuan, S. Tao, M. Liu, D. Li, Y. Zhou, H. Shao. A novel landslide susceptibility optimization framework to assess landslide occurrence probability at the regional scale for environmental management. J. Environ. Manage., 322 (2022), Article 116108,
CrossRef
Google scholar
|
H. Tang, J. Wasowski, C.H. Juang. Geohazards in the three Gorges Reservoir Area, China–Lessons learned from decades of research. Eng. Geol., 261 (2019), Article 105267,
CrossRef
Google scholar
|
Y. Thiery, J.P. Malet, S. Sterlacchini, O. Maquaire. Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology, 92 (2007), pp. 38-59,
CrossRef
Google scholar
|
D. Tien Bui, H. Shahabi, A. Shirzadi, K. Chapi, B. Pradhan, W. Chen, K. Khosravi, M. Panahi, B.B. Ahmad, L. Saro. Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors, 18 (2018), p. 2464,
CrossRef
Google scholar
|
M. Van Erp, L. Vuurpijl, L. Schomaker. An overview and comparison of voting methods for pattern recognition. Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition (2002), pp. 195-200,
CrossRef
Google scholar
|
J.N. Wang, Y.Q. Wang, C. Li, Y.M. Li, H.M. Qi. Landslide susceptibility evaluation based on landslide classification and ANN-NFR modelling in the Three Gorges Reservoir area, China. Ecol. Ind., 160 (2024), Article 111920,
CrossRef
Google scholar
|
T. Xiao, S. Segoni, X. Liang, K. Yin, N. Casagli. Generating soil thickness maps by means of geomorphological-empirical approach and random forest algorithm in Wanzhou County, Three Gorges Reservoir. Geosci. Front., 14 (2023), Article 101514,
CrossRef
Google scholar
|
Y. Yin, F. Wang, P. Sun. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6 (2009), pp. 139-152,
CrossRef
Google scholar
|
L. Yu, Y. Wang, B. Pradhan. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China. Geosci. Front., 15 (2024), Article 101802,
CrossRef
Google scholar
|
J.L. Zêzere. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. Sci., 2 (2002), pp. 73-82,
CrossRef
Google scholar
|
F. Zhang, W. Chen, G. Liu, S. Liang, C. Kang, F. He. Relationships between landslide types and topographic attributes in a loess catchment, China. J. Mt. Sci., 9 (2012), pp. 742-751,
CrossRef
Google scholar
|
W.G. Zhang, H.R. Li, L. Han, L.L. Chen, L. Wang. Slope stability prediction using ensemble learning techniques: a case study in Yunyang County. J. Rock Mech. Geotech. Eng., 14 (4) (2022), pp. 1089-1099,
CrossRef
Google scholar
|
F. Zhao, F. Miao, Y. Wu, S.Q. Gong, G.Y. Zheng, J. Yang, W.W. Zhan. Landslide dynamic susceptibility mapping in urban expansion area considering spatiotemporal land use and land cover change. Sci. Tot. Environ., 949 (2024), Article 175059,
CrossRef
Google scholar
|
C. Zhong, T. Oguchi, R. Lai. Effects of topography on vegetation recovery after shallow landslides in the Obara and Shobara districts, Japan. Remote Sens., 15 (2023), p. 3994,
CrossRef
Google scholar
|
C. Zhou, K. Yin, Y. Cao, B. Ahmed, Y. Li, F. Catani, H.R. Pourghasemi. Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci., 112 (2018), pp. 23-37,
CrossRef
Google scholar
|
/
〈 |
|
〉 |