Multi-mechanism REYs enrichment in early Cambrian phosphorites within inner-shelf: Constraints from the geochemistry characteristics of francolite in Kunyang, Yangtze Block

Pei Liang, Junyi Wang, Li Chen, Yuling Xie, Bingbing Zhao

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101996.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101996. DOI: 10.1016/j.gsf.2024.101996

Multi-mechanism REYs enrichment in early Cambrian phosphorites within inner-shelf: Constraints from the geochemistry characteristics of francolite in Kunyang, Yangtze Block

Author information +
History +

Abstract

Middle and heavy rare earth elements and yttrium (MHREYs) are critical to the high-tech and green-energy industries, generating tremendous supply risk in recent decades. Recently, sedimentary phosphorites have been identified as a new resource for MHREYs. The Early Cambrian is considered one of the critical large-scale phosphorus-forming periods in China and globally. During this period, widespread large-scale phosphorites mainly occurred at shelf, while small-scale phosphate concretions predominantly existed in near-slope settings on the Yangtze Block, South China. However, multi controls for ore-forming mechanism of extraordinary REYs enrichment in phosphorites have not been well constrained, limiting the understanding of the formation of large-scale phosphorites at shelf. To better understand the REYs enrichment in phosphorite, the REYs-rich Kunyang phosphorite, the largest phosphorite in shelf environment on the Yangtze Block, was investigated through mineralogy, in-situ geochemistry of major and trace elements in francolites. Based on the mineral characteristics, four types of phosphorite and four types of wall rocks were divided, which can be grouped into high-REYs (435–717 ppm) and low-REYs (224–282 ppm) categories. Comparing the geochemical characteristics of high-REYs and low-REYs groups, multi-mechanisms of REYs enrichment can be supposed. Frequent Fe redox cycling and related suboxic conditions may be responsible for the extraordinary REYs enrichment in phosphorites. In high-energy hydrodynamic systems with a low sedimentation rate, prolonged deposition of francolite enhanced the effects of adsorption and substitution in the early and late diagenetic stages, respectively, significantly increasing REYs uptake. Moreover, in the inner-shelf environment, wave fluctuations and storm effects are significant, leading to extensive diagenetic reworking, which form extremely high REYs contents in the altered rims of francolite. The negative Eu anomalies in the high-REYs group also indicate a positive influence of porewater on REYs enrichment. Regarding the sources of REYs, both seawater and terrigenous detrital material contribute to REYs in phosphorite at the shelf environment. The sedimentary high-REYs group indicate that terrigenous detrital material may enhance REYs content in seawater, which is then transferred to francolite during diagenesis. Consequently, multiple mechanisms controlled the REYs enrichment, leading to the formation of large-scale phosphorite in the inner-shelf.

Keywords

Kunyang / REYs / Phosphorite / Early Cambrian / In-situ geochemistry

Cite this article

Download citation ▾
Pei Liang, Junyi Wang, Li Chen, Yuling Xie, Bingbing Zhao. Multi-mechanism REYs enrichment in early Cambrian phosphorites within inner-shelf: Constraints from the geochemistry characteristics of francolite in Kunyang, Yangtze Block. Geoscience Frontiers, 2025, 16(2): 101996 https://doi.org/10.1016/j.gsf.2024.101996

CRediT authorship contribution statement

Pei Liang: Writing – review & editing, Writing – original draft, Data curation. Junyi Wang: Writing – review & editing. Li Chen: Data curation. Yuling Xie: Writing – review & editing. Bingbing Zhao: Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This study was financially supported by the National Key Research and Development Program of China (2021YFC2901703). We would like to thank Jiajing Sun for the SEM/EDS analysis in the USTB. We also give grateful thanks to Mr. Guisen Gou and Mr. Pengfei Li for their help in the field work in Kunyang. The manuscript benefited significantly from the insightful comments by two anonymous reviewers and academic editor.

References

D.S. Alibo, Y. Nozaki. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta, 63 (1999), pp. 363-372
J.A. Austin, S.J. Lentz. The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32 (2002), pp. 2171-2193
Z. Bao, Z. Zhao. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev., 33 (2008), pp. 519-535
M. Bau. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123 (1996), pp. 323-333
M. Bau, P. Dulski. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res., 79 (1996), pp. 37-55
M. Bau, P. Möller, P. Dulski. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar. Chem., 56 (1997), pp. 123-131
K. Binnemans, P.T. Jones, T. Müller, L. Yurramendi. Rare Earths and the Balance Problem: How to Deal with Changing Markets?. J. Sustain. Metall., 4 (2018), pp. 126-146
R. Caird, P. Pufahl, E. Hiatt, M. Abram, A. Rocha, T. Kyser. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event. Sediment. Geol., 350 (2017), pp. 55-71
J. Chen, T.J. Algeo, L. Zhao, Z.Q. Chen, L. Cao, L. Zhang, Y. Li. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Sci. Rev., 149 (2015), pp. 181-202
D. Chen, J. Wang, H. Qing, D. Yan, R. Li. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem. Geol., 258 (2009), pp. 168-181
J. Chen, R. Yang, H. Wei, J. Gao. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. J. Rare Earth, 31 (2013), pp. 101-112
R.H. Chen, K. Zhao. Ore-forming material source and sedimentary environment of Kunyang phospate deposit in East Yunnan. Mineral Resour. Geol., 35 (2021), pp. 70-75
C.-H. Chung, C.-F. You, J.W. Schopf, N. Takahata, Y. Sano. NanoSIMS U-Pb dating of fossil-associated apatite crystals from Ediacaran (∼ 570 Ma) Doushantuo Formation. Precambrian Res., 349 (2020), Article 105564
W. Compston, I. Williams, J. Kirschvink, Z. Zichao, M. Guogan. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. London, 149 (1992), pp. 171-184
W. Compston, Z. Zhang, J. Cooper, G. Ma, R. Jenkins. Further SHRIMP geochronology on the early Cambrian of South China. Am. J. Sci., 308 (2008), pp. 399-420
Y. Deng, J. Ren, Q. Guo, J. Cao, H. Wang, C. Liu. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Sci. Rep., 7 (2017), p. 16539
P. Emsbo, P.I. McLaughlin, G.N. Breit, E.A. du Bray, A.E. Koenig. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?. Gondwana Res., 27 (2015), pp. 776-785
K. Föllmi. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev., 40 (1996), pp. 55-124
I. Francovschi, E. Grădinaru, R.-D. Roban, M.N. Ducea, V. Ciobotaru, L. Shumlyanskyy. Rare earth element (REE) enrichment of the late Ediacaran Kalyus Beds (East European Platform) through diagenetic uptake. Geochemistry, 80 (2020), Article 125612
P. Froelich, M. Arthur, W. Burnett, M. Deakin, V. Hensley, R. Jahnke, L. Kaul, K.-H. Kim, K. Roe, A. Soutar. Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. Mar. Geol., 80 (1988), pp. 309-343
P. Gao, Z. He, S. Li, G.G. Lash, B. Li, B. Huang, D. Yan. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 505 (2018), pp. 381-397
K. Gnandi, H.J. Tobschall. Distribution patterns of rare-earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé–Kpogamé, Togo. J.  Afr. Earth Sci., 37 (2003), pp. 1-10
B.A. Haley, G.P. Klinkhammer, J. McManus. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta, 68 (2004), pp. 1265-1279
D. Herwartz, T. Tütken, K.P. Jochum, P.M. Sander. Rare earth element systematics of fossil bone revealed by LA-ICPMS analysis. Geochim. Cosmochim. Acta, 103 (2013), pp. 161-183
W.T. Holser. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr. Palaeoclimatol. Palaeoecol., 132 (1997), pp. 309-323
M. Hoshino, K. Sanematsu, Y. Watanabe. REE mineralogy and resources. Handb. Phys. Chem. Rare Earths, 49 (2016), pp. 129-291
A.V. Ilyin. Rare-earth geochemistry of ‘old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chem. Geol., 144 (1998), pp. 243-256
I. Jarvis, W.C. Burnett, Y. Nathan, F.S.M. Almbaydin, A.K.M. Attia, L.N. Castro, Y.N. Zanin. Phosphorite geochemistry: state-of-the-art and environmental concerns. Eclogae Geol. Helv., 87 (1994), pp. 643-700
R.J.F. Jenkins, J.A. Cooper, W. Compston. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. J. Geol. Soc. London, 159 (2002), pp. 645-658
Y. Kato, K. Fujinaga, K. Nakamura, Y. Takaya, K. Kitamura, J. Ohta, R. Toda, T. Nakashima, H. Iwamori. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geosci., 4 (2011), p. 535
R. Kechiched, R. Laouar, O. Bruguier, L. Kocsis, S. Salmi-Laouar, D. Bosch, O. Ameur-Zaimeche, A. Foufou, H. Larit. Comprehensive REE+Y and sensitive redox trace elements of Algerian phosphorites (Tébessa, eastern Algeria): A geochemical study and depositional environments tracking. J. Geochem. Explor., 208 (2020), Article 106396
D.L. Kidder, R. Krishnaswamy, R.H. Mapes. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem. Geol., 198 (2003), pp. 335-353
Y. Kon, M. Hoshino, K. Sanematsu, S. Morita, M. Tsunematsu, N. Okamoto, N. Yano, M. Tanaka, T. Takagi. Geochemical Characteristics of Apatite in Heavy REE‐rich Deep‐Sea Mud from Minami‐T orishima Area, Southeastern Japan. Resour. Geol., 64 (2014), pp. 47-57
S.J. Lentz, M.R. Fewings. The wind-and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4 (2012), pp. 317-343
Z.X. Li, S. Bogdanova, A. Collins, A. Davidson, B. De Waele, R. Ernst, I. Fitzsimons, R. Fuck, D. Gladkochub, J. Jacobs. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res., 160 (2008), pp. 179-210
X. Li, M.-F. Zhou. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe–Cu–(REE) deposit, Southwest China. Geochim. Cosmochim. Acta, 166 (2015), pp. 53-73
Y.Z. Liang, Y.Y. Su, X.Z. Su, H.T. Chi. Modes of occurrence of rare earth elements in Kunyang phosphorite deposit, Yunnan Province. Acta Petrol. Min., 37 (2018), pp. 959-966
J. Liao, X. Sun, D. Li, R. Sa, Y. Lu, Z. Lin, L. Xu, R. Zhan, Y. Pan, H. Xu. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies. Chem. Geol., 512 (2019), pp. 58-68
B.J. Liu, X.S. Xu, Q. Xu, X.N. Pan, H.Q. Huang. Sedimentary crustal evolution and mineralization of palaeocontinent in South China. Science Press, Beijing (in Chinese with English abstract) (1993)
K. Lumiste, K. Mänd, J. Bailey, P. Paiste, L. Lang, A. Lepland, K. Kirsimäe. REE+ Y uptake and diagenesis in Recent sedimentary apatites. Chem. Geol., 525 (2019), pp. 268-281
J.M. Mcarthur, J.N. Walsh. Rare-earth geochemistry of phosphorites. Chem. Geol., 47 (1984), pp. 191-220
S.M. McLennan. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst., 2 (4) (2001),
CrossRef Google scholar
N. Nayebi, D. Esmaeily, D.M. Chew, B. Lehmann, S. Modabberi. Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geol. Rev., 132 (2021), Article 104054
Y. Nozaki, J. Zhang, H. Amakawa. The fractionation between Y and Ho in the marine environment. Earth Planet. Sci. Lett., 148 (1997), pp. 329-340
Y. Okada, Y. Sawaki, T. Komiya, T. Hirata, N. Takahata, Y. Sano, J. Han, S. Maruyama. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res., 25 (2014), pp. 1027-1044
N. Olgun, S. Duggen, D. Andronico, S. Kutterolf, P.L. Croot, S. Giammanco, P. Censi, L. Randazzo. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater. Mar. Chem., 152 (2013), pp. 32-42
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom., 26 (2011), pp. 2508-2518
S.A. Paul, J.B. Volz, M. Bau, M. Köster, S. Kasten, A. Koschinsky. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific. Geochim. Cosmochim. Acta, 251 (2019), pp. 56-72
P.K. Pufahl, L.A. Groat. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Econ. Geol., 112 (2017), pp. 483-516
P. Pufahl, E. Hiatt. Oxygenation of the Earth's atmosphere–ocean system: a review of physical and chemical sedimentologic responses. Mar. Petrol. Geol., 32 (2012), pp. 1-20
B. Reynard, C. Lécuyer, P. Grandjean. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol., 155 (1999), pp. 233-241
Y. Sawaki, M. Nishizawa, T. Suo, T. Komiya, T. Hirata, N. Takahata, Y. Sano, J. Han, Y. Kon, S. Maruyama. Internal structures and U–Pb ages of zircons from a tuff layer in the Meishucunian formation, Yunnan Province, South China. Gondwana Res., 14 (2008), pp. 148-158
G. Shields, P. Stille. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol., 175 (2001), pp. 29-48
M. Steiner, E. Wallis, B.-D. Erdtmann, Y. Zhao, R. Yang. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 169 (2001), pp. 165-191
M. Steiner, G. Li, Y. Qian, M. Zhu, B.-D. Erdtmann. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr. Palaeoclimatol. Palaeoecol., 254 (2007), pp. 67-99
S.R. Taylor, S.M. McLennan. An examination of the geochemical record preserved in sedimentary rocks. S.R. Taylor, S.M. McLennan (Eds.), The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications, Oxford (1985), p. 312
J.A. Trotter, C.R. Barnes, A.D. McCracken. Rare earth elements in conodont apatite: Seawater or pore-water signatures?. Palaeogeogr. Palaeoclimatol. Palaeoecol., 462 (2016), pp. 92-100
J. Wang, Z.X. Li. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res., 122 (2003), pp. 141-158
R.T. Watkins, Y. Nathan, J.M. Bremner. Rare earth elements in phosphorite and associated sediment from the Namibian and South African continental shelves. Mar. Geol., 129 (1995), pp. 111-128
J. Wright, H. Schrader, W.T. Holser. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta, 51 (1987), pp. 631-644
J. Xing, Y. Jiang, H. Xian, Z. Zhang, Y. Yang, W. Tan, X. Liang, H. Niu, H. He, J. Zhu. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: A micro-and nano-scale mineralogical study. Ore Geol. Rev., 136 (2021), Article 104224
J. Xing, Y. Jiang, H. Xian, W. Yang, Y. Yang, W. Tan, H. Niu, H. He, J. Zhu. Hydrothermal alteration and the remobilization of rare earth elements during reprecipitation of nano-scale apatite in phosphorites. Lithos, 107113 (2023)
J. Xing, Y. Jiang, H. Xian, W. Yang, Y. Yang, H. Niu, H. He, J. Zhu. Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China. Geosci. Front., 15 (2024), Article 101766
F. Xu, A. Li, T. Li, K. Xu, S. Chen, L. Qiu, Y. Cao. Rare earth element geochemistry in the inner shelf of the East China Sea and its implication to sediment provenances. J. Rare Earths, 29 (2011), pp. 702-709
Q.G. Yan, C. Li, X.J. Jiang, Z.Q. Wang, Y.J. Li, W. Li. The age and sedimentary environment of the Kunyang phosphate deposit, Central Yunnan: Constraints from Re-Os isotopes. Rock and Mineral Analysis, 37 (2018), pp. 462-474
K.F. Yang, H.R. Fan, M. Santosh, F.-F. Hu, K.-Y. Wang. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geol. Rev., 40 (2011), pp. 122-131
Yang, F., 2011. Sedimentary environment and geochemistry of the Kunyang phosphorite deposit in Yunnan province. Ms. Thesis, China University of Geosciences (Beijing), Beijing, p. 51 (in Chinese with English abstract).
L.M. Yu, M.X. Liu, Y. Dan, N. Said, J.H. Wu, M.C. Hou, H. Zou. The Origin of Ediacaran Phosphogenesis Event: New Insights from Doushantou Formation in the Danzhai phosphorite deposit, South China. Ore Geol. Rev., 152 (2023), Article 105230
Y.F. Zeng, W.D. Yang. Mechanism of enrichment of Kunyang and Haikou phospharite deposits, Yunnan China. Acta Sediment. Sin., 5 (1987), pp. 19-28
H. Zhang, H. Fan, H. Wen, T. Han, T. Zhou, Y. Xia. Controls of REY enrichment in the early Cambrian phosphorites. Geochim. Cosmochim. Acta, 324 (2022), pp. 117-139
K. Zhang, G.A. Shields. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Sci. Rev., 229 (2022), Article 104015
L. Zhao, Z.Q. Chen, T.J. Algeo, J. Chen, Y. Chen, J. Tong, S. Gao, L. Zhou, Z. Hu, Y. Liu. Rare-earth element patterns in conodont albid crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis?. Glob. Planet. Chang., 105 (2013), pp. 135-151
M. Zhou, T. Luo, W.D. Huff, S. Liu. Prominent Lower Cambrian K-bentonites in South China: distribution, mineralogy, and geochemistry. J. Sediment. Res., 84 (2014), pp. 842-853
B. Zhu, S.Y. Jiang, J.H. Yang, D. Pi, H.F. Ling, Y.Q. Chen. Rare earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 398 (2014), pp. 132-143
R.X. Zhu, X.H. Li, X.G. Hou, Y.X. Pan, F. Wang, C.L. Deng, H.Y. He. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Science in China Series D: Earth Sciences, 52 (2009), pp. 1385-1392

28

Accesses

0

Citations

Detail

Sections
Recommended

/