Lithospheric deformation and seismotectonics in the southeastern Tibetan Plateau: A holistic perspective from joint inversion of multi-geophysical data
Feiyu Zhao, Sanzhong Li, Yanhui Suo, Juzhi Deng, Mengxue Dai, Xiao Chen, Bin Hu, Yanguo Wang, Yaping Hu
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101994.
Lithospheric deformation and seismotectonics in the southeastern Tibetan Plateau: A holistic perspective from joint inversion of multi-geophysical data
The southeastern Tibetan Plateau (SETP) plays a pivotal role in accommodating the crustal deformation between the complex Tibet Plateau and the South China Block during the Cenozoic associated with the India-Asia Convergence. In this study, we establish a high-resolution 3-D lithospheric structure model of the SETP through joint inversion of observable multi-geophysical data, to understand its Cenozoic progressive deformation processes, deep seismotectonic environment, as well as regional geodynamic mechanism. We identify two low-density zones within the mid-lower crust that are separated by a pronounced high-density body beneath the inner zone of the Emeishan Large Igneous Province (ELIP). We also image an interconnected channel flow in the lower crust beneath the SETP. To further confirm the relationship between Cenozoic deformation propagation and deep lithospheric architecture, we adopt a holistic perspective from joint inversion of observable multi-geophysical data, coupled with integrated analysis on geometric-kinematic characteristics of major strike-slip fault zones and regional tectonics in the SETP. The results show that the mechanically weak mid-lower crust of the SETP is characterized by low effective elastic thickness (Te), high heat flow, low-density/velocity and low-viscosity, which might accommodate the ductile flow and provide an important channel for the lateral extrusion of crustal materials from the Tibetan Plateau, and ultimately contribute to the episodic lithospheric deformation of the SETP. We trace three main phases of deformation within the SETP during the Cenozoic: the Eocene-early Oligocene latitudinal crustal shortening and thickening, the late Oligocene-early Miocene clockwise rotation and lateral extrusion along major strike-slip faults, and the mid-late Miocene lower crustal flow accompanied with regional kinematic reversal. The lithospheric deformation, the invasion of fluids and the upwelling of deep molten materials are conducive to strain accumulation, which might also explain the occurrence of large earthquakes. Geodynamically, we consider that both the spatio-temporal variance of convergent rates, subduction angle, and processes of the India-Asia Convergence may be associated with episodic crustal deformation and intense seismicity in the SETP. The aqueous fluids in the weak mid-lower crust may have propagated outward due to the long-term gravitational driving forces and contributed to the lithospheric deformation and seismicity of the SETP. Furthermore, the retreat of the subducted Indian slab as well as the rollback and back-arc spreading of the western Pacific Plate also provided favorable conditions for the eastward extrusion of the Tibetan Plateau.
Tibetan Plateau / Lithospheric deformation / Seismotectonics / Cenozoic / Multi-geophysical data
M.K. Bai, M.-L. Chevalier, J.W. Pan, A. Replumaz, P.H. Leloup, M. Métois, H.B. Li. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth Planet. Sci. Lett., 485 (2018), pp. 19-31,
CrossRef
Google scholar
|
D.H. Bai, M.J. Unsworth, M.A. Meju, X.B. Ma, J.W. Teng, X.R. Kong, Y. Sun, J. Sun, L.F. Wang, C.S. Jiang, C.P. Zhao, P.F. Xiao, M. Liu. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci., 3 (5) (2010), pp. 358-362,
CrossRef
Google scholar
|
X.W. Bao, X.X. Sun, M.J. Xu, D.W. Eaton, X.D. Song, L.S. Wang, Z.F. Ding, N. Mi, H. Li, D.Y. Yu, Z.C. Huang, P. Wang. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet. Sci. Lett., 415 (2015), pp. 16-24,
CrossRef
Google scholar
|
X.W. Bao, X.D. Song, D.W. Eaton, Y.X. Xu, H.L. Chen. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy. Geophys. Res. Lett., 47 (3) (2020), Article e2019GL085721,
CrossRef
Google scholar
|
C. Braitenberg, M. Zadro, J. Fang, Y. Wang, H.T. Hsu. The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J. Geodyn., 30 (5) (2000), pp. 489-505,
CrossRef
Google scholar
|
T.M. Brocher. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am., 95 (6) (2005), pp. 2081-2092,
CrossRef
Google scholar
|
B.C. Burchfiel, Z. Chen. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland. Geol. Soc. Am., 210 (2012), pp. 1-165
|
F.H. Cao, C.T. Liang, Y.H. Yang, L. Zhou, Z.Q. Liu, Z. Liu. 3D velocity and anisotropy of the southeastern Tibetan plateau extracted by joint inversion of wave gradiometry, ambient noise, and receiver function. Tectonophysics, 848 (2023), Article 229690,
CrossRef
Google scholar
|
S. Ceylan, J. Ni, J.Y. Chen, Q. Zhang, F. Tilmann, E. Sandvol. Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet. J. Geophys. Res. Solid Earth, 117 (B11) (2012), Article B11303,
CrossRef
Google scholar
|
B. Chen, C. Chen, M.K. Kaban, J.S. Du, Q. Liang, M. Thomas. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth Planet. Sci. Lett., 363 (2013), pp. 61-72,
CrossRef
Google scholar
|
L. Chen, T.V. Gerya. The role of lateral lithospheric strength heterogeneities in orogenic plateau growth: Insights from 3-D thermo-mechanical modeling. J. Geophys. Res. Solid Earth, 121 (4) (2016), pp. 3118-3138,
CrossRef
Google scholar
|
B. Chen, J.X. Liu, M.K. Kaban, Y. Sun, C. Chen, J.S. Du. Elastic thickness, mechanical anisotropy and deformation of the southeastern Tibetan Plateau. Tectonophysics, 637 (2014), pp. 45-56,
CrossRef
Google scholar
|
B. Chen, X.P. Long, S.A. Wilde, C. Yuan, Q. Wang, X.P. Xia, Z.F. Zhang. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: a contribution to uplift of the Eastern Tibetan Plateau. Lithos, 284–285 (2017), pp. 709-729,
CrossRef
Google scholar
|
M. Chen, F.L. Niu, Q.Y. Liu, J. Tromp, X.F. Zheng. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons. J. Geophys. Res. Solid Earth, 120 (3) (2015), pp. 1762-1789,
CrossRef
Google scholar
|
L. Chen, X.D. Song, T.V. Gerya, T. Xu, Y. Chen. Crustal melting beneath orogenic plateaus: Insights from 3-D thermomechanical modeling. Tectonophysics, 761 (2019), pp. 1-15,
CrossRef
Google scholar
|
S. Chen, Q.S. Wang, Y.Q. Zhu, C.S. Jiang, W.X. Wang, H.Y. Lu, D.F. Liu, F.Y. Guo. Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau. Chin. J. Geophys., 54 (1) (2011), pp. 22-34
|
N.I. Christensen. Poisson’s ratio and crustal seismology. J. Geophys. Res. Solid Earth, 101 (B2) (1996), pp. 3139-3156,
CrossRef
Google scholar
|
M.K. Clark, L.H. Royden. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28 (8) (2000), pp. 703-706,
CrossRef
Google scholar
|
S. Cloetingh, E. Burov. Lithospheric folding and sedimentary basin evolution: A review and analysis of formation mechanisms. Basin Res., 23 (3) (2011), pp. 257-290,
CrossRef
Google scholar
|
A. Copley. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophys. J. Int., 174 (3) (2008), pp. 1081-1100,
CrossRef
Google scholar
|
Y.F. Deng, Z.J. Zhang, J. Badal, W.M. Fan. 3-D density structure under South China constrained by seismic velocity and gravity data. Tectonophysics, 627 (13) (2014), pp. 159-170,
CrossRef
Google scholar
|
Y.F. Deng, W. Levandowski, T. Kusky. Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography. Earth Planet. Sci. Lett., 460 (15) (2017), pp. 244-254,
CrossRef
Google scholar
|
M. Devachandra, B. Kundu, J. Catherine, A. Kumar, V.K. Gahalaut. Global positioning system (GPS) measurements of crustal deformation across the frontal eastern Himalayan syntaxis and seismic-hazard assessment. Bull. Seismol. Soc. Am., 104 (3) (2014), pp. 1518-1524,
CrossRef
Google scholar
|
L.V. Dmitrienko, S.Z. Li, X.Z. Cao, Y.H. Suo, Y.M. Wang, L.M. Dai, I.D. Somerville. Large-scale morphotectonics of the ocean-continent transition zone between the Western Pacific Ocean and the East Asian continent: A link of deep process to the Earth's surface system. Geol. J., 51 (S1) (2016), pp. 263-285,
CrossRef
Google scholar
|
E. Dombrádi, D. Sokoutis, G. Bada, S. Cloetingh, F. Horváth. Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography. Tectonophysics, 484 (1–4) (2010), pp. 103-118,
CrossRef
Google scholar
|
N.Q. Du, Z.W. Li, T.Y. Hao, X. Xia, Y.T. Shi, Y. Xu. Joint tomographic inversion of crustal structure beneath the eastern Tibetan Plateau with ambient noise and gravity data. Geophys. J. Int., 227 (3) (2021), pp. 1961-1979,
CrossRef
Google scholar
|
J. Fan, Y. Xu. 3D density structure of Sichuan basin, Southwest China based on the inversion of gravity data. J. Appl. Geophys., 204 (2022), Article 104721,
CrossRef
Google scholar
|
R. Feng, H.F. Yan, R.S. Zhang. The Rapia inversion of 3-D potential field and program design. Acta Geol. Sin., 60 (4) (1986), pp. 390-403
|
J.K. Feng, H.J. Yao, L. Chen, W.T. Wang. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion. Nat. Sci. Rev., 9 (4) (2022), Article nwab174,
CrossRef
Google scholar
|
L.M. Flesch, W.E. Holt, P.G. Silver, M. Stephenson, C.Y. Wang, W.W. Chan. Constraining the extent of crust-mantle coupling in Central Asia using GPS, geologic, and shear-wave splitting data. Earth Planet. Sci. Lett., 238 (1–2) (2005), pp. 248-268,
CrossRef
Google scholar
|
D.W. Forsyth. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. Solid Earth, 90 (B14) (1985), pp. 12623-12632,
CrossRef
Google scholar
|
G.Y. Fu, Y.Q. Zhu, S.H. Gao, W.F. Liang, H.L. Jin, G.L. Yang, X. Zhou, S.S. Guo, Y.M. Xu, W.J. Du. Discrepancies between free air gravity anomalies from EGM2008 and the ones from dense gravity/GPS observations at west Sichuan Basin. Chin. J. Geophys., 56 (11) (2013), pp. 3761-3769
|
G.Y. Fu, S.H. Gao, J.T. Freymueller, G.Q. Zhang, Y.Q. Zhu, G.L. Yang. Bouguer gravity anomaly and isostasy at western Sichuan Basin revealed by new gravity surveys. J. Geophys. Res. Solid Earth, 119 (4) (2014), pp. 3925-3938,
CrossRef
Google scholar
|
W.J. Gan, P. Molnar, P.Z. Zhang, G.R. Xiao, S.M. Liang, K.L. Zhang, Z.J. Li, K.K. Xu, L. Zhang. Initiation of clockwise rotation and eastward transport of Southeastern Tibet inferred from deflected fault traces and GPS observations. Geol. Soci. Amer. Bull., 134 (5–6) (2021), pp. 1129-1142,
CrossRef
Google scholar
|
L. Gao, Z.Y. Yang, Y.B. Tong, H. Wang, C.Z. An, H.F. Zhang. Cenozoic clockwise rotation of the Chuan Dian Fragment, southeastern edge of the Tibetan Plateau: Evidence from a new paleomagnetic study. J. Geodyn., 112 (2017), pp. 46-57,
CrossRef
Google scholar
|
A.D. Gibbons, S. Zahirovic, R.D. Müller, J.M. Whittaker, V. Yatheesh. A tectonic model reconciling evidence for the collisions between India, Eurasia and intraoceanic arcs of the central-eastern Tethys. Gondwana Res., 28 (2) (2015), pp. 451-492,
CrossRef
Google scholar
|
S.A. Gilder, G.R. Keller, M. Luo, P.C. Goodell. Eastern Asia and the Western Pacific: timing and spatial distribution of rifting in China. Tectonophysics, 197 (2–4) (1991), pp. 225-243,
CrossRef
Google scholar
|
L.D. Gilley, T.M. Harrison, P.H. Leloup, F.J. Ryerson, O.M. Lovera, J.H. Wang. Direct dating of left-lateral effect formation along Red River shear zone. China and Vietnam. J. Geophys. Res. Solid Earth, 108 (B2) (2003), p. 2127,
CrossRef
Google scholar
|
W. Gong, X.D. Jiang, H.T. Zhou, J.H. Xing, C.Y. Li, K. Yang. Varied thermo-rheological structure, mechanical anisotropy and lithospheric deformation of the southeastern Tibetan Plateau. Tectonophysics, 163 (2018), pp. 108-130,
CrossRef
Google scholar
|
L.H. Guo, R. Gao. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China. Precambrian Res., 309 (2018), pp. 45-55,
CrossRef
Google scholar
|
X.Y. Guo, C.S. Li, R. Gao, S.Z. Li, X. Xu, Z.W. Lu, W.H. Li, B. Xiang. The India-Eurasia convergence system: Late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking. Geosyst. Geoenviron., 1 (1) (2022), Article 100006,
CrossRef
Google scholar
|
X. He, L.F. Zhao, X.B. Xie, X. Tian, Z.X. Yao. Weak crust in southeast Tibetan Plateau revealed by Lg-wave attenuation tomography: implications for crustal material escape. J. Geophys. Res. Solid Earth, 126 (2021), Article e2020JB020748,
CrossRef
Google scholar
|
Z.Q. Hou, Q.F. Wang, H.J. Zhang, B. Xu, N. Yu, R. Wang, D.I. Groves, Y.C. Zheng, S.C. Han, L. Gao, L. Yang. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits. Nat. Sci. Rev., 10 (2023), Article nwac257,
CrossRef
Google scholar
|
Hu, M.Z., Jin, T.Y., Hao, H.T., Li, Z.Y., Wang, J.P., Zhang, Y., 2020. Lithospheric effective elastic thickness and its tectonics in the southeastern Qinghai-Tibet Plateau. Chin. J. Geophys. 63(3), 969-987 (in Chinese with English abstract). https://doi.org/10.6038/cjg2020N0225.
|
S.B. Hu, L.J. He, J.Y. Wang. Heat flow in the continental of China: A new data set. Earth Planet. Sci. Lett., 179 (2) (2000), pp. 407-419,
CrossRef
Google scholar
|
K.N. Huang, N.D. Opdyke. Paleomagnetism of Cretaceous to lower Tertiary rocks from southwestern Sichuan: a revisit. Earth Planet. Sci. Lett., 112 (1–4) (1992), pp. 29-40,
CrossRef
Google scholar
|
Z.C. Huang, P. Wang, M.J. Xu, L.S. Wang, Z.F. Ding, Y. Wu, M.J. Xu, N. Mi, D.Y. Yu, H. Li. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth Planet. Sci. Lett., 411 (2015), pp. 100-111,
CrossRef
Google scholar
|
M. Iwakuni, T. Kato, H. Takiguchi, T. Nakaegawa, M. Satomura. Crustal deformation in Thailand and tectonics of Indochina Peninsula as seen from GPS observations. Geophys. Res. Lett., 31 (11) (2004), pp. 373-374,
CrossRef
Google scholar
|
G.Z. Jiang, S.B. Hu, Y.Z. Shi, C. Zhang, Z.T. Wang, D. Hu. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753 (2019), pp. 36-48,
CrossRef
Google scholar
|
W.L. Jiang, J.F. Zhang, T. Tian, X. Wang. Crustal structure of Chuan-Dian region derived from gravity data and its tectonic implications. Phys. Earth Planet. Inter., 212–213 (2012), pp. 76-87,
CrossRef
Google scholar
|
Y. Jin, M.K. McNutt, Y.S. Zhu. Evidence from gravity and topography data for folding of Tibet. Nature, 371 (6499) (1994), pp. 669-674,
CrossRef
Google scholar
|
M.K. Kaban, P. Schwintzer, S.A. Tikhotsky. A global isostatic gravity model of the Earth. Geophys. J. Int., 136 (3) (1999), pp. 519-536,
CrossRef
Google scholar
|
M.K. Kaban, W. Stolk, M. Tesauro, S. El Khrepy, N. Al-Arifi, F. Beekman, S.A.P.L. Cloetingh. 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochem. Geophys. Geosyst., 17 (11) (2016), pp. 4457-4477,
CrossRef
Google scholar
|
M. Kassa, A. Alemu, A. Muluneh. Determination of gravity and isostatic Moho: Implications for the evolution of rifting in the central Main Ethiopian Rift. J. Afr. Earth Sci., 184 (846) (2021), Article 104350,
CrossRef
Google scholar
|
J.F. Kirby, C.J. Swain. A reassessment of spectral Te estimation in continental interiors: the case of North America. J. Geophys. Res. Solid Earth, 114 (B8) (2009), Article B08401,
CrossRef
Google scholar
|
Laske, G., Masters, G., Ma, Z., Pasyanos, M.E., 2012. Crust 1.0: An updated global model of earth’s crust. Geophys. Res. Abstracts. 14 (EGU2012-3743-1 EGU General, Assembly 2012).
|
T.Y. Lee, L.A. Lawver. Cenozoic plate reconstruction of Southeast Aaia. Tectonophysics, 251 (1–4) (1995), pp. 85-138,
CrossRef
Google scholar
|
W. Levandowski, C.H. Jones, W. Shen, M.H. Ritzwoller, V. Schulte-Pelkum. Origins of topography in the western US: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. J. Geophys. Res. Solid Earth, 119 (3) (2014), pp. 2375-2396,
CrossRef
Google scholar
|
W. Levandowski, O.S. Boyd, R.W. Briggs, R.D. Gold. A random-walk algorithm for modeling lithospheric density and the role of body forces in the evolution of the midcontinent rift. Geochem. Geophys. Geosyst., 16 (12) (2015), pp. 4084-4107,
CrossRef
Google scholar
|
S.H. Li, C.L. Deng, H.T. Yao, S. Huang, C.Y. Liu, H.Y. He, Y.X. Pan, R.X. Zhu. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res. Solid Earth, 118 (2013), pp. 791-807,
CrossRef
Google scholar
|
S.H. Li, C.L. Deng, W. Dong, L. Sun, S.Z. Liu, H.F. Qin, J.Y. Yin, X.P. Ji, R.X. Zhu. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: Constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics, 655 (2015), pp. 213-226,
CrossRef
Google scholar
|
S.H. Li, E.L. Advokaat, D.J. van Hinsbergen, M. Koymans, C.L. Deng, R.X. Zhu. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction. Earth-Sci. Rev., 171 (2017), pp. 58-77,
CrossRef
Google scholar
|
J.H. Li, S.W. Dong, P.A. Cawood, H. Thybo, P.D. Clift, S.T. Johnston, G.C. Zhao, Y.Q. Zhang. Cretaceous long-distance lithospheric extension and surface response in South China. Earth-Sci. Rev., 243 (2023), Article 104496,
CrossRef
Google scholar
|
C.T. Liang, X.D. Song. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. Geophys. Res. Lett., 33 (22) (2006), Article L22306,
CrossRef
Google scholar
|
J. Liu, L.S. Zeng, L. Ding, P. Tapponnier, Y. Gaudemer, L. Wen, K.J. Xie. Tectonic geomorphology, active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau. Chinese J. Geol., 44 (4) (2009), pp. 1227-1255
|
B.C. Liu, Y.Y. Zhou, G.L. Yang. Characteristics of isostatic gravity anomaly in Sichuan-Yunnan region. China Geod. Geodyn., 8 (4) (2017), pp. 238-245,
CrossRef
Google scholar
|
Z.Z. Lu, C.F. Li, S. Zhu, P. Audet. Effective elastic thickness over the Chinese mainland and surroundings estimated from a joint inversion of Bouguer admittance and coherence. Phys. Earth Planet. Inter., 301 (2020), Article 106456,
CrossRef
Google scholar
|
X.L. Miao, Q. Wang, S.W. Liu, M.J. Xu, L.S. Wang. Effective elastic thickness and mechanical anisotropy of South China and surrounding regions. Tectonophysics, 550–553 (2012), pp. 47-56,
CrossRef
Google scholar
|
P. Molnar, P. Tapponnier. Cenozoic tectonics of Asia: effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189 (4201) (1975), pp. 419-426
|
D.W. Oldenburg. The inversion and interpretation of gravity anomalies. Geophysics, 39 (4) (1974), pp. 526-536,
CrossRef
Google scholar
|
S. Pandey, X.H. Yuan, E. Debayle, F. Tilmann, K. Priestley, X.Q. Li. Depth‐variant azimuthal anisotropy in Tibet revealed by surface wave tomography. Geophys. Res. Lett., 42 (11) (2015), pp. 4326-4334,
CrossRef
Google scholar
|
R.L. Parker. The rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc., 31 (4) (1973), pp. 447-455,
CrossRef
Google scholar
|
P. Patriat, J. Achache. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311 (1984), pp. 615-621,
CrossRef
Google scholar
|
N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth, 117 (B4) (2012), Article B04406,
CrossRef
Google scholar
|
J.S. Ren, B.G. Niu, J. Wang, X.C. Jin, L. Zhao, R.Y. Liu. Advances in research of Asian geology-A summary of 1: 5M international geological map of Asia project. J. Asian Earth Sci., 72 (2013), pp. 3-11,
CrossRef
Google scholar
|
L.H. Royden, B.C. Burchfiel, R.W. King, E. Wang, Z.L. Chen, F. Shen, Y.P. Liu. Surface deformation and lower crustal flow in eastern Tibet. Science, 276 (5313) (1997), pp. 788-790,
CrossRef
Google scholar
|
L.H. Royden, B.C. Burchfiel, R.D. van der Hilst. The geological evolution of the Tibetan Plateau. Science, 321 (5892) (2008), pp. 1054-1058
|
L. Rybach, G. Buntebartw. The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103 (1–4) (1984), pp. 335-344,
CrossRef
Google scholar
|
I. Safonova. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res., 47 (2017), pp. 6-27,
CrossRef
Google scholar
|
K. Sato, Y.Y. Liu, Z.C. Zhu, Z.Y. Yang, Y. Otofuji. Paleomagnetic study of middle Cretaceous rocks from Yunlong, western Yunnan, China: evidence of southward displacement of Indochina. Earth Planet. Sci. Lett., 165 (1) (1999), pp. 1-15,
CrossRef
Google scholar
|
W.P. Schellart, Z. Chen, V. Strak, J.C. Duarte, F.M. Rosas. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. Nat. Commun., 10 (1) (2019), pp. 1-15,
CrossRef
Google scholar
|
W.P. Schellart, G.S. Lister. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. J. Geol. Soc., 162 (6) (2005), pp. 959-972,
CrossRef
Google scholar
|
A.M.C. Şengör, A. Cin, D.B. Rowley, N. Shangyou. Magmatic evolution of the Tethysides: a guide to reconstruction of collage history. Palaeogeogr. Palaeoclimatol. Palaeoecol., 87 (1–4) (1991), pp. 411-440,
CrossRef
Google scholar
|
Z.K. Shen, J. Lü, M. Wang, R. Bürgmann. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau. J. Geophys. Res. Solid Earth, 110 (B11) (2005), Article B11409,
CrossRef
Google scholar
|
F. Shen, L.H. Royden, B.C. Burchfiel. Large-scale crustal deformation of the Tibetan Plateau. J. Geophys. Res. Solid Earth, 106 (B4) (2001), pp. 6793-6816,
CrossRef
Google scholar
|
Y.L. Shi, J.L. Cao. Effective viscosity of China continental lithosphere. Earth Sci. Front., 15 (3) (2008), pp. 82-94
|
Shi, L., Lou, H., Wang, Q.S., Lu, H.Y., Xu, W.M., 2015. Gravity field characteristics and crust density structure in the Panxi region, China. Chin. J. Geophys. 58(7), 2402-2412 (in Chinese with English abstract). https://doi.org/10.6038/cjg20150717.
|
Y.H. Shin, C.K. Shum, C. Braitenberg, S.M. Lee, H.Z. Xu, K.S. Choi, J.H. Baek, J.U. Park. Three‐dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophys. Res. Lett., 36 (1) (2009), Article L01302,
CrossRef
Google scholar
|
Y.H. Shin, C.K. Shum, C. Braitenberg, S.M. Lee, S.H. Na, K.S. Choi, H. Hsu, Y.S. Park, M. Lim. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Sci. Rep., 5 (1) (2015), p. 11681,
CrossRef
Google scholar
|
Y.H. Shin, C.K. Shum, C. Braitenberg, S.M. Lee, M. Lim, S.-H. Na, C.L. Dai, C.Y. Zhang, Y.J. Pan, S.-H. Do, B.-D. So. Decoupled lithospheric folding, lower crustal flow channels, and the growth of Tibetan Plateau. Geophys. Res. Lett., 49 (13) (2022), Article e2022GL099183,
CrossRef
Google scholar
|
A. Socquet, M. Pubellier. Cenozoic deformation in western Yunnan (China-Myanmar border). J. Asian Earth Sci., 24 (4) (2005), pp. 495-515,
CrossRef
Google scholar
|
S. Sol, A. Meltzer, R. Bürgmann, R.D. van der Hilst, R. King, Z. Chen, E. Koons, Y.P. Lev, P.K. Liu, X. Zeitler, J. Zhang, B. Zurek. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35 (6) (2007), pp. 563-566,
CrossRef
Google scholar
|
G.L. Soto, E. Sandvol, J.F. Ni, L. Flesch, T.M. Hearn, F. Tilmann, J. Chen, L.D. Brown. Significant and vertically coherent seismic anisotropy beneath eastern Tibet. J. Geophys. Res. Solid Earth, 117 (B5) (2012), Article B05308,
CrossRef
Google scholar
|
Y.J. Sun, S.W. Dong, T.Y. Fan, H. Zhang, Y.L. Shi. 3D rheological structure of the continental lithosphere beneath China and adjacent regions. Chin. J. Geophys., 56 (5) (2013), pp. 546-558
|
Y.J. Sun, S.W. Dong, X.Q. Wang, M. Liu, H. Zhang, Y.L. Shi. Three-dimensional thermal structure of East Asian continental lithosphere. J. Geophys. Res. Solid Earth, 127 (5) (2022), Article e2021JB023432,
CrossRef
Google scholar
|
X. Sun, L.H. Guo. Crustal velocity, density structure, and seismogenic environment in the southern segment of the North-South Seismic Belt, China. Earthq. Sci., 34 (6) (2021), pp. 471-488, 10.29382/eqs-2021-0052
|
X.B. Tan, Y.H. Lee, W.Y. Chen, K.L. Cook, X.W. Xu. Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet. J. Asian Earth Sci., 81 (2014), pp. 91-104,
CrossRef
Google scholar
|
X.C. Tang, J. Zhang, Z.H. Pang, S.B. Hu, J. Tian, S.J. Bao. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system. Tectonophysics, 717 (2017), pp. 433-448,
CrossRef
Google scholar
|
Y.L. Tao, H.P. Zhang, X.D. Zhao, Y. Wang, Z.F. Ma. Middle-Late Cenozoic stepwise deformation propagation in eastern Tibet. Geophys. Res. Lett., 50 (6) (2023), Article e2022GL100859,
CrossRef
Google scholar
|
P. Tapponnier, P. Molnar. Slip-line field theory and large-scale continental tectonics. Nature, 264 (5584) (1976), pp. 319-324,
CrossRef
Google scholar
|
P. Tapponnier, Z.Q. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, J.S. Yang. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294 (5547) (2001), pp. 1671-1677
|
Y. Tian, H.L. Li, Y. Wang, Q. Ye, A.Z. Guo. Gravity gradient inversion of gravity field and steady state ocean circulation explorer satellite data for the lithospheric density structure in the Qinghai-Tibet Plateau region and the surrounding regions. J. Geophys. Res. Solid Earth, 126 (6) (2020), Article e2020JB021291,
CrossRef
Google scholar
|
Y.B. Tong, Z.Y. Yang, X.D. Zhang, Z.H. Wu, Y. Zhao, H. Wang, Y.C. Xu, L. Gao, C.Z. An. The Paleomagneitc analysis about the Later Cenozoic crustal deformation characteristics of the Chuandian Terrane clockwise rotation system in the Southeast edge of Tibet Plateau. Acta Geol. Sin., 88 (11) (2014), pp. 2057-2070
|
Y.B. Tong, Z.Y. Yang, J.L. Pei, H. Wang, Z.H. Wu, J.F. Li. Crustal clockwise rotation of the southeastern edge of the Tibetan Plateau since the late Oligocene. J. Geophys. Res. Solid Earth, 126 (1) (2021), Article e2020JB020153,
CrossRef
Google scholar
|
Y.B. Tong, Z.Y. Yang, J.L. Pei, H. Wang, Z.H. Wu, J.F. Li. Upper crustal collapse reconstructed the topography and remodeled the fault system of the Chuandian Fragment in the southeastern edge of the Tibetan Plateau, evidenced by anisotropy of magnetic susceptibility data sets. Tectonics, 41 (4) (2022), Article e2021TC007126,
CrossRef
Google scholar
|
Wang, J. Y., Huang, S.P., 1990. Compilation of heat flow data in the China continental area (2rd edition). Seismol. Geol. 12(4), 351-363 (in Chinese with English abstract).
|
L.F. Wang, S. Barbot. Three-dimensional kinematics of the India-Eurasia collision. Commun. Earth Environ., 4 (1) (2023), p. 164,
CrossRef
Google scholar
|
E. Wang, B.C. Burchfiel, L.H. Royden, L.Z. Chen, J.S. Chen, W.X. Li, Z.L. Chen. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems fault systems of Southwestern Sichuan and Central Yunnan, China. Special Paper Geol. Soc. Am., 327 (1998), pp. 1-108
|
E. Wang, E. Kirby, K.P. Furlong, M. van Soest, G. Xu, X. Shi, P.J.J. Kamp, K.V. Hodges. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat. Geosci., 5 (2012), pp. 640-645,
CrossRef
Google scholar
|
E. Wang, K. Meng, Z. Su, Q.R. Meng, J.J. Chu, Z.L. Chen, G. Wang, X.H. Shi, X.Q. Liang. Block rotation: tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33 (2013), pp. 686-717,
CrossRef
Google scholar
|
M. Wang, Z.K. Sheng. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth, 125 (2020), Article e2019JB018774,
CrossRef
Google scholar
|
Y. Wang, Y.J. Wang, P.Z. Zhang, J.J. Zhang, B. Zhang, J. Liu, R.J. Zhou, W.T. Wang, H.P. Zhang, Z.J. Li. Cenozoic tectonic evolution of regional fault systems in the SE Tibetan Plateau. Sci. China Earth Sci., 65 (2022), pp. 601-623,
CrossRef
Google scholar
|
W.L. Wang, J.P. Wu, L.H. Fang, G.J. Lai, Y. Cai. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays. J. Geophys. Res. Solid Earth, 122 (9) (2017), pp. 7219-7235,
CrossRef
Google scholar
|
Y. Wang, H. Xu. The variations of lithospheric flexural strength and isostatic compensation mechanisms beneath the continent of China and vicinity. Chin. J. Geophys., 39 (S1) (1996), pp. 105-112
|
Y. Wang, B. Zhang, L.M. Schoenbohm, J.J. Zhang, R.J. Zhou, J.J. Hou, S. Ai. Late Cenozoic tectonic evolution of the Ailao Shan-Red River fault (SE Tibet): Implications for kinematic change during plateau growth. Tectonics, 35 (8) (2016), pp. 1969-1988,
CrossRef
Google scholar
|
X. Wang, J.F. Zhang, W.L. Jiang, D.H. Wang. Gravity field and deep seismogenic environment in the Longmen Shan and adjacent regions, Eastern Tibetan Plateau. J. Asian Earth Sci., 176 (2019), pp. 79-87,
CrossRef
Google scholar
|
A.B. Watts. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge (2001)
|
P. Wessel, J.F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W.H.F. Smith, D. Tian. The generic mapping tools version 6. Geochem. Geophys. Geosyst., 20 (11) (2019), pp. 5556-5564,
CrossRef
Google scholar
|
Z.H. Wu, C.X. Long, T.Y. Fan, C.J. Zhou, H. Feng, Z.Y. Yang, Y.B. Tong. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism. Geol. Bul. China, 34 (1) (2015), pp. 1-31
|
X.M. Xu, Z.F. Ding, D.N. Shi, X.F. Li. Receiver function analysis of crustal structure beneath the eastern Tibetan plateau. J. Asian Earth Sci., 73 (2013), pp. 121-127,
CrossRef
Google scholar
|
M.J. Xu, Z.C. Huang, L.S. Wang, M.J. Xu, Y.Q. Zhang, N. Mi, D.Y. Yu, X.H. Yuan. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth. J. Geophys. Res. Solid Earth, 125 (5) (2020), Article e2019JB018117,
CrossRef
Google scholar
|
X.W. Xu, G.Y. Jiang, G.H. Yu, X.Y. Wu, J.G. Zhang, X. Li. Discussion on seismogenic fault of the Ludian M(s)6.5 earthquake and its tectonic attribution. Chin. J. Geophys., 57 (9) (2014), pp. 3060-3068
|
C. Xu, Z.W. Liu, Z.C. Luo, Y.H. Wu, H.H. Wang. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications. J. Asian Earth Sci., 138 (2017), pp. 378-386,
CrossRef
Google scholar
|
L.L. Xu, S. Rondenay, R.D. van der Hilst. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter., 165 (3–4) (2007), pp. 176-193,
CrossRef
Google scholar
|
Z.J. Xu, X.D. Song. Joint inversion for crustal and Pn velocities and Moho depth in Eastern Margin of the Tibetan Plateau. Tectonophysics, 491 (1–4) (2010), pp. 185-193,
CrossRef
Google scholar
|
Z.Q. Xu, Q. Wang, Z.H. Li, H.Q. Li, Z.H. Cai, F.H. Liang, H.W. Dong, H. Cao, X.J. Chen, X.M. Huang, C. Wu, C.P. Xu. Indo-Asian collision: Tectonic transition from compression to strike slip. Acta Geol. Sin., 90 (1) (2016), pp. 1-23
|
X.W. Xu, X.Z. Wen, R.Z. Zheng, W.T. Ma, F.M. Song, G.H. Yu. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Earth Sci., 46 (2003), pp. 210-226,
CrossRef
Google scholar
|
S.B. Xuan, S.G. Jin. Moho depth and crustal density structure in the Tibetan Plateau from gravity data modelling. J. Asian Earth Sci., 233 (2022), Article 1052611,
CrossRef
Google scholar
|
Z.Y. Yang, J. Besse. Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina. Earth Planet. Sci. Lett., 117 (3–4) (1993), pp. 525-552,
CrossRef
Google scholar
|
Yang, X.Y., Li, Y.H., Afonso, J.C., Yang, Y.J., Zhang, A.Q., 2021. Thermochemical state of the upper mantle beneath South China from multi-observable probabilistic inversion. J. Geophys. Res. Solid Earth 126(5), e2020JB021114. Doi:
CrossRef
Google scholar
|
Y. Yang, X. Qin, W. Shi, Y. Zhang, Z.X. Zhao. Segmentation of the active Liumugao Fault, NE Tibetan Plateau as revealed by DEM-derived geomorphic indices. Geosyst. Geoenviron., 1 (3) (2022), Article 100056,
CrossRef
Google scholar
|
G.L. Yang, C.Y. Shen, Z.J. Li, J.P. Wang, H.B. Tan, B.J. Zhao. Gravity isostasy and effective elastic thickness of the eastern Bayan Har block and adjacent areas. Chin. J. Geophys., 63 (3) (2020), pp. 956-968
|
H.J. Yao, C. Beghein, R.D. van der Hilst. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and uppermantle structure. Geophys. J. Int., 173 (2) (2008), pp. 205-219,
CrossRef
Google scholar
|
H.J. Yao, R.D. van der Hilst, J.P. Montagner. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J. Geophys. Res. Solid Earth, 115 (B12) (2010), Article B12307,
CrossRef
Google scholar
|
T. Ye, X.B. Chen, Z.Y. Liu, P.J. Wang, Z.Y. Dong, T.F. Cui, F. Jiang, J.T. Cai, Y.Y. Zhang, J. Zhang, L. Zhou, X.B. Xie. A magnetotelluric study of 3D electrical resistivity structure underneath the southern segment of the Red River fault zone, South China. J. Asian Earth Sci., 225 (2022), Article 105056,
CrossRef
Google scholar
|
A. Yin, T.M. Harrison. Geological evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280
|
L. Yin, G. Luo. Fault interaction and active crustal extrusion in the southeastern Tibetan Plateau: Insights from geodynamic modeling. J. Asian Earth Sci., 218 (2021), Article 104866,
CrossRef
Google scholar
|
S. Zahirovic, K.J. Matthews, N. Flament, R.D. Müller, K.C. Hill, M. Seton, M. Gurnis. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Sci. Rev., 162 (2016), pp. 293-337,
CrossRef
Google scholar
|
G. Zandt, C.J. Ammon. Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature, 374 (1995), pp. 152-154,
CrossRef
Google scholar
|
P.Z. Zhang. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584 (2013), pp. 7-22,
CrossRef
Google scholar
|
J.S. Zhang, R. Gao, L.S. Zeng, Q.S. Li, Y. Guan, R.Z. He, H.Y. Wang, Z.W. Lu. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas. Tectonophysics, 491 (1–4) (2010), pp. 218-229,
CrossRef
Google scholar
|
M.L. Zhang, Z.F. Guo, S. Xu, P.H. Barry, Y.J. Sano, L.H. Zhang, S.A. Halldórsson, A.T. Chen, Z.H. Cheng, C.Q. Liu, S.L. Li, Y.C. Lang, G.D. Zheng, Z.P. Li, L.W. Li, Y. Li. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nat. Commun., 12 (2021), p. 4157,
CrossRef
Google scholar
|
Y. Zhang, Z.T. He, B.Q. Ma, J.Y. Wang, H. Zhang, J.P. Wang. Geological and geomorphic evidence for activity of the Mengzi fault along the southeastern margin of the Tibetan Plateau. J. Asian Earth Sci., 171 (2019), pp. 233-245,
CrossRef
Google scholar
|
H.J. Zhang, S. Roecker, C.H. Thurber, W.J. Wang. Seismic imaging of microblocks and weak zones in the crust beneath the southeastern margin of the Tibetan Plateau. In: Dar, I.A. (Ed.), Earth Sciences. In Tech, 159–202 (2012),
CrossRef
Google scholar
|
Y.Q. Zhang, J.W. Teng, Q.S. Wang, G.Z. Hu. Density structure and isostatic state of the crust in the Longmenshan and adjacent areas. Tectonophysics, 619–620 (2014), pp. 51-57,
CrossRef
Google scholar
|
G.H. Zhang, Y.T. Tian, R. Li, X.M. Shen, Z.J. Zhang, X.L. Sun, D.X. Chen. Progressive tectonic evolution from crustal shortening to mid-lower crustal expansion in the southeast Tibetan Plateau: A synthesis of structural and thermochronological insights. Earth-Sci. Rev., 226 (2022), Article 103951,
CrossRef
Google scholar
|
Y. Zhang, D.P. Yan, L. Qiu, L.X. Gong, Y.M. Shao. Stepwise growth of the southeastern Tibetan Plateau: Structural and thermochronological evidence from the Panxi tectonic belt. Palaeogeogr. Palaeoclimatol. Palaeoecol., 621 (2023), Article 111542,
CrossRef
Google scholar
|
Z.Q. Zhang, H.J. Yao, Y. Yang. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications. Sci. China Earth Sci., 63 (9) (2020), pp. 1278-1293,
CrossRef
Google scholar
|
Y. Zhao, L.H. Guo, Z. Guo, Y.J. Chen, L. Shi, Y.H. Li. High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow. Tectonophysics, 792 (2020), Article 228580,
CrossRef
Google scholar
|
F.Y. Zhao, S.Z. Li, S.H. Jiang, L.J. Liu, J.J. Zhu, M.X. Dai, Y. Liu, G. Wang, Z. Liu, B. Hu, Y.X. Zhu. Transcurrent tectonic system and deep seismogenic mechanism in the southeastern Tibetan Plateau: A view from gravity and magnetic anomalies. Earth-Sci. Rev., 236 (6) (2023), Article 104269,
CrossRef
Google scholar
|
Q. Zhao, S. Tonai, Y. Dilek, Z.F. Zhu. Timing of India-Asia collision and significant coupling between them around 51 Ma: Insights from the activation history of the Zhongba-Gyangze thrust in southern Tibet. Geology, 52 (1) (2024), pp. 61-66,
CrossRef
Google scholar
|
L.F. Zhao, X.B. Xie, J.K. He, X. Tian, Z.X. Yao. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth Planet. Sci. Lett., 383 (2013), pp. 113-122,
CrossRef
Google scholar
|
D. Zheng, H.Y. Li, Y. Shen, J. Tan, L. Ouyang, X.F. Li. Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions. Geophys. J. Int., 204 (1) (2016), pp. 583-590,
CrossRef
Google scholar
|
G. Zheng, H. Wang, T.J. Wright, Y.D. Lou, R. Zhang, W.X. Zhang, C. Shi, J.F. Huang, N. Wei. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth, 122 (11) (2017), pp. 9290-9312,
CrossRef
Google scholar
|
Y.Y. Zhong, Z.Y. Ren, J.T. Tang, Y.F. Lin, B. Chen, Y.F. Deng, Y.D. Jiang. Constrained gravity inversion with adaptive inversion grid refinement in spherical coordinates and its application to mantle structure beneath Tibetan Plateau. J. Geophys. Res. Solid Earth, 127 (5) (2022), Article e2021JB022916,
CrossRef
Google scholar
|
W.L. Zhou, B. Shan, X. Xiong, X. Yang. Thermal and compositional lithospheric structure of the Sichuan-Yunnan region and its implication to lithospheric thinning. Chin. J. Geophys., 66 (12) (2023), pp. 4987-5004
|
R.X. Zhu, R. Potts, Y.X. Pan, L.Q. Lü, H.T. Yao, C.L. Deng, H.F. Qin. Paleomagnetism of the Yuanmou Basin near the southeastern margin of the Tibetan Plateau and its constraints on late Neogene sedimentation and tectonic rotation. Earth Planet. Sci. Lett., 272 (1–2) (2008), pp. 97-104,
CrossRef
Google scholar
|
/
〈 |
|
〉 |