A thickening event of the continental lithosphere ca. 2.2 billion years ago revealed by Nb/Ta-Dy/Yb systematics in basaltic rocks

Yu Zhang, He Liu, Yiran Wang, Qian Chen, Chen Chen, Junjie Zhang, Jing Fang, Lipeng Zhang, Wei-dong Sun

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101993.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101993. DOI: 10.1016/j.gsf.2024.101993

A thickening event of the continental lithosphere ca. 2.2 billion years ago revealed by Nb/Ta-Dy/Yb systematics in basaltic rocks

Author information +
History +

Abstract

Continental lithosphere thickness significantly influences Earth’s tectonic style, the stabilization of cratons, the compositions of intraplate volcanic rocks, and specific types of metallogenesis. Although the Archean cratons currently boast the thickest lithosphere among Earth’s continents, the evolution of its thickness throughout geological history remains inadequately comprehended. Intraplate small-volume volcanoes, typical products of magmatic activities within continents with thick lithosphere on the modern Earth, were rarely observed until the early Paleoproterozoic, possibly due to the high mantle temperature and insufficient thickness of the continental lithosphere. Here we show that the modern intraplate continental basalts exhibit distinctive signatures of both elevated Nb/Ta and Dy/Yb ratios, setting them apart from basalts found in arc, rift, and plume settings. Our statistical analysis of a geochemical database of basalts worldwide spanning the past 3.5 billion years indicates that modern-like intraplate continental basalts have become extensive since ca. 2.2 Ga. We attribute the emergence of intracontinental basalts to a lithospheric thickening event within the Archean craton continents, resulting from horizontal compression of the lithosphere during the assembly of the Nuna supercontinent.

Keywords

Lithospheric thickening / Intracontinental basalts / Plate tectonics / Supercontinent

Cite this article

Download citation ▾
Yu Zhang, He Liu, Yiran Wang, Qian Chen, Chen Chen, Junjie Zhang, Jing Fang, Lipeng Zhang, Wei-dong Sun. A thickening event of the continental lithosphere ca. 2.2 billion years ago revealed by Nb/Ta-Dy/Yb systematics in basaltic rocks. Geoscience Frontiers, 2025, 16(2): 101993 https://doi.org/10.1016/j.gsf.2024.101993

CRediT authorship contribution statement

Ningpan Chai: Data curation, Formal analysis, Investigation, Writing – original draft. Zhiqi Zhao: Conceptualization, Formal analysis, Writing – review & editing. Xiaoke Li: Data curation, Formal analysis. Jun Xiao: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Validation, Writing – review & editing. Zhangdong Jin: Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the Western Light-Key Laboratory Cooperative Research Cross-Team Project of Chinese Academy of Sciences (xbzg-zdsys-202309), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020502) and the Shaanxi Science Fund for Distinguished Young Scholars (2020JC-030).

References

C. Amante. ETOPO1 1 Arc-Minute Global Relief Model : Procedures. Data Sources and Analysis (2009)
I.M. Artemieva. Global 1° x 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics, 416 (2006), pp. 245-277
J.H. Bédard. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front., 9 (2018), pp. 19-49
G.D. Bromiley, S.A.T. Redfern. The role of TiO2 phases during melting of subduction-modified crust: Implications for deep mantle melting. Earth Planet. Sci. Lett., 267 (2008), pp. 301-308
M. Brown, T. Johnson, C.J. Spencer. Secular changes in metamorphism and metamorphic cooling rates track the evolving plate-tectonic regime on Earth. J. Geol. Soc. London, 179 (5) (2022)
P.A. Cawood, P. Chowdhury, J.A. Mulder, C.J. Hawkesworth, F.A. Capitanio, P.M. Gunawardana, O. Nebel. Secular evolution of continents and the Earth system. Rev. Geophy., 60 (2022)
A.R. Chakhmouradian. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol., 235 (2006), pp. 138-160
Q. Chen, H. Liu, T. Johnson, M. Hartnady, C.L. Kirkland, Y. Lu, W.-D. Sun. Intraplate continental basalts over the past billion years track cooling of the mantle and the onset of modern plate tectonics. Earth Planet. Sci. Lett., 597 (2022), Article 117804
K.C. Condie. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?. Geosci. Front., 9 (2018), pp. 51-60
K.C. Condie, R.C. Aster, J. van Hunen. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites. Geosci. Front., 7 (2016), pp. 543-553
K.C. Condie, C. O'Neill. The Archean-Proterozoic boundary: 500 My of tectonic transition in Erath history. Am. J. Sci., 310 (2010), pp. 775-790
J.H. Davies, J.P. Brodholt, B.J. Wood, S.P. Grand. Mantle shear–wave tomography and the fate of subducted slabs. Philos. Trans. A Math. Phys. Eng. Sci.. 360 (2002), pp. 2475-2491
D.A. Evans, N.J. Beukes, J.L. Kirschvink. Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386 (1997), pp. 262-266
G.L. Farmer. 4.3 - Continental Basaltic Rocks. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (second Edition), Elsevier, Oxford (2014), pp. 75-110
P. Guo, Y. Niu, P. Sun, H. Gong, X. Wang. Lithosphere thickness controls continental basalt compositions: An illustration using Cenozoic basalts from eastern China. Geology, 48 (2) (2020), pp. 128-133
D.L. Harry, W.P. Leeman. Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. J. Geophy. Res. Solid Earth, 100 (1995), pp. 10255-10269
C.J. Hawkesworth, P.A. Cawood, B. Dhuime, T.I.S. Kemp. Earth’s continental lithosphere through time. Annual Rev. Earth Planet. Sci., 45 (2017), pp. 169-198
C. Herzberg, K. Condie, J. Korenaga. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett., 292 (2010), pp. 79-88
M.M. Hirschmann, T. Kogiso, M.B. Baker, E.M. Stolper. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31 (2003), pp. 481-484
R.M. Holder, D.R. Viete, M. Brown, T.E. Johnson. Metamorphism and the evolution of plate tectonics. Nature, 572 (2019), pp. 378-381
P. Kamgang, G. Chazot, E. Njonfang, N.B.T. Ngongang, F.M. Tchoua. Mantle sources and magma evolution beneath the Cameroon Volcanic Line: Geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon). Gondwana Res., 24 (2013), pp. 727-741
B. Keller, B. Schoene. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett., 481 (2018), pp. 290-304
W.P. Leeman, D.L. Schutt, S.S. Hughes. Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot. J. Volcanol. Geoth. Res., 188 (2009), pp. 57-67
Y. Li, Q. Wu, J. Pan, F. Zhang, D. Yu. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet. Sci. Lett., 377–378 (2013), pp. 367-377
H.-Y. Li, Y.-G. Xu, J.G. Ryan, X.-L. Huang, Z.-Y. Ren, H. Guo, Z.-G. Ning. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochim. Cosmochim. Ac., 178 (2016), pp. 1-19
J.L. Liang, X. Ding, X.M. Sun, Z.M. Zhang, H. Zhang, W.D. Sun. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem. Geol., 268 (2009), pp. 27-40
H. Liu, K.O. Konhauser, L.J. Robbins, W.-D. Sun. Global continental volcanism controlled the evolution of the oceanic nickel reservoir. Earth Planet. Sci. Lett., 572 (2021), Article 117116
Y. Liu, R.N. Mitchell, M. Brown, T.E. Johnson, S. Pisarevsky. Linking metamorphism and plate boundaries over the past 2 billion years. Geology, 50 (2022), pp. 631-635
S.-A. Liu, Z.-Z. Wang, S.-G. Li, J. Huang, W. Yang. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet. Sci. Lett., 444 (2016), pp. 169-178
B.R. Mather, R. Müller, M. Seton, S. Ruttor, O. Nebel, N. Mortimer. Intraplate volcanism triggered by bursts in slab flux. Sci. Adv., 6(51), eabd0953 (2020)
W.F. McDonough, S.S. Sun. The composition of the Earth. Chem. Geol., 120 (1995), pp. 223-253
D.A.N. McKenzie, R.K. O’Nions. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol., 32 (1991), pp. 1021-1091
J.-F. Moyen, J. van Hunen. Short-term episodicity of Archaean plate tectonics. Geology, 40 (2012), pp. 451-454
Y. Niu. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth – A review and new perspectives. Earth-Sci. Rev., 217 (2021), Article 103614
C. O'Neill, A. Lenardic, L. Moresi, T.H. Torsvik, C.T.A. Lee. Episodic Precambrian subduction. Earth Planet. Sci. Lett., 262 (2007), pp. 552-562
C. O’Neill, S. Turner, T. Rushmer. The inception of plate tectonics: a record of failure. Philos. Trans. A Math. Phys. Eng. Sci., 376 (2018), p. 20170414
J.A. Pfänder, S. Jung, C. Münker, A. Stracke, K. Mezger. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget – Evidence from continental basalts from Central Germany. Geochim. Cosmochim. Ac., 77 (2012), pp. 232-251
A. Rohrbach, M.W. Schmidt. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature, 472 (2011), pp. 209-212
R.L. Rudnick, M. Barth, I. Horn, W.F. McDonough. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287 (2000), pp. 278-281
M.W. Schmidt, S. Poli. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth  Planet. Sci. Lett., 163 (1998), pp. 361-379
M.W. Schmidt, S. Poli. 4.19 - Devolatilization During Subduction. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (second Edition), Elsevier, Oxford (2014), pp. 669-701
S.V. Sobolev, M. Brown. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature, 570 (2019), pp. 52-57
R.J. Stern. The evolution of plate tectonics. Philos. Trans. A Math. Phys. Eng. Sci., 376 (2018), p. 20170406
M. Tang, M. Erdman, G. Eldridge, C.-T.-A. Lee. The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci. Adv., 4 (2018), p. eaar4444
M. Tang, C.-T.-A. Lee, K. Chen, M. Erdman, G. Costin, H. Jiang. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Commun., 10 (2019), p. 235
A.R. Thomson, M.J. Walter, S.C. Kohn, R.A. Brooker. Slab melting as a barrier to deep carbon subduction. Nature, 529 (2016), pp. 76-79
J. van Hunen, J.-F. Moyen. Archean subduction: Fact or fiction?. Annual Rev. Earth Planet. Sci., 40 (2012), pp. 195-219
J. van Hunen, A.P. van den Berg. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103 (2008), pp. 217-235
Z.-Z. Wang, S.-A. Liu, L.-H. Chen, S.-G. Li, G. Zeng. Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology, 46 (2018), pp. 771-774
Y.L. Xiao, W.D. Sun, J. Hoefs, K. Simon, Z.M. Zhang, S.G. Li, A.W. Hofmann. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim. Cosmochim. Ac., 70 (2006), pp. 4770-4782
X.L. Xiong, J. Adam, T.H. Green. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol., 218 (2005), pp. 339-359
G.C. Zhao, M. Sun, S.A. Wilde, S.Z. Li. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci. Rev., 67 (2004), pp. 91-123
Y.-F. Zheng, G. Zhao. Two styles of plate tectonics in Earth’s history. Sci. Bull., 65 (2020), pp. 329-334

Accesses

Citations

Detail

Sections
Recommended

/