An insight into seismotectonic scenario of the southwestern part of Delhi-NCR and delineation of new faults: Implications to seismic hazard potential
Sudipto Bhattacharjee, Sanjay Kumar Prajapati, Uma Shankar, O.P. Mishra
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101991.
An insight into seismotectonic scenario of the southwestern part of Delhi-NCR and delineation of new faults: Implications to seismic hazard potential
The southwestern region of the Delhi-National Capital Region (NCR) experiences sporadic micro (M ≤ 3.0) and occasional small (M > 3.0) earthquakes with a seasonal influence. This study integrates remote sensing and seismological data to elucidate the seismotectonic scenario and identify potential unmapped faults. Analysis of DEM data (Cartoset) reveals numerous multidirectional minor faults, some coincident or conjugate to known major faults. Earthquake epicentres spatially correlate with several of these delineated faults. Fault plane solutions suggest a transition from central normal faulting to peripheral thrust faulting. Moment tensor decomposition indicates dominant double-couple mechanisms with significant non-double-couple components for earthquakes ranging from Mw 2.5 to 4.4. A major variation in principal stress orientation is apparent between the eastern and western regions of the study area. Stress inversion reveals a NW-SE shortening direction and unusual principal axis plunges, suggesting a rare “odd” or “unknown” faulting regime. These findings suggest ongoing rifting in the eastern Alwar basin may be inducing thrusting in the surrounding region along pre-existing Aravalli-Delhi fold belt thrusts. Seismogenesis likely results from a complex interplay of faulting, regional tectonics, and fluid interaction. This study highlights the value of a multidisciplinary approach for unravelling the intricacies of seismotectonic in low-to-moderate seismicity regions, with varying strengths due to diverse structural heterogeneity associated with mapped or unmapped (hidden) faults, which have been delineated in this study, as an additional information for assessing seismic hazard potential for Delhi-NCR.
Delhi-NCR / Seismotectonic / Remote sensing / Fault plane solutions / Moment tensors / Stress inversion / Rifting / Thrusting
K. Aki. Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43 (1965), pp. 237-239
|
N. Ambraseys, J. Douglas. Magnitude calibration of North Indian earthquakes. Geophys. J. Int., 159 (1) (2004), pp. 165-206
|
B.K. Bansal, K. Mohan, M. Verma, A.K. Sutar. OPEN A holistic seismotectonic model of Delhi region. Sci. Rep., 11 (2021), p. 13818,
CrossRef
Google scholar
|
B. Bender. Maximum likelihood estimation of b values for magnitude grouped data. Bull. Seismol. Soc. Am., 73 (3) (1983), pp. 831-851
|
R. Bilham, V.K. Gaur, P. Molnar. Himalayan seismic hazard. Science, 293 (5534) (2001), pp. 1442-1444,
CrossRef
Google scholar
|
J.N. Brune. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res., 75 (1970), pp. 4997-5009
|
U. Chandra. Seismotectonics of Himalaya. Curr. Sci., 62 (1992), pp. 40-71
|
Chetty, T.R.K., 2017. Chapter 5 - The Aravalli-Delhi Orogenic Belt. In: Chetty, T.R.K. (Ed.), Proterozoic Orogens of India. Elsevier, pp. 267–350. Doi:
CrossRef
Google scholar
|
R.K.S. Chouhan. Seismotectonics of Delhi Region. Proc. Indian Nat. Sci. Acad., 41 (A) (1975), pp. 429-447
|
R. Das, S. Mukhopadhyay, R. Kant, P.R. Baidya. Tectonophysics lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions. Tectonophysics, 738–739 (April) (2018), pp. 51-63,
CrossRef
Google scholar
|
Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z., Sanyal, K., Venkatraman, N. V., Dasgupta, S., Sural, B., Harendranath, L., Mazumdar, S., Sanyal, S., Roy, A., Das, L. K., Misra, P.S., Gupta, H., 2000. Seismotectonic Atlas of India and Its Environs. Geological Survey of India, Kolkata, p. 86.
|
C.S. Dubey, D.P. Shukla, R.P. Singh, M. Sharma, R.S. Ningthoujam, A.M. Bhola. Present activity and seismogenic potential of Himalayan sub-parallel thrust faults in Delhi: inferences from remote sensing, GPR, gravity data and seismicity. Near Surf. Geophys., 10 (5) (2012), pp. 369-380,
CrossRef
Google scholar
|
D. Dwivedi, A. Chamoli, A.K. Pandey. Crustal structure and lateral variations in Moho beneath the Delhi fold belt, NW India: insight from gravity data modeling and inversion. Phys. Earth Planet. Inter., 297 (2019), Article 106317,
CrossRef
Google scholar
|
C. Frohlich. Earthquakes with non-double-couple mechanisms. Science, 264 (5160) (1994), pp. 804-809,
CrossRef
Google scholar
|
V.K. Gahalaut, B. Kundu. Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Res., 21 (2012), pp. 1080-1088,
CrossRef
Google scholar
|
Green, N., 1988. Principles of geographical information systems for land resources assessment. P. A. Burrough. Publisher Oxford University press 1986 (paperback) (193 pp) ISBN 0 19 854592 4. J. Quat. Sci. 3(1), 108. Doi:
CrossRef
Google scholar
|
A. Guilhem, L. Hutchings, D.S. Dreger, L.R. Johnson. Moment tensor inversions of M ∼ 3 earthquakes in the Geysers geothermal fields. California. J. Geophys. Res.: Solid Earth, 119 (3) (2014), pp. 2121-2137,
CrossRef
Google scholar
|
B.C. Gupta. The geology of central mewar. Office of the Geological Survey of India (1934)
|
S. Gupta, W.K. Mohanty, R. Prakash, A.K. Shukla. Crustal heterogeneity and seismotectonics of the national capital region, Delhi, India. Pure Appl. Geophys., 170 (4) (2013), pp. 607-616,
CrossRef
Google scholar
|
S. Gupta, A. Kumar, S. Kumar. Seismic hazard assessment of the Indo-Gangetic Plains in light of recent earthquakes. Geophys. J. Int., 222 (2) (2020), pp. 1207-1219
|
B. Gutenberg, C.F. Richter. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34 (1944), pp. 185-188
|
S. Hainzl, T. Kraft, J. Wassermann, H. Igel, E. Schmedes. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett., 33 (2006), Article L19303,
CrossRef
Google scholar
|
J. Hardebeck, P. Shearer. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am., 92 (2002), pp. 2264-2276,
CrossRef
Google scholar
|
J. Havskov, P.H. Voss, L. Ottemöller. Seismological observatory software: 30 yr of SEISAN. Seismol. Res. Lett., 91 (3) (2020), pp. 1846-1852,
CrossRef
Google scholar
|
A.M. Heron. The geology of central Rajputana. Government of India Press. (1953)
|
G. Hetényi, R. Cattin, T. Berthet, N.L. Moigne, J. Chophel, S. Lechmann, P. Hammer, D. Drukpa, S.N. Sapkota, S. Gautier, K. Thinley. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Sci. Rep., 6 (1) (2016), p. 33866,
CrossRef
Google scholar
|
M. Ishimoto, K. Iida. Observations of earthquakes registered with the micro seismograph constructed recently. Bulletin of the Earthquake Research Institute, 17 (1939), pp. 443-478
|
R.N. Iyengar. Seismic status of Delhi megacity. Curr. Sci., 78 (5) (2000), pp. 568-574
|
S.Q. Jia, D.W. Eaton, R.C.K. Wong. Stress inversion of shear-tensile focal mechanisms with application to hydraulic fracture monitoring. Geophys. J. Int., 215 (1) (2018), pp. 546-563,
CrossRef
Google scholar
|
J. Julià, S. Jagadeesh, S.S. Rai, T.J. Owens. Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: Implications for precambrian crustal evolution. J. Geophys. Res.: Solid Earth, 114 (10) (2009), pp. 1-25,
CrossRef
Google scholar
|
B.R. Julian, A.D. Miller, G.R. Foulger. Non-double-couple earthquakes. 1. Theory. Rev. Geophys., 36 (4) (1998), pp. 525-549,
CrossRef
Google scholar
|
J. Kanaujia, M. Ravi Kumar, R. Vijayaraghavan, P. Solomon Raju. An optimum 1D velocity model for the Garhwal–Kumaun Himalaya using Monte Carlo style inversion. Seismol. Res. Lett., 94 (5) (2023), pp. 2244-2256,
CrossRef
Google scholar
|
I. Kassaras, V. Kapetanidis. Resolving the Tectonic Stress by the Inversion of Earthquake Focal Mechanisms. Application in the Region of Greece. A Tutorial. S. D’Amico (Ed.), Moment Tensor Solutions. Springer Natural Hazards, Springer, Cham (2018), pp. 405-452,
CrossRef
Google scholar
|
P.K. Khan, S.P. Mohanty, P.P. Chakraborty, R. Singh. Earthquake shocks around Delhi-NCR and the adjoining Himalayan front: a seismotectonic perspective. Frontiers in Earth Science, 9 (2021), Article 598784,
CrossRef
Google scholar
|
L. Knopoff, M.J. Randall. The compensated linear-vector dipole. a possible mechanism for deep earthquakes. J. Geophys. Res., 75 (26) (1970), pp. 4957-4963,
CrossRef
Google scholar
|
S. Kumar, A.K. Mahajan. The Uttarkashi earthquake of 20 October 1991: field observations. Terra Nova, 6 (1) (1994), pp. 95-99,
CrossRef
Google scholar
|
N. Kumar, J. Sharma, B.R. Arora, S. Mukhopadhyay. Seismotectonic model of the Kangra-Chamba sector of Northwest Himalaya: constraints from joint hypocenter determination and focal mechanism. Bull. Seismol. Soc. Am., 99 (1) (2009), pp. 95-109,
CrossRef
Google scholar
|
G. Kwiatek, P. Martínez-Garzón, M. Bohnhoff. HybridMT: a MATLAB/Shell Environment package for seismic moment tensor inversion and refinement. Seismol. Res. Lett., 87 (4) (2016), pp. 964-976,
CrossRef
Google scholar
|
B.R. Lienert, J. Havskov. A computer program for locating earthquakes both locally and globally. Seismol. Res. Lett., 66 (5) (1995), pp. 26-36,
CrossRef
Google scholar
|
P. Martínez-Garzón, G. Kwiatek, M. Bohnhoff, G. Dresen. Volumetric components in the earthquake source related to fluid-injection and stress state: volumetric components and fluid-injection. Geophys. Res. Lett., 44 (2) (2017), pp. 800-809,
CrossRef
Google scholar
|
B.J. Meade. The signature of an unbalanced earthquake cycle in Himalayan topography?. Geology, 38 (11) (2010), pp. 987-990,
CrossRef
Google scholar
|
A. Mignan, J. Woessner. Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis, 1–45 (2012),
CrossRef
Google scholar
|
S.A. Miller. Fluid-mediated influence of adjacent thrusting on the seismic cycle at Parkfield. Nature, 382 (6594) (1996), pp. 799-802,
CrossRef
Google scholar
|
S.A. Miller. The role of fluids in tectonic and earthquake processes. Adv. Geophys., 54 (2013), pp. 1-46,
CrossRef
Google scholar
|
O.P. Mishra. Crustal heterogeneity in bulk velocity beneath the 2001 Bhuj earthquake source zone and its implications. Bull. Seismol. Soc. Am., 103 (6) (2013), pp. 3235-3247,
CrossRef
Google scholar
|
O.P. Mishra. Seismic microzonation study of South Asian cities and its implications to urban risk resiliency under climate change scenario. Int. J. Geosci., 11 (04) (2020), pp. 197-237,
CrossRef
Google scholar
|
O.P. Mishra, D. Zhao. Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid-driven earthquake?. Earth Planet. Sci. Lett., 212 (3–4) (2003), pp. 393-405,
CrossRef
Google scholar
|
S. Mitra, S.M. Kainkaryam, A. Padhi, S.S. Rai, S.N. Bhattacharya. The Himalayan foreland basin crust and upper mantle. Phys. Earth Planet. Inter., 184 (1–2) (2011), pp. 34-40,
CrossRef
Google scholar
|
H. Mittal, A. Kumar. Ground motion estimation in Delhi from postulated regional and local earthquakes. J. Seismol., 17 (2013), pp. 593-605,
CrossRef
Google scholar
|
H. Mittal, A. Kumar, S.K. Singh. Estimation of site effects in Delhi using standard spectral ratio. Soil Dynam. Earthquake Eng., 50 (2013), pp. 53-61,
CrossRef
Google scholar
|
Muralikrishnan, S., Narender, B., Reddy, S., Pillai, A., 2011. Evaluation of Indian National DEM from Cartosat-1 Data Summary Report (Ver.1). September 2011, 19. https://bhuvan-app3.nrsc.gov.in/data/download/tools/document/CartoDEMReadme_v1_u1_23082011.pdf.
|
S. Muralikrishnan, A. Pillai, B. Narender, S. Reddy, V. Venkataraman, V. Dadhwal. Validation of Indian National DEM from Cartosat-1 Data. J. Indian Soc. Remote Sens., 41 (2013), pp. 1-13,
CrossRef
Google scholar
|
Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83 (401) (1988), pp. 9-27,
CrossRef
Google scholar
|
Y. Pandey, R. Dharmaraju, P.K.S. Chauhan. Estimation of source parameters of Chamoli Earthquake. India. J. Earth Syst. Sci., 110 (2) (2001), pp. 171-177,
CrossRef
Google scholar
|
S.K. Prajapati, A.P. Pandey, S. Bhattacharjee, S. Vashisth, O.P. Mishra. Unravelling seismogenesis and characterizing the unique features of two significant felt earthquakes (M > 4.0) of 2020 in the southwestern parts of the Delhi region. Frontiers in Earth Science, 12 (2024), pp. 1-16,
CrossRef
Google scholar
|
R. Prakash, J.P. Shrivastava. A review of the seismicity and seismotectonics of Delhi and adjoining areas. J. Geol. Soc. India, 79 (6) (2012), pp. 603-617,
CrossRef
Google scholar
|
C.P. Rajendran, K. Rajendran, V.C. Thakur, M. Kousalya. Palaeoseismicity in the Indo-Gangetic Plains: the influence of the Himalayan front on seismic hazard. J. Asian Earth Sci., 195 (2020), Article 104348
|
M.B.R. Rao. The subsurface geology of the Indo-Gangetic Plains. J. Geol. Soc. India, 14 (1973), pp. 217-242
|
Roy, A. B., Jakhar, S. R., 2002. Geology of Rajasthan (Northwest India) Precambrian to Recent. Scientific Publishers (India). Jodhpur, 421p. https://books.google.co.in/books?id=beKMDwAAQBAJ.
|
V. Sastri, L.L. Bhandari, A.T.R. Raju, A.K. Datta. Tectonic framework and subsurface stratigraphy of the Ganga Basin. Journal of Geological Society of India, 12 (1971), pp. 222-233
|
Sharma, R.S., 2009. Cratons of the Indian Shield. In: Cratons and Fold Belts of India. Lecture Notes in Earth Sciences, vol 127. Springer, Berlin, Heidelberg. Doi:
CrossRef
Google scholar
|
S.P. Singh. Sedimentation patterns of the Proterozoic Delhi Supergroup, northeastern Rajasthan, India, and their tectonic implications. Sediment. Geol., 58 (1) (1988), pp. 79-94,
CrossRef
Google scholar
|
H.K. Singh, D. Chandrasekharam, G. Trupti, P. Mohite, B. Singh, C. Varun, S.K. Sinha. Potential geothermal energy resources of India: a review. Current Sustainable/renewable Energy Reports, 3 (3–4) (2016), pp. 80-91,
CrossRef
Google scholar
|
A.P. Singh, O.P. Mishra. Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India. Tectonophysics, 661 (2015), pp. 38-48,
CrossRef
Google scholar
|
A.P. Singh, S.K. Prajapati, A.P. Pandey, R.B.S. Yadav, O.P. Mishra. Characteristic features of June 14, 2020 earthquake (Mw5.3) of Kachchh Rift Basin in the Deccan Volcanic Province of Western India: a case of complex intraplate event. J. Seismol., 26 (3) (2022), pp. 513-529,
CrossRef
Google scholar
|
A.K. Singh, R.P. Singh, V. Mohan, A.K. Singh, P. Mala. Study of subsurface isotherms, Sohna hot spring area, Gurgaon District, Haryana. Geothermal Energy in India, Geological Survey of India Special Publication, 45 (1996), pp. 367-370
|
Sinha-Roy, S., Malhotra, G., Mohanty, M., of India, G.S., 1998. Geology of Rajasthan. Geological Society of India, Bangalore. 278 p. https://books.google.co.in/books?id=dYUhnQAACAAJ.
|
W. Szeliga, S. Hough, R. Bilham, R. Bendick. Interseismic coupling and the earthquake hazard along the Main Himalayan Thrust in Northern India. J. Geophys. Res., 115 (B7) (2010), Article B07403
|
K.S. Valdiya. Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32 (3) (1976), pp. 353-386,
CrossRef
Google scholar
|
V. Vavryčuk. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int., 199 (1) (2014), pp. 69-77,
CrossRef
Google scholar
|
V. Vavryčuk, M. Bohnhoff, Z. Jechumtálová, P. Kolář, J. Šílený. Non-double-couple mechanisms of microearthquakes induced during the 2000 injection experiment at the KTB site, Germany: a result of tensile faulting or anisotropy of a rock?. Tectonophysics, 456 (1–2) (2008), pp. 74-93,
CrossRef
Google scholar
|
M. Wadhawan, N. Rana, V. Gahalaut, M. Singh, K. Singh, G. Suresh, O.P. Mishra, A.K. Joshi, A.V. Kulkarni, M. Singh, A.K. Das. Monsoonal rainfall induced shallow earthquake Swarm in the Amravati district of the central India. J. Earth Syst. Sci., 130 (1) (2021), p. 29,
CrossRef
Google scholar
|
F. Waldhauser, W.L. Ellsworth. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90 (6) (2000), pp. 1353-1368
|
S. Wiemer, M. Wyss. Minimum magnitude of completeness in earthquake Catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90 (4) (2000), pp. 859-869,
CrossRef
Google scholar
|
J. Woessner, S. Wiemer. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am., 95 (2) (2005), pp. 684-698,
CrossRef
Google scholar
|
R.K. Yadav, S.S. Martin, V.K. Gahalaut. Intraplate seismicity and earthquake hazard in the Aravalli–Delhi Fold Belt, India. J. Earth Syst. Sci., 131 (4) (2022), p. 204,
CrossRef
Google scholar
|
D. Zhao, O.P. Mishra, R. Sanda. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132 (4) (2002), pp. 249-267
|
M.L. Zoback. First- and second-order patterns of stress in the lithosphere: the world stress map project. J. Geophys. Res., 97 (1992), pp. 11703-11728,
CrossRef
Google scholar
|
/
〈 |
|
〉 |