An introduction to clay-hosted REE deposits in Australia
Manuel Knorsch, Michael Gazley, Madeleine Ince, Muhammet Kartal, Eliza Trunfull, Kat Lilly, Agnieszka Piechocka
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101977.
An introduction to clay-hosted REE deposits in Australia
Rare-earth elements (REEs) are on the critical minerals list in multiple countries due to their application in renewable technologies, electromobility, and defence. A key exploration focus is on clay-hosted REE deposits, which are reported to have a higher proportion of heavy REEs (e.g. Tb and Dy) relative to light REEs. Previous studies have focused on ionic clay-hosted REE deposits in South China and Madagascar; however, little is known about the mineralogy and economic viability of clay-hosted REE projects in Australia. This study provides the first overview of current exploration activities in relation to clay-hosted REE projects in Australia and presents microanalytical data to characterise the distribution of REE-bearing minerals and guide metallurgical processing pathways, as well as mineral system criteria to inform exploration targeting. Our review identified 91 clay-hosted REE projects in Australia, most of which are in the Yilgarn Craton, Albany-Fraser Orogen and the Gawler Craton. Sixteen mineral resource estimates have been completed that have an average grade and tonnage of 971 ppm total rare-earth oxide (TREO) and 145 million tonnes (Mt) across all resources. This study identified monazite, bastnäsite, allanite, zircon, and apatite as the main REE sources in granitic-to-mafic protoliths. These are partially broken-down during weathering resulting in the formation of secondary REE minerals including rhabdophane, bastnäsite, aluminium phosphate sulphate (APS) group minerals, and cerianite. The most significant finding is that the REE budget of Australian clay-hosted REE deposits is dominated by the primary and secondary REE minerals accompanied by a minor ionic proportion. However, some deposits in South Australia, Queensland, and Tasmania yield a higher ionic proportion of >40%. Accordingly, the mineral system model for the majority of Australian projects differs from ionic deposits located in South China due to contrasting exogenic (surface processes) and endogenic (geological) factors, particularly within the Yilgarn Craton, and it remains unclear whether emerging projects within Australia host economic and extractable REEs.
Regolith / Ionic / Rare-earth element / Monazite, Rhabdophane / Critical minerals
ABx, 2024. ABx Rare Earth Resources Increase 70% to 89 Mt. 02.05.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02802542-2A1520797.
|
ABx, 2023. Widespread High Extractions of Ionic Adsorption Clay Rare Earths. 02.02.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02627315-2A142845.
|
A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu, H. Wang. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters. Hydrometall., 185 (2019), pp. 149-161
|
American Rare Earths, 2023. American Rare Earths 1.43 Billion Tonne JORC Resource Estimate. 30.03.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02649178-2A1440486.
|
Anand, R., De Broekert, P., 2005. Weathering history, landscape evolution and implications for exploration. In: Anand, R.R., de Broekert, P. (Eds.), Regolith Landscape Evolution Across Australia: A Compilation of Regolith Landscape Case Studies with Regolith Landscape Evolution Models. CRC Leme, 2–40.
|
R. Anand, C. Butt. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Aust. J. Earth Sci., 57 (2010), pp. 1015-1114
|
R. Anand, M. Paine. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Aust. J. Earth Sci., 49 (2002), pp. 3-162
|
A.K. Andersen, J.G. Clark, P.B. Larson, J.J. Donovan. REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol. Rev., 89 (2017), pp. 780-807,
CrossRef
Google scholar
|
AR3, 2023. Highly successful metallurgical tests point to significantly lower processing costs. 16.05.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02666288-2A1449523.
|
Y. Arinicheva, C. Gausse, S. Neumeier, F. Brandt, K. Rozov, S. Szenknect, N. Dacheux, D. Bosbach, G. Deissmann. Influence of temperature on the dissolution kinetics of synthetic LaPO4-monazite in acidic media between 50 and 130 °C. J. Nucl. Mater., 509 (2018), pp. 488-495
|
Asra Minerals, 2024. ASRA declares Maiden MRE for yttria REE deposit. 16.04.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02795766-6A1202739.
|
Australian Bureau of Meteoreology, 2024. Average annual, seasonal and monthly rainfall maps, http://www.bom.gov.au/climate/maps/averages/rainfall/.
|
Australian Critical Minerals, 2024. Beverley and Rankin Dome Exploration Update. 23.04.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02798291-6A1203850.
|
Australian Rare Earths, 2023. 84% increase in Resource for Koppamurra REE Project. 19.09.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02713463-2A1474698.
|
J.C. Ayers, E.B. Watson. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philos. Trans. Royal Soc. London Ser. A: Phys. Eng. Sci., 335 (1991), pp. 365-375
|
T.G. Bamforth, F. Xia, C.J. Tiddy, I. González-Álvarez, J. Brugger, S.-Y. Hu, L.E. Schoneveld, M.A. Pearce, A. Putnis. High-Grade REE accumulation in regolith: Insights from supergene alteration of an apatite-rich vein at the Kapunda Cu mine South Australia. Miner. Deposita, 59 (2024), pp. 1479-1503
|
J.F. Banfield, R.A. Eggleton. Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering. Clay Clay Miner., 37 (1989), pp. 113-127
|
Z. Bao, Z. Zhao. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev., 33 (2008), pp. 519-535,
CrossRef
Google scholar
|
Resource Base, 2023. Maiden JORC Resource at Mitre Hill REE Project. 03.02.2023, ASX announcement, https://resourcebase.com.au/wp-content/uploads/MaidenJORCResourceAtMitreHillREEProject03Feb23.pdf.
|
E. Belogub, V. Shilovskikh, K. Novoselov, I. Blinov, K. Filippova. Authigenic rhabdophane from brown iron ore of the oxidation zone of the Babaryk massive sulfide occurrence (South Urals): scanning electron microscope (SEM) and electron backscattered diffraction (EBSD) study. Eur. J. Mineral., 33 (2021), pp. 605-620,
CrossRef
Google scholar
|
A. Berger, E. Gnos, E. Janots, A. Fernandez, J. Giese. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. Chem. Geol., 254 (2008), pp. 238-248,
CrossRef
Google scholar
|
A. Berger, E. Janots, E. Gnos, R. Frei, F. Bernier. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl. Geochem., 41 (2014), pp. 218-228
|
Blake, D.H., Kilgour, B., 1998. Geological Regions of Australia, 1:5 000 000 scale.
|
A.M. Borst, M.P. Smith, A.A. Finch, G. Estrade, C. Villanova-de-Benavent, P. Nason, E. Marquis, N.J. Horsburgh, K.M. Goodenough, C. Xu, J. Kynický, K. Geraki. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun., 11 (2020), p. 4386,
CrossRef
Google scholar
|
S. Brandt, M.L. Fassbender, R. Klemd, C. Macauley, P. Felfer, K.M. Haase. Cumulate olivine: a novel host for heavy rare earth element mineralization. Geology, 49 (2020), pp. 457-462,
CrossRef
Google scholar
|
Chandler, R., Bhat, G., Mavrogenes, J., Knell, B., David, R., Leggo, T., 2024. The primary geology of the Paleoproterozoic Mt Weld Carbonatite Complex, Western Australia. J. Petrol. 65, egae007.
|
E. Chinkaka, J.M. Klinger, K.F. Davis, F. Bianco. Unexpected expansion of rare-earth element mining activities in the Myanmar-China border region. Remote Sens. (Basel), 15 (18) (2023), p. 4597,
CrossRef
Google scholar
|
N. Clavier, A. Mesbah, S. Szenknect, N. Dacheux. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochim. Acta A Mol. Biomol. Spectrosc., 205 (2018), pp. 85-94,
CrossRef
Google scholar
|
JORC Code, 2012. Australasian code for reporting of exploration results, mineral resources and ore reserves (The JORC Code), http://www.jorc.org/docs/JORC_code_2012.pdf.
|
T. Collins. Understanding the mineralogy and geochemistry of regolith hosted mineralisation. BSc (Honours) thesis, The University of Western Australia (2014), p. 33
|
N. Cook, C. Ciobanu, B. Wade, S. Gilbert, R. Alford. Mineralogy and distribution of REE in oxidised ores of the mount weld laterite deposit Western Australia. Minerals, 13 (2023), p. 656,
CrossRef
Google scholar
|
Castillo Copper, 2023. Preliminary test-work findings; progress with copper assets. 14.06.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02675634-6A1153938.
|
F. Coppin, G. Berger, A. Bauer, S. Castet, M. Loubet. Sorption of lanthanides on smectite and kaolinite. Chem. Geol., 182 (2002), pp. 57-68
|
H.G. Dill. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Sci. Rev., 53 (2001), pp. 35-93,
CrossRef
Google scholar
|
L. Ding, G. Azimi. Impact of particle size and associated minerals on rare earth desorption and incorporation mechanisms in a South American ion-adsorption clay. Sci. Rep., 14 (2024), p. 16216,
CrossRef
Google scholar
|
J. Dou, C.Y. Wang, W. Tan, Z. Zhao. Mobilization of rare earth elements during allanite-fluid interaction: Insights into formation of regolith-hosted rare earth element deposits in South China. Miner. Deposita, 59 (2024), pp. 1661-1678,
CrossRef
Google scholar
|
P.I. Du Plessis, M.F. Gazley, S.L. Tay, E.F. Trunfull, M. Knorsch, T. Branch, L.F. Fourie. Quantification of kaolinite and halloysite using machine learning from FTIR, XRF, and brightness data. Minerals, 11 (2021), p. 1350,
CrossRef
Google scholar
|
G. Estrade, E. Marquis, M. Smith, K. Goodenough, P. Nason. REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol. Rev., 112 (2019), Article 103027,
CrossRef
Google scholar
|
N. Foley, R. Ayuso. REE enrichment in granite-derived regolith deposits of the Southeastern United States: prospective source rocks and accumulation processes. British Columbia Geological Survey Paper, 3 (2015), pp. 131-138
|
W.A. Franke, R. Teschner-Steinhardt. An experimental approach to the sequence of the stability of rock-forming minerals towards chemical weathering. Catena, 21 (1994), pp. 279-290
|
W. Fu, P. Luo, Z. Hu, Y. Feng, L. Liu, J. Yang, M. Feng, H. Yu, Y. Zhou. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: Genetic mechanism and formation preference. Ore Geol. Rev., 114 (2019), Article 103120
|
C. Gausse, S. Szenknect, D.W. Qin, A. Mesbah, N. Clavier, S. Neumeier, D. Bosbach, N. Dacheux. Determination of the solubility of rhabdophanes LnPO4· 0.667 H2O (Ln= La to Dy). Eur. J. Inorg. Chem., 2016 (28) (2016), pp. 4615-4630
|
M. Gazley, M. Knorsch, K. Lilly, M. Kartal, E. Trunfull, A. Piechocka. Clay-hosted REE mineralisation under the microscope. Proceeding of 17th SGA Biennial Meeting (2023)
|
Gielen, D., Lyons, M., 2022. Critical materials for the energy transition: Rare earth elements. International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 48.
|
W. Gmochowska, R. Wirth, E. Słaby, R. Anczkiewicz, A. Krzątała, V. Roddatis, J. Sláma, G.A. Kozub-Budzyń, S. Bhattacharya, A. Schreiber. Hydrothermal alteration of accessory minerals (allanite and titanite) in the late Archean Closepet granitoid (Dharwar Craton, India): A TEM study. Geochemistry, 84 (2024), Article 126130,
CrossRef
Google scholar
|
Godolphin Resources, 2023. Major Increase to Mineral Resource Estimate and Resource Upgrade Highlights Narraburra as a Rare Earth Project of National & International Significance. 19.04.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02655892-6A1145758.
|
Godolphin Resources, 2024. ANSTO Leach Tests continue to deliver Exceptional REE Recoveries at Narraburra Rare Earths Project. 19.02.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02773921-6A1194391.
|
D. Gray. Hydrogeochemistry in the Yilgarn Craton. Geochem.-Explor. Env. A., 1 (2001), pp. 253-264,
CrossRef
Google scholar
|
A.P. Gysi, D. Harlov, G.D. Miron. The solubility of monazite (CePO4), SmPO4, and GdPO4 in aqueous solutions from 100 to 250 °C. Geochim. Cosmochim. Acta, 242 (2018), pp. 143-164,
CrossRef
Google scholar
|
S.M. Hall, J.S. Beard, C.J. Potter, R.J. Bodnar, L.A. Neymark, J.B. Paces, C.A. Johnson, G.N. Breit, R.A. Zielinski, G.J. Aylor Jr.. The Coles Hill uranium deposit, Virginia, USA: Geology, geochemistry, geochronology, and genetic model. Econ. Geol., 117 (2022), pp. 273-304,
CrossRef
Google scholar
|
D.E. Harlov, H.-J.R. Förster, T.G. Nijland. Fluid-induced nucleation of (Y+ REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am. Mineral., 87 (2002), pp. 245-261,
CrossRef
Google scholar
|
R. Herrington, C. Pinto-Ward, J. Wilkinson, D. Schissel, A.R. de Rocha, A. Sprecher. Genesis of the giant Serra Verde ion adsorption REE deposit Brazil. Geophys. Res. Abstracts, 21 (2019), p. 1
|
Y. Huang, P. Long, G. Wang, S. Luo, Y. Shi, C. Zhang, X. Lan. Ion-exchange model for the leaching process of ion-adsorption-type rare-earth ores considering the influence of anions. Minerals, 13 (2023), p. 1475
|
K. Ichimura, K. Sanematsu, Y. Kon, T. Takagi, T. Murakami. REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. Am. Miner. J. Earth Planet. Mater., 105 (2020), pp. 848-859
|
S. Ishihara, R. Hua, M. Hoshino, H. Murakami. REE abundance and REE minerals in granitic rocks in the Nanling Range, Jiangxi Province, Southern China, and generation of the REE-rich weathered crust deposits. Resour. Geol., 58 (2008), pp. 355-372,
CrossRef
Google scholar
|
iTech Minerals, 2023. Further breakthrough in Caralue Bluff REE Metallurgy. 10.08.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02696028-2A1465656.
|
iTech Minerals. Metallurgy update: Clay hosted REE projects progress to second round of testing. 07.10.2022, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02579071-2A1404288.
|
S.M. Jowitt, V.N.L. Wong, S. Wilson, O. Gore. Critical metals in the critical zone: controls, resources and future prospectivity of regolith-hosted rare earth elements. Aust. J. Earth Sci., 64 (2017), pp. 1045-1054,
CrossRef
Google scholar
|
Kairos Minerals, 2023. High-grade assays over large area point to significant rare earths discovery. 19.12.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02755723-3A633562.
|
Kairos Minerals, 2024. Exceptional rare earth recovery rates of up to 97%. 06.05.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02803622-3A641928.
|
D. Kerans, J. Moore, J.R. Price. Monazite chemical weathering, rare earth element behavior, and paleoglaciohydrology since the last glacial maximum for the Loch Vale watershed, Colorado, USA. Quaternary Res., 87 (2017), pp. 191-207,
CrossRef
Google scholar
|
M. Knorsch. The mechanisms and implications of hydrothermal mineral replacement reactions in carbonate-hosted ore deposits. PhD thesis, Murdoch University (2021), p. 223
|
M. Knorsch, T.G. Bamforth, F. Xia, A.P. Deditius, M.A. Pearce, L. Schoneveld, M.P. Roberts. Hydrothermal mineral replacement of bastnäsite by rhabdophane and monazite: effects of temperature on mineralogy, REE immobilisation, and fractionation. Contrib. Mineral. Petrol., 179 (2024), p. 101,
CrossRef
Google scholar
|
E. Kozlov, E. Fomina, M. Sidorov, V. Shilovskikh, V. Bocharov, A. Chernyavsky, M. Huber. The Petyayan-Vara carbonatite-hosted rare earth deposit (Vuoriyarvi, NW Russia): Mineralogy and geochemistry. Minerals, 10 (2020), p. 73,
CrossRef
Google scholar
|
Krakatoa Resources, 2022. KTA Delivers Maiden Rare Earth Mineral Resource at Tower. 21.11.2022, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02600437-6A1123112.
|
Krakatoa Resources, 2023. Positive Metallurgy At Tower REE Project. 23.01.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02622956-6A1132567.
|
M.Y.H. Li, M.-F. Zhou, A.E. Williams-Jones. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol., 114 (2019), pp. 541-568
|
M.Y.H. Li, M.-F. Zhou, A.E. Williams-Jones. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits. Econ. Geol., 115 (2020), pp. 1097-1118
|
Y.H.M. Li, W.W. Zhao, M.-F. Zhou. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci., 148 (2017), pp. 65-95,
CrossRef
Google scholar
|
S.-L. Liu, H.-R. Fan, X. Liu, J. Meng, A.R. Butcher, L. Yann, K.-F. Yang, X.-C. Li. Global rare earth elements projects: New developments and supply chains. Ore Geol. Rev., 157 (2023), Article 105428
|
S.C. Löhr, C. Spandler, A. Baldermann. Controls on rapid rare earth element enrichment in sediments deposited by a continental-scale river system. Geochim. Cosmochim. Acta, 366 (2023), pp. 48-64
|
X. Luo, Y. Zhang, H. Zhou, K. He, C. Luo, Z. Liu, X. Tang. Review on the development and utilization of ionic rare earth ore. Minerals, 12 (2022), p. 554
|
K.G. McQueen, K.M. Scott. Rock weathering and structure of the regolith. Regolith Sci., 1 (2008), pp. 105-126
|
Meeka Metals, 2023. 98Mt @ 890ppm TREO – Initial Independent High-Grade Rare Earth Mineral Resource at Circle Valley. 14.06.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02675778-6A1153997.
|
Meteoric Resources, 2023. Metallurgical Testwork Confirms Outstanding Ionic Clay Recoveries for Caldeira REE Project. 21.09.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02716640-6A1170395.
|
A.A. Migdisov, A. Williams-Jones. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Deposita, 49 (2014), pp. 987-997
|
A. Migdisov, A. Williams-Jones, J. Brugger, F.A. Caporuscio. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chem. Geol., 439 (2016), pp. 13-42,
CrossRef
Google scholar
|
Mining Technology, 2024. Serra Verde begins rare earth production in Brazil. https://www.mining-technology.com/news/serra-verde-begins-rare-earth-production/ [accessed on 01.11.2024].
|
G.A. Moldoveanu, V.G. Papangelakis. Recovery of rare earth elements adsorbed on clay minerals: I desorption mechanism. Hydrometallurgy, 117 (2012), pp. 71-78
|
G.A. Moldoveanu, V.G. Papangelakis. Recovery of rare earth elements adsorbed on clay minerals: II leaching with ammonium sulfate. Hydrometallurgy, 131 (2013), pp. 158-166
|
R.C. Mooney. Crystal structures of a series of rare earth phosphates. J. Chem. Phys., 16 (1948), p. 1003,
CrossRef
Google scholar
|
MTM, 2023. Encouraging beneficiation results for rare earth element (REE) clays at Point Kidman prospect, East Laverton. 01.12.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02748609-6A1184275.
|
Mount Ridley Mines, 2024. Maiden Inferred Mineral Resource Estimate for the Mia Prospect of 168Mt at 1,201ppm TREO. 22.05.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02809155-6A1208465.
|
H. Mukai, Y. Kon, K. Sanematsu, Y. Takahashi, M. Ito. Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi Province, China. Sci. Rep., 10 (2020), p. 20194,
CrossRef
Google scholar
|
Y. Ni, J.M. Hughes, A.N. Mariano. Crystal chemistry of the monazite and xenotime structures. Am. Mineral., 80 (1995), pp. 21-26,
CrossRef
Google scholar
|
M. Ondrejka, P. Bačík, T. Sobocký, P. Uher, R. Škoda, T. Mikuš, J. Luptáková, P. Konečný. Minerals of the rhabdophane group and the alunite supergroup in microgranite: products of low-temperature alteration in a highly acidic environment from the Velence Hills, Hungary. Mineral. Mag., 82 (2018), pp. 1277-1300
|
J. Ormerod, A. Karati, A.P.S. Baghel, D. Prodius, I.C. Nlebedim. Sourcing, refining and recycling of rare-earth magnets. Sustainability, 15 (2023), p. 14901
|
Pain, C.F., Pillans, B.J., Roach, I.C., Worrall, L., Wilford, J.R., 2012. Old, flat and red–Australia’s distinctive landscape. Shaping a nation: A geology of Australia. ANU ePress, 227–275.
|
L. Petrella, A.E. Williams-Jones, J. Goutier, J. Walsh. The nature and origin of the rare earth element mineralization in the Misery syenitic intrusion, northern Quebec Canada. Econ. Geol., 109 (2014), pp. 1643-1666
|
Pinnacle Minerals, 2024. REE Mineralisation Identified in Narlaby Palaeochannel. 21.08.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02841108-6A1221358&v=fc9bdb61fe50ea61f8225e24ce041a0e155a9400.
|
F. Poitrasson, E. Oelkers, J. Schott, J.-M. Montel. Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids. Geochim. Cosmochim. Acta, 68 (2004), pp. 2207-2221,
CrossRef
Google scholar
|
J. Price. Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U.S.A. Am. Mineral., 90 (2005), pp. 101-114,
CrossRef
Google scholar
|
M.C. Quigley, D. Clark, M. Sandiford. Tectonic geomorphology of Australia. Geol. Soc. Lond. Spec. Publ., 346 (2010), pp. 243-265
|
Ragusa Minerals, 2023. Burracoppin Project 96Mt Mineral Resource Estimate. 01.06.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02671788-2A1452322.
|
R. Ram, M. Becker, J. Brugger, B. Etschmann, C. Burcher-Jones, D. Howard, P.J. Kooyman, J. Petersen. Characterisation of a rare earth element-and zirconium-bearing ion-adsorption clay deposit in Madagascar. Chem. Geol., 522 (2019), pp. 93-107
|
N. Reid, A. Hunt, R. Thorne, J. Hille, C. Plet, A. Henne, R. Noble, T. Pinchand, M. Pirlo, D. Gray, A. Giblin. Continental scale hydrogeochemical data collection. CSIRO Data Collection, v4 (2023), Article 10.25919/fy7h-0h34
|
Resource Base, 2023. Maiden JORC Resource at Mitre Hill REE Project. 03.02.2023, ASX announcement, https://resourcebase.com.au/wp-content/uploads/MaidenJORCResourceAtMitreHillREEProject03Feb23.pdf.
|
K.A. Rogers. . Esperance Splinter Project, Exploration Licences E63/1415, Salazar Gold Pty Ltd., Perth, Australia (2012), p. 59
|
W. Salama, R.R. Anand. Reconstructing the pre-Quaternary landscape in Agnew–Lawlers area, Western Australia with emphasis on the Permo-Carboniferous glaciation and post-glacial weathering. Int. J. Earth Sci., 106 (2017), pp. 311-339
|
I.V. Santana, F. Wall, N.F. Botelho. Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits. J. Geochem. Explor., 155 (2015), pp. 1-13
|
N. Sergeev, T. Collins. Regolith-hosted rare earth element mineralization in the Esperance Region, Western Australia: Major characteristics and potential controls. Minerals, 14 (2024), p. 847,
CrossRef
Google scholar
|
Smithies, R., Spaggiari, C., Kirkland, C., Maier, W., 2014. Geochemistry and petrogenesis of igneous rocks in the Albany-Fraser orogen. Albany-Fraser Orogen seismic and magnetotelluric (MT) workshop: extended abstracts (preliminary edition), Geological Survey of Western Australia, 69–80.
|
Smithies, R., Spaggiari, C., Kirkland, C., 2015. Building the crust of the Albany-Fraser Orogen; constraints from granite geochemistry, Report 150. Geological Survey of Western Australia.
|
R.H. Smithies, K. Gessner, Y. Lu, C.L. Kirkland, T. Ivanic, J.R. Lowrey, D.C. Champion, J. Sapkota, Q. Masurel, N. Thébaud, R. Quentin de Gromard. Geochemical mapping of lithospheric architecture disproves Archean terrane accretion in the Yilgarn craton. Geology, 52 (2023), pp. 141-146,
CrossRef
Google scholar
|
Taruga Minerals , 2022 . Ansto Metallurgical Extractions up to 70% of Magnet Rare Earths. 14.12.2022, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02612273-6A1128312.
|
S.R. Taylor, S.M. McLennan. The geochemical evolution of the continental crust. Rev. Geophys., 33 (1995), pp. 241-265
|
S.Z. Tohar, M.Y.M. Yunus. Mineralogy and BCR sequential leaching of ion-adsorption type REE: A novelty study at Johor. Malaysia. Phys. Chem. Earth Parts a/b/c, 120 (2020), Article 102947,
CrossRef
Google scholar
|
Transition Minerals, 2023. Barkly Initial Inferred Mineral Resource 40 Mt @ 2,100 ppm TREO. Company Report. https://www.transitionminerals.com/wp-content/uploads/2023/11/231121-Barkly-Initial-MRE.pdf.
|
A. Trench, L. Zhang, D.I. Groves, D. Crook, N.W. Brand. Australian critical metal exploration for analogues of Chinese ionic-clay REE deposits. Geosyst. Geoenvironm., 2024 (2024), Article 100293,
CrossRef
Google scholar
|
C.J. Van Hoozen, A.P. Gysi, D.E. Harlov. The solubility of monazite (LaPO4, PrPO4, NdPO4, and EuPO4) endmembers in aqueous solutions from 100 to 250° C. Geochim. Cosmochim. Acta, 280 (2020), pp. 302-316,
CrossRef
Google scholar
|
Venture Minerals, 2024. Jupiter Drilling Continues to Deliver Broad High Grade REE Mineralisation including a Record NdPr Intersection of over 5,000 ppm. 08.03.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02782697-6A1197361.
|
Venus Metals, 2023. Marvel Loch East Rare Earth Project. Recent sampling confirms widespread REE mineralisation in monzogranite. 16.01.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02621299-6A1131813.
|
Victory Metals, 2023. Victory Intercepts High Grade Rare Earths in Basement Rock Below Clay Hosted Rare Earth Mineralisation. 27.02.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02636405-6A1138087.
|
Victory Metals, 2024. Largest Australian Indicated Heavy REE Resource Confirmed. 16.07.2024, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02828204-6A1215862&v=fc9bdb61fe50ea61f8225e24ce041a0e155a9400.
|
Voltaic Strategic Resources, 2023. Rare Earth Element (REE) clay metallurgical leach testwork update. 24.08.2023, ASX announcement, https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02701293-6A1164451.
|
Voßenkaul, D., Stoltz, N., Meyer, F., Friedrich, B., 2015. Extraction of Rare Earth Elements from non- Chinese Ion Adsorption Clays. European Metallurgical Conference 14-17 June 2015 10.13140/RG.2.1.1177.6401.
|
W. Wang, X. Wang, B. Zhang, Q. Chi, H. Liu, X. Liu, J. Zhou, D. Liu, X. Cheng, S. Xu, Q. Liu, L. Nie, H. Wu, Q. Hu. Concentrations and spatial distribution of chlorine in the pedosphere in China: based on the China geochemical baselines project. J. Geochem. Explor., 242 (2022), Article 107089,
CrossRef
Google scholar
|
D.-H. Wang, Z. Zhao, Y. Yu, J.-J. Dai, M.-C. Deng, T. Zhao, L.-J. Liu. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geol., 1 (2018), pp. 415-424, 10.31035/cg2018022
|
W.K. Witt, D.P. Hammond, M. Hughes. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the Weathered Bastnaesite Zone REE ore. Ore Geol. Rev., 105 (2019), pp. 28-54,
CrossRef
Google scholar
|
Z. Wu, Y. Chen, Y. Wang, Y. Xu, Z. Lin, X. Liang, H. Cheng. Review of rare earth element (REE) adsorption on and desorption from clay minerals: application to formation and mining of ion-adsorption REE deposits. Ore Geol. Rev., 157 (2023), Article 105446,
CrossRef
Google scholar
|
Y. Yang, G. Li, C. Huang, X. Liu, X. Wang, C. Li, B. Wu, W. Luo. Discovery of supergene REE-fluorocarbonate minerals in weathered spheres of Xiajialing regolith-hosted rare earth element deposit in Xiangshan, Jiangxi Province, South China. Ore Geol. Rev., 162 (2023), Article 105712,
CrossRef
Google scholar
|
M. Yang, X. Liang, L. Ma, J. Huang, H. He, J. Zhu. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol., 525 (2019), pp. 210-217
|
X.J. Yang, A. Lin, X.-L. Li, Y. Wu, W. Zhou, Z. Chen. China's ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev., 8 (2013), pp. 131-136,
CrossRef
Google scholar
|
A. Yaraghi, K.S. Ariffin, N. Baharun. Comparison of characteristics and geochemical behaviors of REEs in two weathered granitic profiles generated from metamictized bedrocks in Western Peninsular Malaysia. J. Asian Earth Sci., 199 (2020), Article 104385,
CrossRef
Google scholar
|
Ye, B., Chen, Z., Bao, N., Li, Y., 2014. The monitoring of rare earths mining from the Gannan area of southern China using remote sensing technology. Computer and Computing Technologies in Agriculture VII: 7th IFIP WG 5.14 International Conference, CCTA 2013, Beijing, China, September 18-20, 2013, Revised Selected Papers, Part I 7, Springer, 197–205.
|
Z.M. Yusoff, B.T. Ngwenya, I. Parsons. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting Malaysia. Chem. Geol., 349–350 (2013), pp. 71-86,
CrossRef
Google scholar
|
L. Zhang, F. Wang, T. Zhou, Z. Chen. Contrasting alteration textures and geochemistry of allanite from uranium-fertile and barren granites: Insights into granite-related U and ion-adsorption REE mineralization. Am. Mineral., 108 (2023), pp. 1298-1314,
CrossRef
Google scholar
|
X. Zhao, N.-B. Li, H.-C. Niu, J. Wang, S. Yan, Y.-Y. Yang, R.-X. Fu, J.M. Huizenga. HREE enrichment during magmatic evolution recorded by apatite: implication for the ion-adsorption HREE mineralization in South China. Lithos, 432 (2022), Article 106896
|
/
〈 |
|
〉 |