A first-principles study of helium diffusion in aragonite under high pressure up to 40 GPa

Yu Huang, Mingqiang Hou, Hong Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101931.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101931. DOI: 10.1016/j.gsf.2024.101931

A first-principles study of helium diffusion in aragonite under high pressure up to 40 GPa

Author information +
History +

Abstract

Helium diffusion in carbonates under mantle pressure is crucial for understanding thermal and chemical evolution of mantle. Based on the density functional theory (DFT) and the the climbing image nudged elastic band (CI-NEB) method, we performed first-principles calculations of diffusion characteristics of helium in perfect aragonite crystal under high pressure to 40 GPa. Our results show that He diffusion behaviors are controlled by pressure, temperature and crystal size. The activation energy increases, and the diffusion coefficients decrease significantly under high pressure. Ea[1 0 0] increases from 176.02 kJ/mol to 278.75 kJ/mol, and Ea[0 0 1] increases from 195.89 kJ/mol to 290.43 kJ/mol, with pressure increasing from 20 GPa to 40 GPa. At 700 K, the diffusion coefficients at 40 GPa is 7 orders of magnitude lower than that at 20 GPa; and at 1000 K it decrease 5 orders of magnitude. To ensure that at least 90% helium is not lost, we synthesized the temperature obtained from cooling and heating processes and derive the 'stable temperature range' for helium in aragonite. The obtained results show that the stable temperature range is 22–76 ℃ at 0 GPa and 641–872 °C at 40 GPa, for the crystal of 100–2000 μm size. Besides, the travel time of helium in aragonite under high pressure increases rapidly with pressure increasing. Our calculations indicate that helium can be quantitatively retained in aragonite in the deep mantle as long as the temperature is in the 'stable temperature range'. These results have certain implications for exploring the evolution of mantle and the storage of helium within it.

Keywords

Helium diffusion / Aragonite / High pressure / Retention temperature / Mantle evolution / Geochemical evolution

Cite this article

Download citation ▾
Yu Huang, Mingqiang Hou, Hong Liu. A first-principles study of helium diffusion in aragonite under high pressure up to 40 GPa. Geoscience Frontiers, 2025, 16(1): 101931 https://doi.org/10.1016/j.gsf.2024.101931

CRediT authorship contribution statement

Yu Huang: Writing – original draft. Mingqiang Hou: Writing – original draft, Conceptualization. Hong Liu: Writing – review & editing, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 42394114, 41573121, 42174115) and Open Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science (Grant No. 2019HPPES06). We thank the computational support from the Supercomputer Group of the Institute of Earthquake Forecasting.

References

J.J. Ague, S. Nicolescu. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci., 7 (5) (2014), p. 355
E.F. Baxter. Diffusion of noble gases in minerals. Rev. Mineral Geochem., 72 (2010), pp. 509-557
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (24) (1994), p. 17953
F.E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Jaswig, F. Kaminsky. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett., 260 (1–2) (2007), pp. 1-9
D.J. Chadi. Special points for Brillouin-zone integrations. Phys. Rev. B Condensed Matter, 16 (1977), pp. 5188-5192
D.J. Cherniak, E.B. Watson, J.B. Thomas. Diffusion of helium in zircon and apatite. Chem Geol, 268 (2009), pp. 155-166
D.J. Cherniak, W. Amidon, D. Hobbs, E.B. Watson. Diffusion of helium in carbonates: Effects of mineral structure and composition. Geochim. Cosmochim. Acta, 165 (2015), pp. 449-465
P. Copeland, E.B. Watson, C. Urizar, D. Patterson, T.J. Lapen. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71 (18) (2007), pp. 4488-4511
I.M. Coulson, F.M. Stuart, N.J. Maclean. Assessing the link between mantle source and sub-volcanic plumbing in the petrology of basalts from the 2001 and 2002/2003 eruptions of Mount Etna, Sicily: Evidence from geochemical and helium isotope data. Lithos, 123 (1–4) (2011), pp. 254-261
A. Cros, C.E. Gautheron, M. Pagel, P. Berthet, L. Tassan-Got, E. Douville, R. Pinna-Jamme, P. Sarda. 4 He behavior in calcite filling viewed by (U–Th)/He dating, 4 He diffusion and crystallographic studies. Geochim. Cosmochim. Acta, 125 (2014), pp. 414-432
J. Deng, Z. Du. Primordial helium extracted from the Earth’s core through magnesium oxide exsolution. Nat. Geosci., 16 (2023), pp. 541-545
B. Dickens, J.S. Bowen. Refinement of the crystal of the aragonite phase of CaCO3. Phys. Chem., 75 (1) (1971), pp. 27-32
M.H. Dodson. Closure temperature in cooling geochronological and petrological systems. Contr. Mineral. and Petrol., 40 (1973), pp. 259-274
A.R. Earth.Oganov, C.W. Glass. . Evolutionary crystal structure prediction: discovering new minerals in the deep (2006)
K.A. Farley. (U–Th/He) Dating: techniques, calibrations, and applications. Rev. Mineral. Geochem., 47 (1) (2002), pp. 819-844, 10.2138/rmg.2002.47.18
K.A. Farley, E. Neroda. Noble gases in the earth's mantle. Annu Rev. Earth. Planet. Sci., 26 (1) (1998), pp. 189-218
S. Figowy, C.E. Mohn, R. Caracas. Noble gas migration in silica polymorphs at Earth's mantle conditions. Earth Planet. Sci. Lett., 633 (2024), Article 118637
S.W. French, B. Romanowicz. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525 (2015), pp. 95-99
T.V. Gerya, B. Stöckhert, A.L. Perchuk. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21 (6) (2002), pp. 1-19
S. Ghosh, E. Ohtani, K.D. Litasov, H. Terasaki. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chem. Geol., 262 (2009), pp. 17-28
W. Gui, K. Shen, J. Liu. Phase stability and reactions of subducting CaCO3 under upper mantle conditions. Acta Geol. Sin., 97 (1) (2023), pp. 309-315
G. Henkelman, B.P. Uberuaga, H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113 (22) (2000), pp. 9901-9904
D.R. Hilton, D. Porcelli. 3.8 Noble gases as tracers of mantle processes. Treatise Geochem. (second Edition), 3 (2014), pp. 327-353
P. Hohenberg, W. Kohn. Density functional theory (DFT). Phys. Rev., 136 (1964), p. B864
M.G. Jackson, J.G. Konter, T.W. Becker. Primordial helium entrained by the hottest mantle plumes. Nature, 542 (7641) (2017), pp. 340-343
N.D. Koker, L. Stixrude. Theoretical Computation of Diffusion in Minerals and Melts. Rev. Mineral. Geochem., 72 (1) (2010), pp. 971-996
Kresse, G., Furthmüller, J., 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (11), 169.
G. Kresse, J. Hafner. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B, 48 (17) (1993), p. 13115
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter, 59 (1999), pp. 1758-1775
M.D. Kurz, W.J. Jenkins. The distribution of Helium in oceanic basalt glasses. Earth Planet. Sci. Lett., 53 (1981), pp. 41-54
S. Li, H. Liu, Y. Yang, J. Ding, L. Liu, Y. Li, L. Yi, H. Tian. Diffusion of helium in calcite and aragonite: A first-principles study. Chin. J. High Press. Phys., 33 (3) (2019), pp. 46-57
Y. Li, Y.T. Zou, T. Chen, X.B. Wang, X.T. Qi, H.Y. Chen, J. Du, B. Li. P-V-T equation of state and high-pressure behavior of CaCO3 aragonite. Am. Mineral., 100 (10) (2015), pp. 2323-2329
K.D.A. Litasov, P.N. Shatskiy, A.E. Gavryushkin, P.I. Bekhtenova, Dorogokupets, B.S. Danilov, Y. Higo, T. AkilbekovA, T.M. Inerbaev. P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter., 265 (2017), pp. 82-91
H. Liu, L. Wang, S. Li, Y. Yang, H. Tian, F. Sun, C. Xu, L. Liu, L. Yi, Y. Cui, Y. Li, J. Zhao. A first-principles study of helium diffusion in quartz and coesite under high pressure up to 12 GPa. Geosci. Front., 12 (2) (2021), pp. 1001-1009
J.F. Molina, S. Poli. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet. Sci. Lett., 176 (2000), pp. 295-310
S. Mukhopadhyay, R. Parai. Noble gases: A record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci., 47 (2019), pp. 389-419
S. Ono, T. Kikegawa, Y. Ohishi, J. Tsuchiya. Post-aragonite phase transformation in CaCO3 at 40 GPa. American Mineralogist, 90 (4) (2005), pp. 667-671, 10.2138/am.2005.1610
J.P. Perdew, K. Burke, M. Ernzerhof. Erratum: generalized gradient approximation made simple. Phys. Rev. Lett., 78 (1997), p. 3865
M. Reich, R.C. Ewing, T.A. Ehlers, U. Becker. Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (U–Th)/He thermochronometry. Geochim. Cosmochim. Acta, 71 (2007), pp. 3119-3130
P.W. Reiners. Zircon (U-Th)/He Thermochronometry. Rev. Mineral. Geochem., 58 (2005), pp. 151-179
P.W. Reiners, D.L. Shuster. Thermochronology and landscape evolution. Phys. Today, 62 (2009), pp. 31-36
M. Sadeh-Raz, H. Itai, V. Anton, M. Andrew, E. Bar, B. Mira, A. Avner. Aragonite (U-Th)/He geochronology: Full retentivity across geologic timescales (104–107 yr). Chem. Geol., 617 (2023), Article 121233
Y. Sano, Y. Nakamura, H. Wakita, K. Notsu, Y. Kobayashi. 3He/4He ratio anomalies associated with the 1984 Western Nagano Earthquake: Possibly induced by a diapiric magma. J. Geophys. Res. Solid Earth, 91 (B12) (1986), pp. 12291-12295
J.B. Thomas. Diffusion of Helium in zircon and apatite. Chem. Geol., 268 (1–2) (2009), pp. 155-166
M.E. Thomas, W.T. Bruce, H. Mark. Applications of diffusion data to high-temperature earth systems. Rev. Mineral. Geochem., 72 (1) (2010), pp. 997-1038
S. Timmerman, M. Honda, A. Burnham, Y. Amwlin, S. Woosland, D.G. Person, A.L. Jaques, C. Le Losq, V.C. Bennett, G.P. Bulanova, C.B. Smith, J.W. Harris, E. Tohver. Primordial and recycled helium isotope signatures in the mantle transition zone. Science, 365 (6454) (2019), pp. 692-694
G.H. Vineyard. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solid, 3 (1–2) (1957), pp. 121-127
K. Wang, J. Brodholt, X. Lu. Helium diffusion in olivine based on first principles calculations. Geochim. Cosmochim. Acta, 156 (2015), pp. 145-153, 10.1016/j.gca.2015.01.023
E.B. Watson, D.J. Cherniak. Simple equations for diffusion in response to heating. Chem. Geol., 335 (2013), pp. 93-104
Wang, K., Lu, X.C., Brodholt, J.P., 2020. Diffusion of noble gases in subduction zone hydrous minerals. Geochimica et Cosmochimica Acta 291, 50-61.https://doi.org/10.1016/j.gca.2020.07.015.
R.A. Wolf, K.A. Farley, L.T. Silver. Helium diffusion and low-temperature thermochronometry of apatite. Geochim. Cosmochim. Acta, 60 (21) (1996), pp. 4231-4240
P. Zeitler, A. Herczeg, I. McDougall, M. Honda. U-Th-He dating dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta, 51 (10) (1987), pp. 2865-2868
Y. Zhang, D.J. Cherniak. Diffusion in Minerals and Melts: Introduction. Rev. Mineral. Geochem., 72 (1) (2010), pp. 1-4
Z. Zhang, Z. Mao, X. Liu, Y. Zhang, J. Brodholt. Stability and reactions of CaCO3 polymorphs in the Earth's deep mantle. J. Geophys. Res. Solid Earth, 123 (2018), pp. 6491-6500

29

Accesses

1

Citations

Detail

Sections
Recommended

/