Melting temperature of iron under the Earth’s inner core condition from deep machine learning

Fulun Wu , Shunqing Wu , Cai-Zhuang Wang , Kai-Ming Ho , Renata M. Wentzcovitch , Yang Sun

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101925

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) :101925 DOI: 10.1016/j.gsf.2024.101925

Melting temperature of iron under the Earth’s inner core condition from deep machine learning

Author information +
History +
PDF

Abstract

Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic integration and direct solid–liquid coexistence simulations, the DP predicts melting temperatures for iron at the inner core boundary, consistent with previous ab initio results. This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio calculation and suggests the crucial contribution of electronic entropy. Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.

Keywords

Inner core boundary / Melting temperature / Machine learning / Solid-liquid coexistence / Free energy calculation / Molecular dynamics simulation

Cite this article

Download citation ▾
Fulun Wu, Shunqing Wu, Cai-Zhuang Wang, Kai-Ming Ho, Renata M. Wentzcovitch, Yang Sun. Melting temperature of iron under the Earth’s inner core condition from deep machine learning. Geoscience Frontiers, 2024, 15(6): 101925 DOI:10.1016/j.gsf.2024.101925

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Fulun Wu: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Formal analysis, Data curation. Shunqing Wu: Writing – review & editing, Supervision, Project administration, Funding acquisition. Cai-Zhuang Wang: Writing – review & editing, Software, Formal analysis. Kai-Ming Ho: Writing – review & editing, Validation, Methodology, Investigation, Formal analysis. Renata M. Wentzcovitch: Writing – review & editing, Supervision, Investigation, Formal analysis. Yang Sun: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Work at Xiamen University was supported by National Natural Science Foundation of China (Grant Nos. 42374108 and 12374015). Y.S. acknowledges support from Fundamental Research Funds for the Central Universities (Grant No. 20720230014). R.M.W. acknowledges support from NSF (Grant Nos. EAR-2000850 and EAR-1918126). K.M.H. acknowledges support from NSF (Grant No. EAR-1918134). Shaorong Fang and Tianfu Wu from the Information and Network Center of Xiamen University are acknowledged for their help with Graphics Processing Unit (GPU) computing. We acknowledge the supercomputing time supported by the Opening Project of the Joint Laboratory for Planetary Science and Supercomputing (Grant No. CSYYGS-QT-2024-15), Research Center for Planetary Science, and the National Supercomputing Center in Chengdu.

References

[1]

D. Alfè. Temperature of the inner-core boundary of the Earth: melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B, 79 (2009), Article 060101,

[2]

S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340 (2013), pp. 464-466,

[3]

A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104 (2010), Article 136403,

[4]

J. Behler. Four generations of high-dimensional neural network potentials. Chem. Rev., 121 (2021), pp. 10037-10072,

[5]

J. Behler, M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98 (2007), Article 146401,

[6]

A.B. Belonoshko, R. Ahuja, B. Johansson. Quasi–ab initio molecular dynamic study of Fe melting. Phys. Rev. Lett., 84 (2000), pp. 3638-3641,

[7]

A.B. Belonoshko, T. Lukinov, J. Fu, J. Zhao, S. Davis, S.I. Simak. Stabilization of body-centred cubic iron under inner-core conditions. Nat. Geosci., 10 (2017), pp. 312-316,

[8]

A.B. Belonoshko, J. Fu, G. Smirnov. Free energies of iron phases at high pressure and temperature: molecular dynamics study. Phys. Rev. B, 104 (2021), Article 104103,

[9]

A.B. Belonoshko, S.I. Simak, W. Olovsson, O.Y. Vekilova. Elastic properties of body-centered cubic iron in Earth’s inner core. Phys. Rev. B, 105 (2022), Article L180102,

[10]

P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (1994), pp. 17953-17979,

[11]

J. Bouchet, S. Mazevet, G. Morard, F. Guyot, R. Musella. Ab initio equation of state of iron up to 1500 GPa. Phys. Rev. B - Condens. Matter Mater. Phys., 87 (2013), pp. 1-8,

[12]

C.J. Davies, M. Pozzo, D. Alfè. Assessing the inner core nucleation paradox with atomic-scale simulations. Earth Planet. Sci. Lett., 507 (2019), pp. 1-9,

[13]

J. Deng, H. Niu, J. Hu, M. Chen, L. Stixrude. Melting of MgSiO3 determined by machine learning potentials. Phys. Rev. B, 107 (2023), Article 064103,

[14]

V.L. Deringer, A.P. Bartók, N. Bernstein, D.M. Wilkins, M. Ceriotti, G. Csányi. Gaussian process regression for materials and molecules. Chem. Rev., 121 (2021), pp. 10073-10141,

[15]

R.A. Fischer. Melting of Fe alloys and the thermal structure of the core. Geophys. Monogr. Ser. (2016), pp. 1-12,

[16]

F. González-Cataldo, B. Militzer. ab initio determination of iron melting at terapascal pressures and super-earths core crystallization. Phys. Rev. Res., 5 (2023), Article 033194,

[17]

D. Gubbins, B. Sreenivasan, J. Mound, S. Rost. Melting of the Earth’s inner core. Nature, 473 (2011), pp. 361-363,

[18]

Y. He, S. Sun, D.Y. Kim, B.G. Jang, H. Li, H. Mao. Superionic iron alloys and their seismic velocities in Earth’s inner core. Nature, 602 (2022), pp. 258-262,

[19]

K. Hirose, S. Labrosse, J. Hernlund. Composition and state of the core. Annu. Rev. Earth Planet. Sci., 41 (2013), pp. 657-691,

[20]

K. Hirose, B. Wood, L. Vočadlo. Light elements in the Earth’s core. Nat. Rev. Earth Environ., 2 (2021), pp. 645-658,

[21]

M. Hou, J. Liu, Y. Zhang, X. Du, H. Dong, L. Yan, J. Wang, L. Wang, B. Chen. Melting of iron explored by electrical resistance jump up to 135 GPa. Geophys. Res. Lett., 48 (2021), Article e2021GL095739,

[22]

R. Jinnouchi, F. Karsai, G. Kresse. On-the-fly machine learning force field generation: application to melting points. Phys. Rev. B, 100 (2019), Article 014105,

[23]

Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. ArXiv Prepr. ArXiv14126980. https://doi.org/10.48550/arXiv.1412.6980.

[24]

W. Kohn. Nobel lecture: electronic structure of matter – wave functions and density functional. Rev. Mod. Phys., 71 (1999), pp. 1253-1266,

[25]

R.G. Kraus, R.J. Hemley, S.J. Ali, J.L. Belof, L.X. Benedict, J. Bernier, D. Braun, R.E. Cohen, G.W. Collins, F. Coppari, M.P. Desjarlais, D. Fratanduono, S. Hamel, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, P.C. Myint, M.G. Newman, J.R. Rygg, D.M. Sterbentz, S.T. Stewart, L. Stixrude, D.C. Swift, C. Wehrenberg, J.H. Eggert. Measuring the melting curve of iron at super-Earth core conditions. Science, 375 (2022), pp. 202-205,

[26]

G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (1996), pp. 11169-11186,

[27]

G. Kresse, J. Hafner. ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47 (1993), pp. 558-561,

[28]

Y. Kuwayama, G. Morard, Y. Nakajima, K. Hirose, A.Q.R. Baron, S.I. Kawaguchi, T. Tsuchiya, D. Ishikawa, N. Hirao, Y. Ohishi. Equation of state of liquid iron under extreme conditions. Phys. Rev. Lett., 124 (2020), Article 165701,

[29]

A. Laio, S. Bernard, G.L. Chiarotti, S. Scandolo, E. Tosatti. Physics of iron at Earth’s core conditions. Science, 287 (2000), pp. 1027-1030,

[30]

P.M. Larsen, S. Schmidt, J. Schiøtz. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng., 24 (2016), Article 055007,

[31]

J. Li, Q. Wu, J. Li, T. Xue, Y. Tan, X. Zhou, Y. Zhang, Z. Xiong, Z. Gao, T. Sekine. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary. Geophys. Res. Lett., 47 (2020), Article e2020GL087758,

[32]

J. Liu, Y. Sun, C. Lv, F. Zhang, S. Fu, V.B. Prakapenka, C. Wang, K. Ho, J. Lin, R.M. Wentzcovitch. Iron-rich Fe-O compounds at Earth’s core pressures. The Innovation, 4 (1) (2023), Article 100354,

[33]

H. Luo, B.B. Karki, D.B. Ghosh, H. Bao. Anomalous behavior of viscosity and electrical conductivity of MgSiO3 melt at mantle conditions. Geophys. Res. Lett., 48 (2021), Article e2021GL093573,

[34]

C. Luo, Y. Sun, R.M. Wentzcovitch. Probing the state of hydrogen in δ−AlOOH at mantle conditions with machine learning potential. Phys. Rev. Res., 6 (2024), Article 013292,

[35]

B. Martorell, J. Brodholt, I.G. Wood, L. Vočadlo. The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions. Geophys. J. Int., 202 (2015), pp. 94-101,

[36]

N.D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137 (1965), pp. A1441-A1443,

[37]

J.R. Morris, C.Z. Wang, K.M. Ho, C.T. Chan. Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B, 49 (1994), pp. 3109-3115,

[38]

C.A. Murphy, J.M. Jackson, W. Sturhahn, B. Chen. Melting and thermal pressure of hcp-Fe from the phonon density of states. Phys. Earth Planet. Inter., 188 (2011), pp. 114-120,

[39]

Nimmo, F., 2015. Energetics of the core. In: Schubert, G. (Ed.), Treatise on Geophysics. Elsevier, pp. 27–55. https://doi.org/10.1016/B978-0-444-53802-4.00139-1.

[40]

K. Oka, N. Ikuta, S. Tagawa, K. Hirose, Y. Ohishi. Melting experiments on Fe-O-H and Fe-H: evidence for eutectic melting in Fe-FeH and implications for hydrogen in the core. Geophys. Res. Lett., 49 (2022), Article e2022GL099420,

[41]

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996), pp. 3865-3868,

[42]

F. Sakai, K. Hirose, G. Morard. Partitioning of silicon and sulfur between solid and liquid iron under core pressures: constraints on Earth’s core composition. Earth Planet. Sci. Lett., 624 (2023), Article 118449,

[43]

R. Sinmyo, K. Hirose, Y. Ohishi. Melting curve of iron to 290 GPa determined in a resistance-heated diamond-anvil cell. Earth Planet. Sci. Lett., 510 (2019), pp. 45-52,

[44]

E. Sola, D. Alfè. Melting of iron under Earth’s core conditions from diffusion monte carlo free energy calculations. Phys. Rev. Lett., 103 (2009), Article 078501,

[45]

G. Steinle-Neumann, L. Stixrude, R.E. Cohen, O. Gülseren. Elasticity of iron at the temperature of the Earth’s inner core. Nature, 413 (2001), pp. 57-60,

[46]

L. Stixrude. Structure of Iron to 1 Gbar and 40 000 K. Phys. Rev. Lett., 108 (2012), Article 055505,

[47]

T. Sun, J.P. Brodholt, Y. Li, L. Vočadlo. Melting properties from ab initio free energy calculations: iron at the Earth’s inner-core boundary. Phys. Rev. B, 98 (2018), Article 224301,

[48]

Y. Sun, F. Zhang, Z. Ye, Y. Zhang, X. Fang, Z. Ding, C.-Z. Wang, M.I. Mendelev, R.T. Ott, M.J. Kramer, K.-M. Ho. ‘Crystal Genes’ in metallic liquids and glasses. Sci. Rep., 6 (2016), Article 23734,

[49]

Y. Sun, F. Zhang, M.I. Mendelev, R.M. Wentzcovitch, K.-M. Ho. Two-step nucleation of the Earth’s inner core. Proc. Natl. Acad. Sci., 119 (2022), Article e2113059119,

[50]

Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C. Wang, R.M. Wentzcovitch, K. Ho. Ab initio melting temperatures of bcc and hcp iron under the Earth’s inner core condition. Geophys. Res. Lett., 50 (2023), Article e2022GL102447,

[51]

Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C.-Z. Wang, R.M. Wentzcovitch, K.-M. Ho. Unveiling the effect of Ni on the formation and structure of Earth’s inner core. Proc. Natl. Acad. Sci., 121 (2024), Article e2316477121,

[52]

L. Tang, C. Zhang, Y. Sun, K.-M. Ho, R.M. Wentzcovitch, C.-Z. Wang. Structure and dynamics of Fe90Si3O7 liquids close to Earth’s liquid core conditions. Phys. Rev. B, 108 (2023), Article 064104,

[53]

R. Torchio, S. Boccato, F. Miozzi, A.D. Rosa, N. Ishimatsu, I. Kantor, N. Sévelin-Radiguet, R. Briggs, C. Meneghini, T. Irifune, G. Morard. Melting curve and phase relations of Fe-Ni Alloys: implications for the Earth’s core composition. Geophys. Res. Lett., 47 (2020), Article e2020GL088169,

[54]

S.J. Turneaure, S.M. Sharma, Y.M. Gupta. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction. Phys. Rev. Lett., 125 (2020), Article 215702,

[55]

O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, A. Tkatchenko, K.-R. Müller. Machine learning force fields. Chem. Rev., 121 (2021), pp. 10142-10186,

[56]

L. Vočadlo, I.G. Wood, M.J. Gillan, J. Brodholt, D.P. Dobson, G.D. Price, D. Alfè. The stability of bcc-Fe at high pressures and temperatures with respect to tetragonal strain. Phys. Earth Planet. Inter., 170 (2008), pp. 52-59,

[57]

P. Voosen. The planet inside. Science, 376 (2022), pp. 18-22,

[58]

T. Wan, C. Luo, Y. Sun, R.M. Wentzcovitch. Thermoelastic properties of bridgmanite using deep-potential molecular dynamics. Phys. Rev. B, 109 (2024), Article 094101,

[59]

Wen, T., Zhang, L., Wang, H., E, W., Srolovitz, D.J., 2022. Deep potentials for materials science. Mater. Futur. 1, 022601. https://doi.org/10.1088/2752-5724/ac681d.

[60]

T.Q. Wen, L. Tang, Y. Sun, K.M. Ho, C.Z. Wang, N. Wang. Crystal genes in a marginal glass-forming system of Ni50Zr50. Phys. Chem. Chem. Phys., 19 (2017), pp. 30429-30438,

[61]

R.M. Wentzcovitch, J.L. Martins, P.B. Allen. Energy versus free-energy conservation in first-principles molecular dynamics. Phys. Rev. B, 45 (1992), pp. 11372-11374,

[62]

A.J. Wilson, D. Alfè, A.M. Walker, C.J. Davies. Can homogeneous nucleation resolve the inner core nucleation paradox?. Earth Planet. Sci. Lett., 614 (2023), Article 118176,

[63]

Wu, Z., Wang, W., 2022. Shear softening of earth’s inner core as indicated by its high poisson ratio and elastic anisotropy. Fundam. Res. https://doi.org/10.1016/j.fmre.2022.08.010.

[64]

C.J. Wu, L.X. Benedict, P.C. Myint, S. Hamel, C.J. Prisbrey, J.R. Leek. Wide-ranged multiphase equation of state for iron and model variations addressing uncertainties in high-pressure melting. Phys. Rev. B, 108 (2023), Article 014102,

[65]

Wu, F., Sun, Y., Wan, T., Wu, S., Wentzcovitch, R.M., 2024. Deep‐learning‐based prediction of the tetragonal → cubic transition in davemaoite. Geophys. Res. Lett. 51, e2023GL108012. https://doi.org/10.1029/2023GL108012.

[66]

F. Yang, Q. Zeng, B. Chen, D. Kang, S. Zhang, J. Wu, X. Yu, J. Dai. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite under lower mantle conditions calculated by deep potential molecular dynamics. Chin. Phys. Lett., 39 (2022), Article 116301,

[67]

L. Yuan, G. Steinle-Neumann. Hydrogen distribution between the Earth’s inner and outer core. Earth Planet. Sci. Lett., 609 (2023), Article 118084,

[68]

Yuan, L., 2023. Yuan & Steinle-Neumann Training dataset. https://doi.org/10.6084/M9.FIGSHARE.19773109.V4.

[69]

Zhang, L., Han, J., Wang, H., Car, R., E, W., 2018a. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001. https://doi.org/10.1103/PhysRevLett.120.143001.

[70]

D. Zhang, J.M. Jackson, J. Zhao, W. Sturhahn, E.E. Alp, M.Y. Hu, T.S. Toellner, C.A. Murphy, V.B. Prakapenka. Temperature of Earth’s core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures. Earth Planet. Sci. Lett., 447 (2016), pp. 72-83,

[71]

Y. Zhang, J.-F. Lin. Molten iron in Earth-like exoplanet cores. Science, 375 (2022), pp. 146-147,

[72]

W.-J. Zhang, Z.-Y. Liu, Z.-L. Liu, L.-C. Cai. Melting curves and entropy of melting of iron under Earth’s core conditions. Phys. Earth Planet. Inter., 244 (2015), pp. 69-77,

[73]

C. Zhang, L. Tang, Y. Sun, K.-M. Ho, R.M. Wentzcovitch, C.-Z. Wang. Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth’s outer core conditions. Phys. Rev. Mater., 6 (2022), Article 063802,

[74]

J. Zhuang, H. Wang, Q. Zhang, R.M. Wentzcovitch. Thermodynamic properties of ε-Fe with thermal electronic excitation effects on vibrational spectra. Phys. Rev. B, 103 (2021), Article 144102,

PDF

321

Accesses

0

Citation

Detail

Sections
Recommended

/