Melting temperature of iron under the Earth’s inner core condition from deep machine learning
Fulun Wu, Shunqing Wu, Cai-Zhuang Wang, Kai-Ming Ho, Renata M. Wentzcovitch, Yang Sun
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101925.
Melting temperature of iron under the Earth’s inner core condition from deep machine learning
Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model for iron that explicitly incorporates electronic entropy contributions governing thermodynamics under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic integration and direct solid–liquid coexistence simulations, the DP predicts melting temperatures for iron at the inner core boundary, consistent with previous ab initio results. This resolves the previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio calculation and suggests the crucial contribution of electronic entropy. Our work provides insights into machine learning melting behavior of iron under core conditions and provides the basis for future development of binary or ternary DP models for iron and other elements in the core.
Inner core boundary / Melting temperature / Machine learning / Solid-liquid coexistence / Free energy calculation / Molecular dynamics simulation
D. Alfè. Temperature of the inner-core boundary of the Earth: melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B, 79 (2009), Article 060101,
CrossRef
Google scholar
|
S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science, 340 (2013), pp. 464-466,
CrossRef
Google scholar
|
A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 104 (2010), Article 136403,
CrossRef
Google scholar
|
J. Behler. Four generations of high-dimensional neural network potentials. Chem. Rev., 121 (2021), pp. 10037-10072,
CrossRef
Google scholar
|
J. Behler, M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98 (2007), Article 146401,
CrossRef
Google scholar
|
A.B. Belonoshko, R. Ahuja, B. Johansson. Quasi–ab initio molecular dynamic study of Fe melting. Phys. Rev. Lett., 84 (2000), pp. 3638-3641,
CrossRef
Google scholar
|
A.B. Belonoshko, T. Lukinov, J. Fu, J. Zhao, S. Davis, S.I. Simak. Stabilization of body-centred cubic iron under inner-core conditions. Nat. Geosci., 10 (2017), pp. 312-316,
CrossRef
Google scholar
|
A.B. Belonoshko, J. Fu, G. Smirnov. Free energies of iron phases at high pressure and temperature: molecular dynamics study. Phys. Rev. B, 104 (2021), Article 104103,
CrossRef
Google scholar
|
A.B. Belonoshko, S.I. Simak, W. Olovsson, O.Y. Vekilova. Elastic properties of body-centered cubic iron in Earth’s inner core. Phys. Rev. B, 105 (2022), Article L180102,
CrossRef
Google scholar
|
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 50 (1994), pp. 17953-17979,
CrossRef
Google scholar
|
J. Bouchet, S. Mazevet, G. Morard, F. Guyot, R. Musella. Ab initio equation of state of iron up to 1500 GPa. Phys. Rev. B - Condens. Matter Mater. Phys., 87 (2013), pp. 1-8,
CrossRef
Google scholar
|
C.J. Davies, M. Pozzo, D. Alfè. Assessing the inner core nucleation paradox with atomic-scale simulations. Earth Planet. Sci. Lett., 507 (2019), pp. 1-9,
CrossRef
Google scholar
|
J. Deng, H. Niu, J. Hu, M. Chen, L. Stixrude. Melting of MgSiO3 determined by machine learning potentials. Phys. Rev. B, 107 (2023), Article 064103,
CrossRef
Google scholar
|
V.L. Deringer, A.P. Bartók, N. Bernstein, D.M. Wilkins, M. Ceriotti, G. Csányi. Gaussian process regression for materials and molecules. Chem. Rev., 121 (2021), pp. 10073-10141,
CrossRef
Google scholar
|
R.A. Fischer. Melting of Fe alloys and the thermal structure of the core. Geophys. Monogr. Ser. (2016), pp. 1-12,
CrossRef
Google scholar
|
F. González-Cataldo, B. Militzer. ab initio determination of iron melting at terapascal pressures and super-earths core crystallization. Phys. Rev. Res., 5 (2023), Article 033194,
CrossRef
Google scholar
|
D. Gubbins, B. Sreenivasan, J. Mound, S. Rost. Melting of the Earth’s inner core. Nature, 473 (2011), pp. 361-363,
CrossRef
Google scholar
|
Y. He, S. Sun, D.Y. Kim, B.G. Jang, H. Li, H. Mao. Superionic iron alloys and their seismic velocities in Earth’s inner core. Nature, 602 (2022), pp. 258-262,
CrossRef
Google scholar
|
K. Hirose, S. Labrosse, J. Hernlund. Composition and state of the core. Annu. Rev. Earth Planet. Sci., 41 (2013), pp. 657-691,
CrossRef
Google scholar
|
K. Hirose, B. Wood, L. Vočadlo. Light elements in the Earth’s core. Nat. Rev. Earth Environ., 2 (2021), pp. 645-658,
CrossRef
Google scholar
|
M. Hou, J. Liu, Y. Zhang, X. Du, H. Dong, L. Yan, J. Wang, L. Wang, B. Chen. Melting of iron explored by electrical resistance jump up to 135 GPa. Geophys. Res. Lett., 48 (2021), Article e2021GL095739,
CrossRef
Google scholar
|
R. Jinnouchi, F. Karsai, G. Kresse. On-the-fly machine learning force field generation: application to melting points. Phys. Rev. B, 100 (2019), Article 014105,
CrossRef
Google scholar
|
Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. ArXiv Prepr. ArXiv14126980. https://doi.org/10.48550/arXiv.1412.6980.
|
W. Kohn. Nobel lecture: electronic structure of matter – wave functions and density functional. Rev. Mod. Phys., 71 (1999), pp. 1253-1266,
CrossRef
Google scholar
|
R.G. Kraus, R.J. Hemley, S.J. Ali, J.L. Belof, L.X. Benedict, J. Bernier, D. Braun, R.E. Cohen, G.W. Collins, F. Coppari, M.P. Desjarlais, D. Fratanduono, S. Hamel, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, P.C. Myint, M.G. Newman, J.R. Rygg, D.M. Sterbentz, S.T. Stewart, L. Stixrude, D.C. Swift, C. Wehrenberg, J.H. Eggert. Measuring the melting curve of iron at super-Earth core conditions. Science, 375 (2022), pp. 202-205,
CrossRef
Google scholar
|
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (1996), pp. 11169-11186,
CrossRef
Google scholar
|
G. Kresse, J. Hafner. ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47 (1993), pp. 558-561,
CrossRef
Google scholar
|
Y. Kuwayama, G. Morard, Y. Nakajima, K. Hirose, A.Q.R. Baron, S.I. Kawaguchi, T. Tsuchiya, D. Ishikawa, N. Hirao, Y. Ohishi. Equation of state of liquid iron under extreme conditions. Phys. Rev. Lett., 124 (2020), Article 165701,
CrossRef
Google scholar
|
A. Laio, S. Bernard, G.L. Chiarotti, S. Scandolo, E. Tosatti. Physics of iron at Earth’s core conditions. Science, 287 (2000), pp. 1027-1030,
CrossRef
Google scholar
|
P.M. Larsen, S. Schmidt, J. Schiøtz. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng., 24 (2016), Article 055007,
CrossRef
Google scholar
|
J. Li, Q. Wu, J. Li, T. Xue, Y. Tan, X. Zhou, Y. Zhang, Z. Xiong, Z. Gao, T. Sekine. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary. Geophys. Res. Lett., 47 (2020), Article e2020GL087758,
CrossRef
Google scholar
|
J. Liu, Y. Sun, C. Lv, F. Zhang, S. Fu, V.B. Prakapenka, C. Wang, K. Ho, J. Lin, R.M. Wentzcovitch. Iron-rich Fe-O compounds at Earth’s core pressures. The Innovation, 4 (1) (2023), Article 100354,
CrossRef
Google scholar
|
H. Luo, B.B. Karki, D.B. Ghosh, H. Bao. Anomalous behavior of viscosity and electrical conductivity of MgSiO3 melt at mantle conditions. Geophys. Res. Lett., 48 (2021), Article e2021GL093573,
CrossRef
Google scholar
|
C. Luo, Y. Sun, R.M. Wentzcovitch. Probing the state of hydrogen in δ−AlOOH at mantle conditions with machine learning potential. Phys. Rev. Res., 6 (2024), Article 013292,
CrossRef
Google scholar
|
B. Martorell, J. Brodholt, I.G. Wood, L. Vočadlo. The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions. Geophys. J. Int., 202 (2015), pp. 94-101,
CrossRef
Google scholar
|
N.D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137 (1965), pp. A1441-A1443,
CrossRef
Google scholar
|
J.R. Morris, C.Z. Wang, K.M. Ho, C.T. Chan. Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B, 49 (1994), pp. 3109-3115,
CrossRef
Google scholar
|
C.A. Murphy, J.M. Jackson, W. Sturhahn, B. Chen. Melting and thermal pressure of hcp-Fe from the phonon density of states. Phys. Earth Planet. Inter., 188 (2011), pp. 114-120,
CrossRef
Google scholar
|
Nimmo, F., 2015. Energetics of the core. In: Schubert, G. (Ed.), Treatise on Geophysics. Elsevier, pp. 27–55. https://doi.org/10.1016/B978-0-444-53802-4.00139-1.
|
K. Oka, N. Ikuta, S. Tagawa, K. Hirose, Y. Ohishi. Melting experiments on Fe-O-H and Fe-H: evidence for eutectic melting in Fe-FeH and implications for hydrogen in the core. Geophys. Res. Lett., 49 (2022), Article e2022GL099420,
CrossRef
Google scholar
|
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996), pp. 3865-3868,
CrossRef
Google scholar
|
F. Sakai, K. Hirose, G. Morard. Partitioning of silicon and sulfur between solid and liquid iron under core pressures: constraints on Earth’s core composition. Earth Planet. Sci. Lett., 624 (2023), Article 118449,
CrossRef
Google scholar
|
R. Sinmyo, K. Hirose, Y. Ohishi. Melting curve of iron to 290 GPa determined in a resistance-heated diamond-anvil cell. Earth Planet. Sci. Lett., 510 (2019), pp. 45-52,
CrossRef
Google scholar
|
E. Sola, D. Alfè. Melting of iron under Earth’s core conditions from diffusion monte carlo free energy calculations. Phys. Rev. Lett., 103 (2009), Article 078501,
CrossRef
Google scholar
|
G. Steinle-Neumann, L. Stixrude, R.E. Cohen, O. Gülseren. Elasticity of iron at the temperature of the Earth’s inner core. Nature, 413 (2001), pp. 57-60,
CrossRef
Google scholar
|
L. Stixrude. Structure of Iron to 1 Gbar and 40 000 K. Phys. Rev. Lett., 108 (2012), Article 055505,
CrossRef
Google scholar
|
T. Sun, J.P. Brodholt, Y. Li, L. Vočadlo. Melting properties from ab initio free energy calculations: iron at the Earth’s inner-core boundary. Phys. Rev. B, 98 (2018), Article 224301,
CrossRef
Google scholar
|
Y. Sun, F. Zhang, Z. Ye, Y. Zhang, X. Fang, Z. Ding, C.-Z. Wang, M.I. Mendelev, R.T. Ott, M.J. Kramer, K.-M. Ho. ‘Crystal Genes’ in metallic liquids and glasses. Sci. Rep., 6 (2016), Article 23734,
CrossRef
Google scholar
|
Y. Sun, F. Zhang, M.I. Mendelev, R.M. Wentzcovitch, K.-M. Ho. Two-step nucleation of the Earth’s inner core. Proc. Natl. Acad. Sci., 119 (2022), Article e2113059119,
CrossRef
Google scholar
|
Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C. Wang, R.M. Wentzcovitch, K. Ho. Ab initio melting temperatures of bcc and hcp iron under the Earth’s inner core condition. Geophys. Res. Lett., 50 (2023), Article e2022GL102447,
CrossRef
Google scholar
|
Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C.-Z. Wang, R.M. Wentzcovitch, K.-M. Ho. Unveiling the effect of Ni on the formation and structure of Earth’s inner core. Proc. Natl. Acad. Sci., 121 (2024), Article e2316477121,
CrossRef
Google scholar
|
L. Tang, C. Zhang, Y. Sun, K.-M. Ho, R.M. Wentzcovitch, C.-Z. Wang. Structure and dynamics of Fe90Si3O7 liquids close to Earth’s liquid core conditions. Phys. Rev. B, 108 (2023), Article 064104,
CrossRef
Google scholar
|
R. Torchio, S. Boccato, F. Miozzi, A.D. Rosa, N. Ishimatsu, I. Kantor, N. Sévelin-Radiguet, R. Briggs, C. Meneghini, T. Irifune, G. Morard. Melting curve and phase relations of Fe-Ni Alloys: implications for the Earth’s core composition. Geophys. Res. Lett., 47 (2020), Article e2020GL088169,
CrossRef
Google scholar
|
S.J. Turneaure, S.M. Sharma, Y.M. Gupta. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction. Phys. Rev. Lett., 125 (2020), Article 215702,
CrossRef
Google scholar
|
O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, A. Tkatchenko, K.-R. Müller. Machine learning force fields. Chem. Rev., 121 (2021), pp. 10142-10186,
CrossRef
Google scholar
|
L. Vočadlo, I.G. Wood, M.J. Gillan, J. Brodholt, D.P. Dobson, G.D. Price, D. Alfè. The stability of bcc-Fe at high pressures and temperatures with respect to tetragonal strain. Phys. Earth Planet. Inter., 170 (2008), pp. 52-59,
CrossRef
Google scholar
|
P. Voosen. The planet inside. Science, 376 (2022), pp. 18-22,
CrossRef
Google scholar
|
T. Wan, C. Luo, Y. Sun, R.M. Wentzcovitch. Thermoelastic properties of bridgmanite using deep-potential molecular dynamics. Phys. Rev. B, 109 (2024), Article 094101,
CrossRef
Google scholar
|
Wen, T., Zhang, L., Wang, H., E, W., Srolovitz, D.J., 2022. Deep potentials for materials science. Mater. Futur. 1, 022601. https://doi.org/10.1088/2752-5724/ac681d.
|
T.Q. Wen, L. Tang, Y. Sun, K.M. Ho, C.Z. Wang, N. Wang. Crystal genes in a marginal glass-forming system of Ni50Zr50. Phys. Chem. Chem. Phys., 19 (2017), pp. 30429-30438,
CrossRef
Google scholar
|
R.M. Wentzcovitch, J.L. Martins, P.B. Allen. Energy versus free-energy conservation in first-principles molecular dynamics. Phys. Rev. B, 45 (1992), pp. 11372-11374,
CrossRef
Google scholar
|
A.J. Wilson, D. Alfè, A.M. Walker, C.J. Davies. Can homogeneous nucleation resolve the inner core nucleation paradox?. Earth Planet. Sci. Lett., 614 (2023), Article 118176,
CrossRef
Google scholar
|
Wu, Z., Wang, W., 2022. Shear softening of earth’s inner core as indicated by its high poisson ratio and elastic anisotropy. Fundam. Res. https://doi.org/10.1016/j.fmre.2022.08.010.
|
C.J. Wu, L.X. Benedict, P.C. Myint, S. Hamel, C.J. Prisbrey, J.R. Leek. Wide-ranged multiphase equation of state for iron and model variations addressing uncertainties in high-pressure melting. Phys. Rev. B, 108 (2023), Article 014102,
CrossRef
Google scholar
|
Wu, F., Sun, Y., Wan, T., Wu, S., Wentzcovitch, R.M., 2024. Deep‐learning‐based prediction of the tetragonal → cubic transition in davemaoite. Geophys. Res. Lett. 51, e2023GL108012. https://doi.org/10.1029/2023GL108012.
|
F. Yang, Q. Zeng, B. Chen, D. Kang, S. Zhang, J. Wu, X. Yu, J. Dai. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite under lower mantle conditions calculated by deep potential molecular dynamics. Chin. Phys. Lett., 39 (2022), Article 116301,
CrossRef
Google scholar
|
L. Yuan, G. Steinle-Neumann. Hydrogen distribution between the Earth’s inner and outer core. Earth Planet. Sci. Lett., 609 (2023), Article 118084,
CrossRef
Google scholar
|
Yuan, L., 2023. Yuan & Steinle-Neumann Training dataset. https://doi.org/10.6084/M9.FIGSHARE.19773109.V4.
|
Zhang, L., Han, J., Wang, H., Car, R., E, W., 2018a. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001. https://doi.org/10.1103/PhysRevLett.120.143001.
|
D. Zhang, J.M. Jackson, J. Zhao, W. Sturhahn, E.E. Alp, M.Y. Hu, T.S. Toellner, C.A. Murphy, V.B. Prakapenka. Temperature of Earth’s core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures. Earth Planet. Sci. Lett., 447 (2016), pp. 72-83,
CrossRef
Google scholar
|
Y. Zhang, J.-F. Lin. Molten iron in Earth-like exoplanet cores. Science, 375 (2022), pp. 146-147,
CrossRef
Google scholar
|
W.-J. Zhang, Z.-Y. Liu, Z.-L. Liu, L.-C. Cai. Melting curves and entropy of melting of iron under Earth’s core conditions. Phys. Earth Planet. Inter., 244 (2015), pp. 69-77,
CrossRef
Google scholar
|
C. Zhang, L. Tang, Y. Sun, K.-M. Ho, R.M. Wentzcovitch, C.-Z. Wang. Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth’s outer core conditions. Phys. Rev. Mater., 6 (2022), Article 063802,
CrossRef
Google scholar
|
J. Zhuang, H. Wang, Q. Zhang, R.M. Wentzcovitch. Thermodynamic properties of ε-Fe with thermal electronic excitation effects on vibrational spectra. Phys. Rev. B, 103 (2021), Article 144102,
CrossRef
Google scholar
|
/
〈 |
|
〉 |