Tectonic controls on ore deposit exhumation and preservation: A case study of the Handan-Xingtai iron-skarn district

Yannan Wang , Zhiyuan He , Kai Bian , Cunliang Zhao , Lian Chen , Rui Dong , Jin Zhang , Zhaoqun Zhu , Guang Liu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101924

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) :101924 DOI: 10.1016/j.gsf.2024.101924

Tectonic controls on ore deposit exhumation and preservation: A case study of the Handan-Xingtai iron-skarn district

Author information +
History +
PDF

Abstract

Despite the growing concern regarding post-mineralization thermo-tectonic processes in recent years, the relative roles in exhuming and preserving ore deposits remain highly controversial. This study presents new apatite fission track and (U-Th)/He data from the Xishimen iron skarn deposit in the Handan-Xingtai district, central North China Craton. Apatite fission track dating yielded central ages ranging from 88 ± 18 Ma to 125 ± 9 Ma, with mean confined track lengths varying between 11.9 ± 0.4 μm and 13.3 ± 0.2 μm. Integrated apatite (U-Th)/He dating provided ages of 42.5 ± 0.8 Ma to 48.1 ± 3.3 Ma. Our new data, combined with previous zircon U-Pb and potassium-bearing mineral 40Ar/39Ar ages, revealed three cooling episodes: very rapid cooling (100–140 °C/Ma) at ca. 130–120 Ma, a protracted slow cooling period (0.2–0.4 °C/Ma) at ca. 120–50 Ma, and moderate cooling (0.8–1.0 °C/Ma) since ca. 50 Ma. The initial rapid cooling phase was primarily attributed to post-magmatic thermal equilibration following the shallow emplacement of the Xishimen deposit. The subsequent cooling phases were controlled by uplift and exhumation processes. Our thermal models indicate an estimated total unroofing thickness of < 3 km, which is shallower than the emplacement depth of the ore deposit (3–5 km). This suggests significant potential for mineral exploration. Furthermore, a comprehensive review of preservation mechanisms for various ore deposits underscores the significant role of tectonics in both exhuming and preserving ore bodies.

Keywords

Low-temperature thermochronology / Ore deposits / Exhumation and preservation / Handan-Xingtai district / Xishimen iron deposit

Cite this article

Download citation ▾
Yannan Wang, Zhiyuan He, Kai Bian, Cunliang Zhao, Lian Chen, Rui Dong, Jin Zhang, Zhaoqun Zhu, Guang Liu. Tectonic controls on ore deposit exhumation and preservation: A case study of the Handan-Xingtai iron-skarn district. Geoscience Frontiers, 2024, 15(6): 101924 DOI:10.1016/j.gsf.2024.101924

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yannan Wang: Writing – original draft, Methodology, Funding acquisition, Conceptualization. Zhiyuan He: Writing – review & editing, Methodology, Conceptualization. Kai Bian: Supervision, Project administration, Funding acquisition, Conceptualization. Cunliang Zhao: Writing – review & editing, Supervision. Lian Chen: Software, Methodology, Data curation. Rui Dong: Software, Investigation, Funding acquisition. Jin Zhang: Writing – review & editing, Funding acquisition, Conceptualization. Zhaoqun Zhu: Software, Formal analysis. Guang Liu: Investigation, Data curation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to two anonymous reviewers for their constructive comments that improved the manuscript significantly. We also thank Profs. M. Santosh and Stijn Glorie for their handling work. This study is financially supported by the Open Project Program of Hebei Province Collaborative Innovation Center for Strategic Critical Mineral Research, Hebei GEO University, China (No. HGUXT-2023-14), the China Geological Survey (DD20221646), National Natural Science Foundation of Hebei Province (Nos. D2020402013 and D2023402022), National Natural Science Foundation of China (No. 42102091).

References

[1]

M.B. Allen, D.I.M. Macdonald, Z. Xun, Z. Vincent, C. Brouet-Menzies. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai basin, northern China. Mar. Petrol. Geol., 14 (1997), pp. 951-972,

[2]

I. Chambefort, R. Moritz. Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie belt, Bulgaria. Miner. Deposita, 41 (2006), pp. 259-280,

[3]

B. Chen, W. Tian, B.M. Jahn, Z.C. Chen. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton. Evidence for hybridization between mantlederived magmas and crustal components. Lithos, 102 (2008), pp. 118-137,

[4]

G. Chen, Z.Y. Zhao, P.L. Li, Z.L. Ren, J.P. Chen, M.Y. Tan, X.P. Li. Fission Track evidence for the tectonic-thermal history of the Hefei Basin. Chin. J. Geophys., 48 (2005), pp. 1433-1442,

[5]

D.J. Cherniak, E.B. Watson. The influence of diffusion on U-Pb systematics, 11th Annual Goldschmidt Conference. Abstract, 3260 (2001),

[6]

C. Clinkscales, P. Kapp, S. Thomson, H.Q. Wang, A. Laskowski, D.A. Orme, A. Pullen. Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics, 40 (2021), Article e2020TC006416,

[7]

M. Danišík, B.I.A. McInnes, C. Kirkland, B.J. McDonald, N.J. Evans, T. Becker. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci. Adv., 3 (2017), p. e1601121

[8]

X.D. Deng, J.W. Li, G. Wen. Dating iron skarn mineralization using hydrothermal allanite-(La) U-Th-Pb isotopes by laser ablation ICPMS. Chem. Geol., 382 (2014), pp. 95-110,

[9]

X.D. Deng, J.W. Li, G. Wen. U-Pb geochronology of hydrothermal zircons from early Cretaceous iron skarn deposits in the Handan-Xingtai district, North China Craton. Econ. Geol., 110 (2015), pp. 2159-2180,

[10]

R.A. Donelick, P.B. O’Sullivan, R.A. Ketcham. Apatite fission-track analysis. Rev. Mineral. Geochem., 58 (2005), pp. 49-94,

[11]

B. Dubé, G. Dunning, K. Lauzière. Geology of the Hope Brook Mine, Newfoundland, Canada: A preserved Late Proterozoic high-sulfidation epithermal gold deposit and its implications for exploration. Econ. Geol., 93 (1998), pp. 405-436,

[12]

S.H. Fan, T.Y. Zhang, S.E. Chen. New findings regarding the Fen-Wei Graben on the southeastern margin of the Ordos Block: Evidence from the Cenozoic sedimentary record from the borehole. Geol. J., 55 (12) (2020), pp. 7581-7593,

[13]

K.A. Farley. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105 (2000), pp. 2903-2914,

[14]

K.A. Farley. (U–Th)/He dating: techniques, calibrations, and applications. Rev. Mineral. Geochem., 47 (2002), pp. 819-844,

[15]

K.A. Farley, R.A. Wolf, L.T. Silver. The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim. Cosmochim. Acta, 60 (1996), pp. 4223-4229,

[16]

Y.L. Feng, W.M. Yuan, Y.T. Tian, X. Feng, N.N. Hao, L.T. Zhang, Y.H. Li, Q.S. Liu, X.L. Wang, Z. Shi, X.Y. Zhu, K.M. Wang, A.K. Zhang. Preservation and exhumation history of the Harizha-Halongxiuma mining area in the East Kunlun Range, northeastern Tibetan Plateau, China. Ore Geol. Rev., 90 (2017), pp. 1018-1031,

[17]

R.M. Flowers, R.A. Ketcham, D.L. Shuster, K.A. Farley. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta., 73 (2009), pp. 2347-2365,

[18]

R.M. Flowers, P.K. Zeitler, M. Danišík, P.W. Reiners, C. Gautheron, R.A. Ketcham, J.R. Metcalf, D.F. Stockli, E. Enkelmann, R.W. Brown. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting. Geol. Soc. Am. Bull., 135 (2023), pp. 104-136,

[19]

L.B. Fu, J.H. Wei, L. Bagas, F. Pirajno, X. Zhao, J.J. Chen, D.H. Zhang, Y. Chen, Y. Chen. Multistage exhumation of the Anjiayingzi gold deposit, northern North China Block: Geodynamic settings and exploration implications. Ore Geol. Rev., 116 (2020), Article 103220,

[20]

K. Gallagher, R. Brown, C. Johnson. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci., 26 (1998), pp. 519-572,

[21]

A.J. Gleadow, I.R. Duddy, P.F. Green. Confined track lengths in apatite–a diagnostic tool for thermal history analysis. Contrib. Mineral. Petrol., 4 (1986), pp. 91-100,

[22]

L. Gong, B.P. Kohn, Z.Y. Zhang, B. Xiao, L. Wu, H.Y. Chen. Exhumation and preservation of Paleozoic porphyry Cu deposits: Insights from the Yandong Deposit, southern central Asian Orogenic Belt. Econ. Geol., 116 (2021), pp. 607-628,

[23]

P.F. Green. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geol. Mag., 123 (1986), pp. 493-506,

[24]

P.F. Green, I.R. Duddy, A.J.W. Gleadow, P.T. Tingate, G.M. Laslett. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem. Geol., 59 (1986), pp. 237-253,

[25]

J.C. Grimmer, R. Jonckheere, E. Enkelmann, L. Ratschbacher, B.R. Hacker, A. Blythe, G.A. Wagner, S. Liu, S. Dong. Cretaceous-Tertiary history of the southern Tan-Lu fault zone: apatite fission track and structural constraints from the Dabie Shan. Tectonophysics, 359 (2002), pp. 225-253,

[26]

A.C. Harris, W.J. Dunlap, P.W. Reiners, C.M. Allen, D.R. Cooke, N.C. White, O.H. Campell, S.D. Golding. Multimillion year thermal history of a porphyry copper deposit: application of U-Pb, 40Ar/39Ar and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina. Miner. Deposita, 43 (2008), pp. 295-314,

[27]

T.M. Harrison, I. Duncan, I. McDougall. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochim. Cosmochim. Acta, 49 (1985), pp. 2461-2468,

[28]

Z.Y. He, B. Wang, S. Nachtergaele, S. Glorie, X.H. Ni, W.B. Su, D.X. Cai, J.S. Liu, J. De Grave. Long-term topographic evolution of the Central Tianshan (NW China) constrained by low-temperature thermochronology. Tectonophysics, 817 (2021), Article 229066,

[29]

Z.Y. He, L.L. Zhong, W.B. Su, K.H. Zhang, S. Glorie, F. Ren, X.M. Shen, S.D. Song, J. Dou, Q. Qin, J. De Grave. Low-temperature thermochronology of the Longmala-Mengya’a Pb-Zn deposits (southern Tibet): Implications for ore exhumation and preservation. Ore Geol. Rev., 160 (2023), Article 105611,

[30]

F. Herman, D. Seward, P.G. Valla, A. Carter, B. Kohn, S.D. Willett, T.A. Ehlers. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504 (2013), pp. 423-426,

[31]

J.R. Holliday, A.J. Wilson, P.L. Blevin, I.J. Tedder, P.D. Dunham, M. Pfitzner. Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan fold belt, New South Wales, and its relationship to shoshonitic magmatism. Miner. Deposita., 37 (2002), pp. 100-116,

[32]

X.Y. Hou, S.G. Su, Y.Y. Yang. Magnetite characteristics of the Yushiwa iron deposit in Wu’an, Hebei Province and its indication significance to the genesis of iron deposit. Front. Earth Sci., 26 (2019), pp. 244-256

[33]

X. Huang, Y.N. Wang, J. Zhang, F.Z. Wu, Y.L. Yang. Low-temperature thermochronological insight into the Mesozoic-Cenozoic exhumation history of the Taihang-Lvliangshan region: A review. Geol. J., 57 (2022), pp. 1511-1529,

[34]

A.J. Hurford. Standardization of fission-track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S subcommission on geochronology. Chem. Geol., 80 (2) (1990), pp. 171-178,

[35]

IGSNC, HGI (Institute of Geological Sciences of North China and Hebei Geological Institute), 1976. Exploration report on the Handan-Xingtai type iron ore deposits in the Taihang Mountain areas, People’s Republic of China: Hubei Province, 154. (in Chinese).

[36]

M. Jolivet, M. Brunel, D. Seward, Z. Xu, J. Yang, F. Roger, P. Tapponnier, J. Malavieille, N. Arnaud, C. Wu. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateasu: fission-track constraints. Tectonophysics, 343 (2001), pp. 111-134,

[37]

S.E. Kesler, B.H. Wilkinson. The role of exhumation in the temporal distribution of ore deposits. Econ. Geol., 101 (2006), pp. 919-922,

[38]

R.A. Ketcham. Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem., 58 (2005), pp. 275-314,

[39]

R.A. Ketcham, A. Carter, R.A. Donlick, J. Barbarand, A.J. Hurford. Improved modeling of fission-track annealing in apatite. Am. Mineral., 92 (2007), pp. 799-810,

[40]

C.B. Leng, D.R. Cooke, Z.Q. Hou, N.J. Evans, X.C. Zhang, W.T. Chen, M. Danisik, B.I.A. McInnes, J.H. Yang. Quantifying exhumation at the Giant Pulang Porphyry Cu-Au deposit using U-Pb-He dating. Econ. Geol., 113 (2018), pp. 1077-1092,

[41]

S.R. Li, M. Santosh, H.F. Zhang, J.F. Shen, G.C. Dong, J.Z. Wang, J.Q. Zhang. Inhomogeneous lithospheric thinning in the central North China craton: Zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res., 23 (2013), pp. 141-160,

[42]

Y. Li, J. Yang, Z. Xia, D. Mo. Tectonic geomorphology in the Shanxi graben system, northern China. Geomorphology, 23 (1998), pp. 77-89,

[43]

T. Li, M. Zhai, P. Peng, L. Chen, J. Guo. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in Eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Res., 180 (2010), pp. 143-155,

[44]

X. Liu, H.R. Fan, N.J. Evans, G.E. Batt, B.I.A. McInnes, K.F. Yang, K.Z. Qin. Cooling and exhumation of the mid-Jurassic porphyry copper systems in Dexing City, SE China: insights from geo- and thermochronology. Miner. Deposita, 49 (2014), pp. 809-819,

[45]

X. Liu, H.R. Fan, N.J. Evans, K.F. Yang, M. Danisik, G.E. Batt, B.I.A. McInnes, K.Z. Qin, X.F. Yu. Exhumation history of the Sanshandao Au deposit, Jiaodong: constraints from structural analysis and (U-Th)/He thermochronology. Sci. Rep., 7 (2017), p. 7787,

[46]

J.H. Liu, P.Z. Zhang, R.O. Lease, D.W. Zheng, J.L. Wan, W.T. Wang, H.P. Zhang. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range–Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584 (2013), pp. 281-296,

[47]

A.C. Lossada, L. Giambiagi, G.D. Hoke, P.G. Fitzgerald, C. Creixell, I. Murillo, D. Mardonez, R. Velásquez, J. Suriano. Thermo-chronologic evidence for late Eocene Andean mountain building at 30°S. Tectonics, 36 (2017), pp. 2693-2713,

[48]

I. Márton, R. Moritz, R. Spikings. Application of low-temperature thermochrology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold system from the Eastern Rhodopes, Bulgaria. Tectonophysics, 483 (2010), pp. 240-254,

[49]

I. McDougall, T.M. Harrison. Geochronology and thermochronology by the 40Ar/39Ar method. (2nd Ed.), Oxford University Press, New York (1999), p. 269

[50]

B.I.A. McInnes, N.J. Evans, F.Q. Fu, S. Garwin. Application of thermochronology to hydrothermal ore deposits. Rev. Mineral. Geochem., 58 (2005), pp. 467-498,

[51]

R.D. Müller, M. Seton, S. Zahirovic, S.E. Williams, K.J. Matthews, N.M. Wright, G.E. Shephard, K.T. Maloney, N. Barnett-Moore, M. Hosseinpour, D.J. Bower, J. Cannon. Ocean basin evolution and global-scale plate reorganization events since Pangea Breakup. Annu. Rev. Earth Planet. Sci., 44 (2016), pp. 107-138,

[52]

C.J. Northrup, L.H. Royden, B.C. Burchfiel. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23 (1995), pp. 719-722,

[53]

T.P. Peng, Y.J. Wang, W.M. Fan, F. Guo, B.X. Peng. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis. Acta Petrol. Sin., 20 (2004), pp. 1253-1262,

[54]

H.N. Pollack, S.J. Hurter, J.R. Johnson. Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophy., 31 (1993), pp. 267-280,

[55]

P.W. Reiners, K.A. Farley. Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet. Sci. Lett., 188 (2001), pp. 413-420,

[56]

K. Rossel, G. Aguilar, E. Salazar, J. Martinod, S. Carretier, L. Pinto, A. Cabré. Chronology of Chilean Frontal Cordillera building from geochronological, stratigraphic and geomorphological data insights from Miocene intramontane-basin deposits. Basin Res., 30 (2018), pp. 289-310,

[57]

W.D. Sharp, D.A. Clague. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate Motion. Science, 313 (2006), pp. 1281-1284,

[58]

J.F. Shen, M. Santosh, S.R. Li, H.F. Zhang, N. Yin, G.C. Dong, Y.J. Wang, G.G. Ma, H.J. Yu. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China craton. Lithos, 156–159 (2013), pp. 218-229,

[59]

D.L. Shuster, R.M. Flowers, K.A. Farley. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett., 249 (2006), pp. 148-161,

[60]

R.H. Sillitoe, F.A.M. Devine, M.I. Sanguinetti, R.M. Friedman. Geology of the Josemaría porphyry copper-gold deposit, Argentina: Formation, exhumation, and burial in two million years. Econ. Geol., 114 (2019), pp. 407-425,

[61]

G. Simon, S.E. Kesler, N. Russell, C.M. Hall, D. Bell, E. Piñero. Epithermal gold mineralization in an old volcanic arc: The Jacinto deposit, Camagüey district, Cuba. Econ. Geol., 94 (1999), pp. 487-506,

[62]

C.J. Soares, S. Guedes, J.C. Hadler. Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys. Chem. Minerals, 41 (2014), pp. 65-73,

[63]

C. Spiegel, B. Kohn, D. Belton, Z. Berner, A. Gleadow. Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth Planet. Sci. Lett., 285 (2009), pp. 105-114,

[64]

State Seismological Bureau (SSB). Active fault system around Ordos Block. Seismological Press, Beijing, China (in Chinese) (1988)

[65]

D.F. Stockli, K.A. Farley, T.A. Dumitru. Calibration of the apatite (U–Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology, 28 (2000), pp. 983-986,

[66]

W.D. Sun, X. Ding, Y.H. Hu, X.H. Li. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet. Sci. Lett., 262 (2007), pp. 533-542,

[67]

J.B. Sun, K.Z. Qin, W. Chen, Y.H. Liu, Z. Shen, B. Zhang, Z.Y. Zhang, L. Xing, S.F. Zhao, W. Zhang, J.Y. Yin. Exhumation history of the Katebasu gold–copper deposit, Western Tianshan, NW China: Constraints from (U–Th)/He and fission-track thermochronology. Ore Geol. Rev., 152 (2023), Article 105220,

[68]

Y. Sun, L. Xiao, D. Zhu, T. Wu, X. Deng, M. Bai, G. Wen. Geochemical, geochronological, and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Qicun intrusive complex from the Handan-Xingtai district: Implications for the mechanism of lithospheric thinning of the North China craton. Ore Geol. Rev., 57 (2014), pp. 363-374,

[69]

J. Tarduno, H.P. Bunge, N. Sleep, U. Hansen. The Bent Hawaiian-Emperor hotspot track: inheriting the mantle wind. Science, 324 (2009), pp. 50-53

[70]

S.N. Thomson, G.E. Gehrels, J. Ruiz. Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochem. Geophy. Geosy., 13 (1) (2012), pp. 1-23,

[71]

P. Trap, M. Faure, W. Lin, P. Monié, S. Meffre, J. Melleton. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China orogeny. Precambrian Res., 172 (2009), pp. 80-98,

[72]

P. Vermeesch. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat. Meas., 44 (2009), pp. 409-410,

[73]

P. Vermeesch. Statistics for LA-ICP-MS based fission track dating. Chem. Geol., 456 (2017), pp. 19-27,

[74]

P. Vermeesch, Y.T. Tian. Thermal history modelling: HeFTy vs. Qtqt. Earth-Sci Rev., 139 (2014), pp. 279-290,

[75]

A.J. Wainwright, R.M. Tosdal, P.D. Lewis, R.M. Friedman. Exhumation and preservation of porphyry Cu-Au deposits at Oyu Tolgoi, South Gobi region, Mongolia. Econ. Geol., 112 (2017), pp. 591-601,

[76]

Y.N. Wang, K.D. Cai, M. Sun, W.J. Xiao, J. De Grave, B. Wan, Z.H. Bao. Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating: Implications for the preservation of epithermal deposits in the ancient orogenic belt. Ore Geol. Rev., 100 (2018), pp. 111-132,

[77]

Y. Wang, W. Fan, H. Zhang, T. Peng. Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos, 86 (2006), pp. 281-302,

[78]

L. Wang, K.Z. Qin, M.J. Cao, M. Danišík, N.J. Evans, G.M. Li, G.X. Song, X.Y. Pang. Thermal history of an Early Paleozoic epithermal deposit: Constraints from 40Ar/39Ar and (U–Th)/He thermochronology at Zhengguang, eastern Central Asian Orogenic Belt. Ore Geol. Rev., 126 (2020), Article 103791,

[79]

G. Wen. The mechanisms and key factors in forming high-grade iron skarn deposits in Handan-Xingtai district, North China Craton. M.Sc. thesis, China University of Geosciences (2017), p. 210

[80]

G. Wen, S.J. Bi, J.W. Li. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton. Miner. Deposita, 52 (2017), pp. 495-514,

[81]

B.H. Wilkinson, S. Kesler. Tectonic-diffusion estimate of orogenic gold resources. Econ. Geol., 105 (2010), pp. 1321-1334,

[82]

F.Y. Wu, J.Q. Lin, S.A. Wilde, X.O. Zhang, J.H. Yang. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett., 233 (2005), pp. 103-119,

[83]

L. Wu, P. Monie, F. Wang, W. Lin, W.B. Ji, M. Bonno, P. Munch, Q.C. Wang. Cenozoic exhumation history of Sulu terrane: implications from (U-Th)/He thermochrology. Tectonophysics, 672–673 (2016), pp. 1-15,

[84]

J. Xu, Z.W. Gao, C.Q. Song, J.B. Sun. The structural characters of the piedmont fault zone of Taihang Mountain. Seismol. Geol., 22 (2000), pp. 111-122,

[85]

J. Xu, Z.W. Gao, J.B. Sun, C.Q. Song. A preliminary study of the coupling relationship between basin and mountain in extensional environments: A case study of the Bohai bay basin and Taihang Mountain. Acta Geol. Sin., 75 (2001), pp. 165-174,

[86]

X. Xu, X. Ma. Geodynamics of the Shanxi Rift System, China. Tectonophysics, 208 (1992), pp. 325-340,

[87]

X. Xu, X. Ma, Q. Deng. Neotectonic activity along the Shanxi Rift System, China. Tectonophysics, 219 (1993), pp. 305-325,

[88]

C. Yang, L. Du, L. Ren, H. Song, Y. Wan, H. Xie, Y. Geng. Delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang complex, North China Craton and its geological implications. J. Asian Earth Sci., 72 (2013), pp. 178-189,

[89]

H.H. Yang, J.X. Tang, Y. Song, Q. Wang, Z.B. Liu. The preservation mechanism of the Duolong ore district in northwest Tibet: Evidence from the low temperature thermochronological study. Ore Geol. Rev., 143 (2023), Article 104766,

[90]

B.J. Yanites, S.E. Kesler. A climate signal in exhumation patterns revealed by porphyry copper deposits. Nat. Geosci., 8 (2015), pp. 462-465,

[91]

H.C. Yu, K.F. Qiu, J. Deng, R. Zhu, L. Mathieu, S.X. Sai, W.J. Sha. Exhuming and preserving epizonal orogenic Au-Sb deposits in rapidly uplifting orogenic settings. Tectonics, 41 (2022),

[92]

Q.T. Zeng, N.J. Evans, B.I.A. McInnes, G.E. Batt, C.T. McCuaig, L. Bagas, E. Tohver. Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China. Miner. Deposita, 48 (2013), pp. 397-412,

[93]

M.G. Zhai, M. Santosh. Metallogeny of the North China Craton: Link with secular changes in the evolving earth. Gondwana Res., 24 (2013), pp. 275-297,

[94]

J. Zhang, Y.N. Wang, B.H. Zhang, J.F. Qu, J.Y. Li, L. Yun, P.F. Niu, H. Zhao, J. Hui. Tectonothermal events in the central north China Craton since the Mesozoic and their tectonic implications: Constraints from low-temperature thermochronology. Tectonophysics, 804 (2021),

[95]

G.C. Zhao, M. Sun, S.A. Wilde, S.Z. Li. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res., 136 (2005), pp. 177-202,

[96]

J.M. Zheng, G.Q. Xie, J. Liu, M.H. Chen, S.M. Wang, S.F. Guo, X. Gao, G.D. Li. 40Ar-39Ar dating of phlogopite from the Xishimen skarn iron deposit in the Handan-Xingtai area, southern Hebei, and its implications. Acta Petrol. Sin., 23 (2007), pp. 2513-2518,

[97]

D.W. Zheng, P.Z. Zhang, J.L. Wan, D.Y. Yuan, C.Y. Li, G.M. Yin, G.L. Zhang, Z.C. Wang, W. Min, J. Chen. Rapid exhumation at ∼8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin. Earth Planet. Sci. Lett., 248 (2006), pp. 198-208,

[98]

A. Zhou, J.G. Dai, Y.L. Li, H.A. Li, J.X. Tang, C.S. Wang. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt: Insights from low temperature thermochronology. Ore Geol. Rev., 107 (2019), pp. 801-819,

[99]

R.X. Zhu, L. Chen, F.Y. Wu, J.L. Liu. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China-Earth Sci., 54 (2011), pp. 789-797,

PDF

478

Accesses

0

Citation

Detail

Sections
Recommended

/