Evaluation of gas content in organic-rich shale: A review of the history, current status, and future directions

Haikuan Nie, Wei Dang, Qin Zhang, Jinchuan Zhang, Pei Li, Shaohua Zhang, Jianghui Ding, Qian Chen, Yubo Feng, Xin Zhang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101921.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101921. DOI: 10.1016/j.gsf.2024.101921

Evaluation of gas content in organic-rich shale: A review of the history, current status, and future directions

Author information +
History +

Abstract

Shale gas is being hailed as the green energy of the future due to high heating value, low carbon emissions, and large reserves. Gas content of shale is a key parameter for evaluating the shale gas potential and screening for the shale gas sweet spots. Although the concept of gas content has been well defined, obtaining a reliable gas content data still remains a challenge. A significant barrier is the method for evaluating the gas content. In this paper, we provide a review of the long-established and recently developed gas content evaluation methods. In the first part of this review article, the history of gas content evaluation methods is summarized since 1910s, relied on published and unpublished literatures as well as our own experiences. Then, the fundamental contents and concepts involved in gas content evaluation are introduced to provide a clear theoretical foundation for the methods. In the third part, eleven evaluation methods, including four direct methods and seven indirect methods, are systematically reviewed. In each method, its application to evaluating the gas content is presented, the key advances are highlighted, and the advantages and limitations are discussed. Finally, future directions are discussed to promote creative thinking across disciplines to develop new methods or improve current methods for evaluating the gas content more accurately and efficiently.

Keywords

Shale gas / Lost gas / Adsorbed gas / Gas content / Evaluation methods

Cite this article

Download citation ▾
Haikuan Nie, Wei Dang, Qin Zhang, Jinchuan Zhang, Pei Li, Shaohua Zhang, Jianghui Ding, Qian Chen, Yubo Feng, Xin Zhang. Evaluation of gas content in organic-rich shale: A review of the history, current status, and future directions. Geoscience Frontiers, 2024, 15(6): 101921 https://doi.org/10.1016/j.gsf.2024.101921

CRediT authorship contribution statement

Haikuan Nie: Investigation, Methodology, Writing – original draft, Writing – review & editing. Wei Dang: Conceptualization, Funding acquisition, Investigation, Methodology, Writing – original draft, Writing – review & editing. Qin Zhang: Investigation, Methodology, Writing – review & editing. Jinchuan Zhang: Investigation, Methodology, Writing – review & editing. Pei Li: Investigation, Writing – review & editing. Shaohua Zhang: Investigation, Writing – review & editing. Jianghui Ding: Investigation, Writing – review & editing. Qian Chen: Investigation, Writing – review & editing. Yubo Feng: Software, Visualization. Xin Zhang: Investigation, Methodology, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (42202175, 41927801, and 42102128), the Open Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (33550000-22-ZC0613-0296). Sharan Dhami from the United Oil & Gas PLC was thanked for her proofreading and editing this manuscript.

References

T. Alexander, J. Baihly, C. Boyer, B. Clark, G. Waters, V. Jochen, J. Le Calvez, R. Lewis, C.K. Miller, J. Thaeler. Shale gas revolution. Oilfield Rev., 23 (2011), pp. 40-57
Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., Sondergeld, C. H., 2010. New pore-scale considerations for shale gas in place calculations, In: SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA.
R.J. Ambrose, R.C. Hartman, M. Diaz-Campos, I.Y. Akkutlu, C.H. Sondergeld. Shale gas-in-place calculations part I: new pore-scale considerations. SPE J., 17 (2012), pp. 219-229
A. Amosu, M. Imsalem, Y. Sun. Effective machine learning identification of TOC-rich zones in the Eagle Ford Shale. J Appl. Geophy., 188 (2021), Article 104311
T.I. Anderson, B. Vega, A.R. Kovscek. Multimodal imaging and machine learning to enhance microscope images of shale. Comp. Geosci., 145 (2020), Article 104593
Barredo, S., Stinco, L., 2013. A geodynamic view of oil and gas resources associated to the unconventional shale reservoirs of Argentina, In: SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA.
H. Belyadi, E. Fathi, F. Belyadi. Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis. Gulf Professional Publishing, Cambridge (2019)
C. Bertard, B. Bruyet, J. Gunther. Determination of desorbable gas concentration of coal (direct method). Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7 (1970), pp. 43-65
J. Brasili, K. Fox, D. Badamo, G. Berghe, R. Khanal, R. Singh. Molecular dynamics simulation of shale gas confined inside slit-like calcite [104] nanopore. Mol. Simul., 45 (2019), pp. 104-110
R.M. Bustin, A. Bustin, D. Ross, G. Chalmers, V. Murthy, C. Laxmi, X. Cui. Shale gas opportunities and challenges. AAPG Annual Convention, San Antonio, Texas, United States (2008), pp. 20-23
Cerri, R., Di Martino, S., Balossino, P., Gioacchini, L., Colombo, I., Spelta, E., Bartosek, M., Bjorum, M., 2015. Combined Application of Pressure Coring and Desorption Analysis for Barnett Shale Gas Evaluation, In: SPE Middle East Unconventional Resources Conference and Exhibition, Muscat, Oman.
Cervik, J., 1967. Behavior of coal-gas reservoirs, In: SPE Eastern Regional Meeting, Pittsburgh, Pennsylvania.
Chase, R., 1979. Comparison of methods used for determining the natural gas content of coalbeds from exploratory cores, United States.
Z. Chen, L. Chen, G. Wang, C. Zou, S. Jiang, Z. Si, W. Gao. Applying isotopic geochemical proxy for gas content prediction of Longmaxi shale in the Sichuan Basin. China. Mar. Pet. Geol., 116 (2020), Article 104329
Z. Chen, Y. Liao, L. Liu, L. Chen, P. Wang, Y. Zuo, Z. Ren, L. Jia, W. Dang. Implication of Alkane Carbon and Hydrogen Isotopes for Genesis and Accumulation of Over-Mature Shale Gas: A Case Study of Longmaxi Formation Shale Gas in Upper Yangtze Area. Front. Earth Sci., 10 (2022), Article 901989
Y. Chen, Z. Zhu, L. Zhang. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution, an example of the oil shale in the Upper Triassic Yanchang Formation, southeastern Ordos Basin (NW China). Mar. Pet. Geol., 102 (2019), pp. 508-520
A. Cheng, W. Huang. Selective adsorption of hydrocarbon gases on clays and organic matter. Org. Geochem., 35 (2004), pp. 413-423
C.R. Clarkson. Production data analysis of unconventional gas wells: Review of theory and best practices. Int. J. Coal Geol., 109 (2013), pp. 101-146
C. Clarkson, R. Bustin. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 2. Adsorption rate modeling. Fuel, 78 (1999), pp. 1345-1362
J.B. Curtis. Fractured shale-gas systems. AAPG Bull., 86 (2002), pp. 1921-1938
M. Daines. Apparatus for the determination of methane sorption on coal at high pressures by a weighing method. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5 (1968), pp. 317-323
W. Dang, J. Zhang, X. Tang, X. Wei, Z. Li, C. Wang, Q. Chen, C. Liu. Investigation of gas content of organic-rich shale: A case study from Lower Permian shale in southern North China Basin, central China. Geosci. Front., 9 (2018), pp. 559-575
W. Dang, J. Zhang, H. Nie, F. Wang, X. Tang, N. Wu, Q. Chen, X. Wei, R. Wang. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chem. Eng. J., 383 (2020), Article 123191
W. Dang, S. Jiang, J. Zhang, P. Li, H. Nie, Y. Liu, F. Li, J. Sun, J. Tao, X. Tang. A systematic experimental and modeling study of water adsorption/desorption behavior in organic-rich shale with different particle sizes. Chem. Eng. J., 426 (2021), Article 130596
W. Dang, H. Nie, J. Zhang, X. Tang, S. Jiang, X. Wei, Y. Liu, F. Wang, P. Li, Z. Chen. Pore-scale mechanisms and characterization of light oil storage in shale nanopores: New method and insights. Geosci. Front., 13 (2022), Article 101424
N.H. Darton. Occurrence of explosive gases in coal mines. Bureau of Mines, Washington, DC, United States (1915)
D. Devegowda, F. Perez. Chapter 12 - Application of molecular dynamics simulations for shale gas systems. R.G. Moghanloo (Ed.), Unconventional Shale Gas Development: Lessons Learned, Gulf Professional Publishing, Cambridge (2022), pp. 323-343
Diamond, W., Schatzel, S., Garcia, F., Ulery, J., 2001. The modified direct method: A solution for obtaining accurate coal desorption measurements, In: Proceedings of International Coalbed Methane Symposium, Tuscaloosa, Alabama, 331-342.
W.P. Diamond, J.R. Levine. Direct Method Determination of the Gas Content of Coal: Procedures and Results. U. S Bureau of Mines United States (1981)
W.P. Diamond, G.W. Murrie, C.M. McMulloch. Methane gas content of the Mary Lee group of coalbeds, Jefferson, Tuscaloosa, and Walker Counties, Ala, 8117. US Department of the Interior Bureau of Mines (1976)
W.P. Diamond, S.J. Schatzel. Measuring the gas content of coal: a review. Int. J. Coal Geol., 35 (1998), pp. 311-331
D. Do, H. Do. Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density. Carbon, 41 (2003), pp. 1777-1791
Z. Dong, J. Zhang, X. Tang, G. Liu, W. Dang, Y. Liu, J. Tao, Z. Su. Origin and diffusion of the over-mature transitional natural gas in multiple lithologic reservoirs: A case study of Carboniferous-Permian strata in the southeastern margin of Ordos Basin. Int. J. Coal Geol., 219 (2020), Article 103380
EIA. World shale gas resources: an initial assessment of 14 regions outside the United States. U. S Energy Information Administration, Washington, DC (2011)
J. Erzinger, T. Wiersberg, M. Zimmer. Real-time mud gas logging and sampling during drilling. Geofluids, 6 (2006), pp. 225-233
Z. Fan, Q. Zhang, X. Lu, W. Luo. Analysis on gas lost content of coal bed methane and influenced factors. Coal Sci. Tech. (2010), pp. 104-108
M.J. Fetkovich. Decline curve analysis using type curves. J. Pet. Technol., 32 (1973), pp. 1065-1077
P.K. Frolich, A. White. Adsorption of methane and hydrogen on charcoal at high pressure. Ind. Eng. Chem., 22 (1930), pp. 1058-1060
X. Fu, Y. Qin, G.G. Wang, V. Rudolph. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel, 88 (2009), pp. 2269-2277
S. Guo, B. Hou. A logging calculation method for shale adsorbed gas content and its application. J. Pet. Sci. Eng., 150 (2017), pp. 250-256
X. Guo, L. Zhou, Y. Pan, Z. Huang, X. Chen, S. Mu, C. Zhang, S. Wang. Pore structure and oil-bearing property of laminated and massive shale of Lucaogou Formation in Malang Sag, Santanghu Basin. Geol. J., 59 (2024), pp. 980-999
A. Hakami, L. Ellis, K. Al-Ramadan, S. Abdelbagi. Mud gas isotope logging application for sweet spot identification in an unconventional shale gas play: A case study from Jurassic carbonate source rocks in Jafurah Basin, Saudi Arabia. Mar. Pet. Geol., 76 (2016), pp. 133-147
F. Hao, H. Zou, Y. Lu. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull., 97 (2013), pp. 1325-1346
R.C. Hartman, R.J. Ambrose, I.Y. Akkutlu, C. Clarkson. Shale gas-in-place calculations Part II - Multi-component gas adsorption effects. North American Unconventional Gas Conference and Exhibition, The Woodlands, Texas, USA (2011)
J. Hawkins, R. Schraufnagel, A. Olszewski. Estimating coalbed gas content and sorption isotherm using well log data. SPE Annual Technical Conference and Exhibition, Washington, D.C., USA (1992)
J. He, J. Tang, J. Zhang, Y. Ling, D. Jin. Experimental determination on shale gas loss during the coring process in eastern Sichuan Basin. Front. Energy Res., 8 (2020), p. 177
S.A. Hollingsworth, R.O. Dror. Molecular dynamics simulation for all. Neuron, 99 (2018), pp. 1129-1143
S.A. Hosseini, F. Javadpour, G.E. Michael. Novel analytical core-sample analysis indicates higher gas content in shale-gas reservoirs. SPE J., 20 (2015), pp. 1-6
J.D. Hughes. A reality check on the shale revolution. Nature, 494 (2013), pp. 307-308
F. Jahn, M. Cook, M. Graham. Hydrocarbon exploration and production. Elsevier (2008)
P. Jenden, I. Kaplan, R. Poreda, H. Craig. Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta, 52 (1988), pp. 851-861
C.D. Jenkins, C.M. Boyer. Coalbed-and shale-gas reservoirs. J. Pet. Technol., 60 (2008), pp. 92-99
H. Jin, A. Schimmelmann, M. Mastalerz, J. Pope, T.A. Moore. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality. Int. J. Coal Geol., 81 (2010), pp. 64-72
G. Jing, Z. Chen, G. Hui. A novel model to determine gas content in naturally fractured shale. Fuel, 306 (2021), Article 121714
M.I. Jordan, T.M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349 (2015), pp. 255-260
Y. Ju, J. He, E. Chang, L. Zheng. Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation. Energy, 170 (2019), pp. 411-422
L. Kang, W. Guo, X. Zhang, Y. Liu, Z. Shao. Differentiation and prediction of shale gas production in horizontal wells: A case study of the Weiyuan Shale Gas Field. China. Energies, 15 (2022), p. 6161
D.I. Kerschke, H.M. Schulz. The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context. Environ. Earth Sci., 70 (2013), pp. 3817-3837
A.G. Kim. Estimating methane content of bituminous coalbeds from adsorption data. Bureau of Mines, United States (1977)
F.N. Kissell, C.M. Mcculloch, C.H. Elder, F.N. Kissell, C.M. Mcculloch, C.H. Elder. The direct method of determining methane content of coal beds for ventilation design. U.S Bureau of Mines, United States (1973)
J. Klaver, G. Desbois, J.L. Urai, R. Littke. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int. J. Coal Geol., 103 (2012), pp. 12-25
U. Kuila, M. Prasad. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect., 61 (2013), pp. 341-362
I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (1918), pp. 1361-1403
J. Lee, D.E. Lumley, U.Y. Lim. Improving TOC estimation for unconventional shale reservoirs using Shapley value regression and deep machine learning methods. AAPG Bull., 106 (2022), pp. 2297-2314
S. Li, Z. Cui, Z. Jiang, Y. Shao, W. Liao, L. Li. New method for prediction of shale gas content in continental shale formation using well logs. Appl. Geophys., 13 (2016), pp. 393-405
F. Li, W. Dang, F. Wang, H. Nie, Y. Feng, Q. Liu, J. Sun, Y. Ma. Insights into the process of gas release from organic-rich shale: release characteristics and controlling factors. Geofluids, 2023 (2023), Article 8102826
D. Li, H. Nie. A new method to calculate shale gas content based on gas reservoir characterization—A case study of Wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas. Oil Gas Geol., 40 (2019), pp. 1324-1332
P. Li, J. Zhang, R. Rezaee, W. Dang, X. Tang, H. Nie, S. Chen. Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling. Appl. Clay Sci., 201 (2021), Article 105926
Z. Liu, D. Chen, J. Zhang, X. Lv, W. Dang, Y. Liu, W. Liao, J. Li, Z. Wang, F. Wang. Combining Isotopic Geochemical Data and Logging Data to Predict the Range of the Total Gas Content in Shale: A Case Study from the Wufeng and Longmaxi Shales in the Middle Yangtze Area, South China. Energy Fuels, 33 (2019), pp. 10487-10498
Y. Liu, E.E. Stüeken, D. Wang, X. Tang, H. Nie, W. Dang, J. Zhang. A potential linkage between excess silicate-bound nitrogen and N2-rich natural gas in sedimentary reservoirs. Chem. Geol., 600 (2022), Article 120864
X. Lu, F. Li, A.T. Watson. Adsorption measurements in Devonian shales. Fuel, 74 (1995), pp. 599-603
M. Lu, Z. Pan, L.D. Connell, Y. Lu. A coupled, non-isothermal gas shale flow model: application to evaluation of gas-in-place in shale with core samples. J. Pet. Sci. Eng., 158 (2017), pp. 361-379
Y. Ma, N. Zhong, L. Yao, H. Huang, S. Larter, W. Jiao. Shale gas desorption behavior and carbon isotopic variations of gases from canister desorption of two sets of gas shales in south China. Mar. Pet. Geol., 113 (2020), Article 104127
P. Mahzari, T.M. Mitchell, A.P. Jones, D. Westacott, A. Striolo. Direct gas-in-place measurements prove much higher production potential than expected for shale formations. Sci. Rep., 11 (2021), pp. 1-10
Mares, D. R., 2013. Shale gas in Latin America: opportunities and challenges, In: Inter American Dialogue, Washington, DC.
M. Mastalerz, A. Drobniak. Coalbed methane: Reserves, production, and future outlook. T.M. Letcher (Ed.), Future Energy, Elsevier, United Kingdom (2020), pp. 97-109
M. Mavor. Barnett shale gas-in-place volume including sorbed and free gas volume. AAPG Southwest Section Meeting, Fort Worth, Texas (2003)
Mavor, M., Pratt, T., 1995. Improved methodology for determining total gas content. Volume 2. Comparative evaluation of the accuracy of gas-in-place estimates and review of lost gas models, Tesseract Corp., Park City, UT (United States), United States.
A. Mazzini, H. Svensen, H.A. Leanza, F. Corfu, S. Planke. Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquen Basin (Argentina): Implications for the Toarcian oceanic anoxic event. Earth Planet. Sci. Lett., 297 (2010), pp. 633-645
C.M. McCulloch. Measuring the methane content of bituminous coalbeds. U.S Department of the Interior, United States (1975)
J.D. Mclennan, P.S. Schafer, T.J. Pratt. A guide to determining coalbed gas content. Gas Research Institute, Chicago, Illinois (1995)
M. Mehana, E. Guiltinan, V. Vesselinov, R. Middleton, J.D. Hyman, Q. Kang, H. Viswanathan. Machine-learning predictions of the shale wells’ performance. J. Nat. Gas Sci. Eng., 88 (2021), Article 103819
Q. Meng, X. Wang, X. Wang, L. Zhang, C. Jiang, X. Li, B. Shi. Variation in the carbon isotopic composition of alkanes during shale gas desorption process and its geological significance. J. Nat. Gas Geosci., 1 (2016), pp. 139-146
M. Meng, R. Zhong, Z. Wei. Prediction of methane adsorption in shale: Classical models and machine learning based models. Fuel, 278 (2020), Article 118358
Metcalfe, R., Yee, D., Seidle, J., Puri, R., 1991. Review of research efforts in coalbed methane recovery, In: SPE Asia-Pacific Conference, Perth, Australia.
H. Nie, J. Zhang, S. Bao, R. Bian, X. Song, J. Liu. Shale gas accumulation conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and its periphery. Oil Gas Geol., 33 (2012), pp. 336-345
H. Nie, Z. Yang, W. Dang, Q. Chen, P. Li, D. Li, R. Wang. Study of shale gas release from freshly drilled core samples using a real-time canister monitoring technique: Release kinetics, influencing factors, and upscaling. Energy Fuels, 34 (2020), pp. 2916-2924
H. Nie, P. Li, W. Dang, J. Ding, C. Sun, M. Liu, J. Wang, W. Du, P. Zhang, D. Li. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China. Pet. Explor. Dev., 49 (2022), pp. 744-757
H. Nie, P. Li, Q. Chen, Z. Jin, Q. Liu, W. Dang, Q. Chen, J. Ding, C. Zhai. A world-class source rock in southern China formed during the periods from Katian to Rhuddanian: Biostratigraphic distribution, depositional model and shale gas potential. Gondwana Res., 126 (2024), pp. 267-288
Olszewski, A. J., Luffel, D. L., Hawkins, J., Zuber, M. D., Colvin, G. E., 1992. Development of formation-evaluation technology for coalbed methane. Annual technical report, December 1990-December 1991. United States.
M. Pillalamarry, S. Harpalani, S. Liu. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol., 86 (2011), pp. 342-348
H.C. Porter, F. Ovitz. Losses in the Storage of Coal. Ind. Eng. Chem., 2 (1910), pp. 77-80
H.C. Porter, F.K. Ovitz. The escape of gas from coal. Bureau of Mines, Washington, D.C., United States (1911)
C. Qin, Y. Jiang, M. Cao, J. Zhou, X. Song, S. Zuo, S. Chen, Y. Luo, S. Xiao, H. Yin. Experimental study on the methane desorption-diffusion behavior of Longmaxi shale exposure to supercritical CO2. Energy, 262 (2022), Article 125456
Z. Qiu, C. Zou, B.J. Mills, Y. Xiong, H. Tao, B. Lu, H. Liu, W. Xiao, S.W. Poulton. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Commun. Earth Environ., 3 (2022), p. 82
K.M. Rahuma, H. Mohamed, N. Hissein, S. Giuma. Prediction of reservoir performance applying decline curve analysis. Int. J. Chem. Eng. Appl., 4 (2013), p. 74
S. Rani, B.K. Prusty, S.K. Pal. Adsorption kinetics and diffusion modeling of CH4 and CO2 in Indian shales. Fuel, 216 (2018), pp. 61-70
D.C. Rapaport, D.C.R. Rapaport. The art of molecular dynamics simulation. Cambridge University Press (2004)
T.F. Rexer, M.J. Benham, A.C. Aplin, K.M. Thomas. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels, 27 (2013), pp. 3099-3109
J. Rong, Z. Zheng, X. Luo, C. Li, Y. Li, X. Wei, Q. Wei, G. Yu, L. Zhang, Y. Lei. Machine Learning Method for TOC Prediction: Taking Wufeng and Longmaxi Shales in the Sichuan Basin, Southwest China as an Example. Geofluids, 2021 (2021), pp. 1-13
D.J. Ross, R.M. Bustin. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel, 86 (2007), pp. 2696-2706
SCAL, I., 2008. Quick-Desorption™ shale evaluation/tight rock analysis sorption isotherms performed on rotary sidewall samples.
S.J. Schatzel. Methane contents of oil shale from the Piceance Basin, CO. U.S Department of the Interior, United States (1986)
C. Shan, T. Zhang, X. Liang, Z. Zhang, H. Zhu, W. Yang, K. Zhang. Influence of chemical properties on CH4 adsorption capacity of anthracite derived from southern Sichuan Basin, China. Mar. Pet. Geol., 89 (2018), pp. 387-401
C. Shan, W. Zhao, F. Wang, K. Zhang, Z. Feng, L. Guo, X. Ma, T. Liao. Nanoscale pore structure heterogeneity and its quantitative characterization in Chang7 lacustrine shale of the southeastern Ordos Basin, China. J. Pet. Sci. Eng., 187 (2020), Article 106754
C. Shan, C. Ye, Z. Zhang, C. Zou, F. He, H. Zhang, J. Mei, K. Yin, Y. Shi, B. Li. Reservoir characteristics and resource potential analysis of transitional shale gas in Southern Sichuan Basin. Front. Earth Sci., 10 (2022), Article 909469
C. Sheng, Z. Wenzhi, G. Xinmin, Z. Qingcai, Y. Qing, G. Shaohua. Predicting gas content in high-maturity marine shales using artificial intelligence based seismic multiple-attributes analysis: A case study from the lower Silurian Longmaxi Formation, Sichuan Basin, China. Mar. Pet. Geol., 101 (2019), pp. 180-194
E. Shtepani, L.A. Noll, L.W. Elrod, P.M. Jacobs. A new regression-based method for accurate measurement of coal and shale gas content. SPE Reservoir Eval. Eng., 13 (2010), pp. 359-364
Smith, D. M., Williams, F. L., 1981. New Technique for Determining the Methane Content of Coal, In: Intersociety Energy Conversion Engineering Conference, United States.
D.M. Smith, F.L. Williams. Direct method of determining the methane content of coal — a modification. Fuel, 63 (1984), pp. 425-427
J. Su, Y. Shen, J. Hao, B. Liu. Shale gas content calculation of the Triassic Yanchang Formation in the Southeastern Ordos Basin, China. Energies, 10 (2017), p. 1949
J. Sun, W. Dang, F. Wang, H. Nie, X. Wei, P. Li, S. Zhang, Y. Feng, F. Li. Prediction of TOC Content in Organic-Rich Shale Using Machine Learning Algorithms: Comparative Study of Random Forest, Support Vector Machine, and XGBoost. Energies, 16 (2023), p. 4159
C. Sun, H. Nie, W. Dang, Q. Chen, G. Zhang, W. Li, Z. Lu. Shale gas exploration and development in China: Current status, geological challenges, and future directions. Energy Fuels, 35 (2021), pp. 6359-6379
X. Tang. Surface thermodynamics of hydrocarbon vapors and carbon dioxide adsorption on shales. Fuel, 238 (2019), pp. 402-411
J. Tang, B. Fan, L. Xiao, S. Tian, F. Zhang, L. Zhang, D. Weitz. A new ensemble machine-learning framework for searching sweet spots in shale reservoirs. SPE J., 26 (2021), pp. 482-497
X. Tang, N. Ripepi, K. Luxbacher, E. Pitcher. Adsorption models for methane in shales: Review, comparison, and application. Energy Fuels, 31 (2017), pp. 10787-10801
J. Tao, J. Zhang, J. Liu, Y. Liu, W. Dang, H. Yu, Z. Cao, S. Wang, Z. Dong. Molecular and Carbon Isotopic Variation during Canister Degassing of Terrestrial Shale: A Case Study from Xiahuayuan Formation in the Xuanhua Basin, North China. Minerals, 11 (2021), p. 843
H. Tian, G.-J. Guo, M. Geng, Z. Zhang, M. Zhang, K. Gao. Effects of gas reservoir configuration and pore radius on shale gas nanoflow: A molecular dynamics study. J. Chem. Phys., 148 (2018), Article 204703
J.P. Ulery, D.M. Hyman. The modified direct method of gas content determination; applications and results. The 1991 Coalbed Methane Symposium, Tuscaloosa, Alabama (1991), pp. 489-500
N.B. Waechter, G.L. Hampton III, J.C. Shipps. Overview of coal and shale gas measurement: field and laboratory procedures. In: 2004 International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, Tuscaloosa, Alabama (2004)
H. Wang, Z. He, Y. Zhang, K. Su, R. Wang. Quantitative identification of microfractures in the marine shale reservoir of the Wufeng-Longmaxi Formation using water immersion tests and image characterization. Interpretation, 6 (2018)
X. Wang, X. Li, X. Wang, B. Shi, X. Luo, L. Zhang, Y. Lei, C. Jiang, Q. Meng. Carbon isotopic fractionation by desorption of shale gases. Mar. Pet. Geol., 60 (2015), pp. 79-86
R. Weijermars. Economic appraisal of shale gas plays in Continental Europe. Appl. Energy, 106 (2013), pp. 100-115
L. Wenbiao, L. Shuangfang, L. Junqian, W. Yongbo, Z. Shengxian, P. Zhang, W. Ziyi, L. Xiao, W. Jun. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration. Pet. Explor. Dev., 49 (2022), pp. 1069-1084
P. Weniger, W. Kalkreuth, A. Busch, B.M. Krooss. High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin. Brazil. Int. J. Coal Geol., 84 (2010), pp. 190-205
Wilson, K., Padmakar, A., Mondegarian, F., 2013. Simulation of core lifting process for lost gas calculation in shale reservoirs, In: Proceedings of the International Symposium of the Society of Core Analysts, Napa Valley, CA, USA, 16-19.
H. Xiao, N. Xie, Y. Lu, T. Cheng, W. Dang. Experimental investigation of pore structure and its influencing factors of marine-continental transitional shales in southern Yan’an area, ordos basin, China. Front. Earth Sci., 10 (2022), Article 981037
F. Xiong, B. Hwang, Z. Jiang, D. James, H. Lu, J. Moortgat. Kinetic emission of shale gas in saline water: Insights from experimental observation of gas shale in canister desorption testing. Fuel, 300 (2021), Article 121006
H. Xu, F. Ahmad, B. Hu, G. Sun, H. Liu, H. Ding, M. Zhang, H. Fang. Methodology for lost gas determination from exploratory coal cores and comparative evaluation of the accuracy of the direct method. ACS Omega, 6 (2021), pp. 19695-19704
L. Xu, Y. Cheng, J. Zhang, W. Dang, Y. Liu, X. Tang, J. Niu, Z. Tong. Origin and isotopic fractionation of shale gas from the Shanxi Formation in the southeastern margin of Ordos Basin. J. Pet. Sci. Eng., 208 (2022), Article 109189
C. Xu, S. Zhou, S. Guo. Study on the measurement method of coalbed gas contents. J. Henan Polytech. Univ. (Nat. Sci.), 24 (2005), pp. 106-108
B. Xue, J. Zhang, C. Yang, P. Zhang, S. Pei. Theoretical chart of shale gas content. Oil Gas Geol., 36 (2015), pp. 339-346
G. Yao, W. Xiong, Y. Xu, X. Wang, W. Yi, W. Dong, H. Du, Q. Gong. A new method of pre-pressurized test on shale gas content. Acta Petrol. Sin., 38 (2017), pp. 1189-1193
Q. Yasin, G.M. Sohail, P. Khalid, S. Baklouti, Q. Du. Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan. J. Pet. Sci. Eng., 197 (2021), Article 107975
Yee, D., Seidle, J. P., Hanson, W. B., 1993. Gas sorption on coal and measurement of gas content, in: Law, B.E., Rice, D.D. (Eds), Hydrocarbons from Coal. American Association of Petroleum Geologists, Studies in Geology, Tulsa, Oklahoma 38, 203-218.
L. Yu, Y. Tan, M. Fan, E. Xu, G. Cui, Z. Pan. Estimating lost gas content for shales considering real boundary conditions during the core recovery process. ACS Omega, 7 (2022), pp. 21246-21254
W. Yuan, Z. Pan, X. Li, Y. Yang, C. Zhao, L.D. Connell, S. Li, J. He. Experimental study and modelling of methane adsorption and diffusion in shale. Fuel, 117 (2014), pp. 509-519
K. Zeng, H. Xie, P. Jiang, S. Zhou, R. Xu. A novel method for evaluating shale lost gas amount and desorption gas amount based on segmented variable boundary model. Chin. J. Theor. Appl. Mech., 53 (2021), pp. 1-11
T. Zhang, G.S. Ellis, S.C. Ruppel, K. Milliken, R. Yang. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem., 47 (2012), pp. 120-131
Zhang, J., Tang, Y., Song, Z., Zhai, D., Xue, H., 2010. Adsorbed gas content measuring instrument and experimental method. In: C.N.I.P. Administration (Editor), China.
Zhang, J., Dang, W., Chen, Q., Wei, X., 2017. Integrated whole process airtight gas content measuring instrument based on temperature pressure backtracking principle and application of integrated whole process airtight gas content measuring instrument. In: C.N.I.P. Administration (Editor), China.
J. Zhang, Z. Jin, M. Yuan. Reservoiring mechanism of shale gas and its distribution. Nat. Gas Ind., 24 (2004), pp. 15-18
J. Zhang, S. Liu, X. Wei, X. Tang, Y. Liu. Evaluation of gas content in shale. Oil Gas Geol., 42 (2021), pp. 28-40
J. Zhao, J. Li, Q. Cao, Y. Bai, W. Wu, Y. Ma. Quasi-continuous hydrocarbon accumulation: An alternative model for the formation of large tight oil and gas accumulations. J. Pet. Sci. Eng., 174 (2019), pp. 25-39
Y. Zhao, M. Luo, L. Liu, J. Wu, M. Chen, L. Zhang. Molecular dynamics simulations of shale gas transport in rough nanopores. J. Pet. Sci. Eng., 217 (2022), Article 110884
L. Zhao, X. Qin, J. Zhang, X. Liu, D.-H. Han, J. Geng, Y. Xiong. An effective reservoir parameter for seismic characterization of organic shale reservoir. Surv. Geophys., 39 (2018), pp. 509-541
Q. Zhao, H. Wang, S. Yang, H. Liu, D. Liu, L. Dong. A new method of calculating the lost gas volume during the shale core desorption test. Nat. Gas Ind., 33 (2013), pp. 30-34
S. Zhou, J. Zhang, C. Zou, C. Tian, J. Luo, Q. Zhu, P. Jiao. A new method for testing shale gas content based on pressure-holding coring technology. J. China Coal Soc., 47 (2022), pp. 1637-1646
C. Zou, D. Dong, S. Wang, J. Li, X. Li, Y. Wang, D. Li, K. Cheng. Geological characteristics and resource potential of shale gas in China. Pet. Explor. Dev., 37 (2010), pp. 641-653
J. Zou, R. Rezaee, Q. Xie, L. You. Characterization of the combined effect of high temperature and moisture on methane adsorption in shale gas reservoirs. J. Pet. Sci. Eng., 182 (2019), Article 106353

26

Accesses

1

Citations

Detail

Sections
Recommended

/