Uncertainties in landslide susceptibility prediction modeling: A review on the incompleteness of landslide inventory and its influence rules
Faming Huang, Daxiong Mao, Shui-Hua Jiang, Chuangbing Zhou, Xuanmei Fan, Ziqiang Zeng, Filippo Catani, Changshi Yu, Zhilu Chang, Jinsong Huang, Bingchen Jiang, Yijing Li
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101886.
Uncertainties in landslide susceptibility prediction modeling: A review on the incompleteness of landslide inventory and its influence rules
Landslide inventory is an indispensable output variable of landslide susceptibility prediction (LSP) modelling. However, the influence of landslide inventory incompleteness on LSP and the transfer rules of LSP resulting error in the model have not been explored. Adopting Xunwu County, China, as an example, the existing landslide inventory is first obtained and assumed to contain all landslide inventory samples under ideal conditions, after which different landslide inventory sample missing conditions are simulated by random sampling. It includes the condition that the landslide inventory samples in the whole study area are missing randomly at the proportions of 10%, 20%, 30%, 40% and 50%, as well as the condition that the landslide inventory samples in the south of Xunwu County are missing in aggregation. Then, five machine learning models, namely, Random Forest (RF), and Support Vector Machine (SVM), are used to perform LSP. Finally, the LSP results are evaluated to analyze the LSP uncertainties under various conditions. In addition, this study introduces various interpretability methods of machine learning model to explore the changes in the decision basis of the RF model under various conditions. Results show that (1) randomly missing landslide inventory samples at certain proportions (10%–50%) may affect the LSP results for local areas. (2) Aggregation of missing landslide inventory samples may cause significant biases in LSP, particularly in areas where samples are missing. (3) When 50% of landslide samples are missing (either randomly or aggregated), the changes in the decision basis of the RF model are mainly manifested in two aspects: first, the importance ranking of environmental factors slightly differs; second, in regard to LSP modelling in the same test grid unit, the weights of individual model factors may drastically vary.
LSP / Landslide susceptibility prediction / LSI / landslide susceptibility index / LR / Logistic regression / RF / Random forest / SVM / Support vector machine / BPNN / Backpropagation neural network / LSTM / Long short-term memory / LIME / Local Interpretable Model-agnostic Explainer / SHAP / SHapley Additive Explanations / PDP / Partial dependence plot / NDVI / Normalized Difference Vegetation Index / NDBI / Normalized Difference Built-up Index / TWI / Topographic Wetness Index / MNDWI / Modified Normalized Difference Water Index / ROC / Receiver operation characteristic / AUC / Area under the receiver operating characteristic curve
H.A. Al-Najjar, B. Pradhan, G. Beydoun, R. Sarkar, H.-J. Park, A. Alamri. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Res., 123 (2023), pp. 107-124
|
S. Beguería. Validation and evaluation of predictive models in hazard assessment and risk management. Nat. Hazards, 37 (2006), pp. 315-329
|
R. Bell, H. Petschko, M. Röhrs, A. Dix. Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models. Geogr. Ann. Ser. A Phys. Geogr., 94 (2012), pp. 135-156
|
T.G. Bernard, D. Lague, P. Steer. Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data. Earth Surf. Dyn., 9 (2021), pp. 1013-1044
|
G. Bologna, Y. Hayashi. Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res., 7 (2017), pp. 265-286
|
L. Breiman. Random forests. Mach. Learn., 45 (2001), pp. 5-32
|
D.T. Bui, O. Lofman, I. Revhaug, O. Dick. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards, 59 (2011), pp. 1413-1444
|
B. Campforts, C.M. Shobe, P. Steer, M. Vanmaercke, D. Lague, J. Braun. HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution. Geosci. Model Dev., 13 (2020), pp. 3863-3886
|
Carrillo, A., Cantú, L. F., and Noriega, A., 2021. Individual explanations in machine learning models: a survey for practitioners. arXiv preprint arXiv:2104.04144.
|
Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N., 2015. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1721–1730.
|
Z. Chang, Z. Du, F. Zhang, F. Huang, J. Chen, W. Li, Z. Guo. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models. Remote Sens., 12 (2020), p. 502
|
Z. Chang, F. Catani, F. Huang, G. Liu, S.R. Meena, J. Huang, C. Zhou. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng., 15 (5) (2022), pp. 1127-1143
|
Z. Chang, F. Huang, J. Huang, S.-H. Jiang, Y. Liu, S.R. Meena, F. Catani. An updating of landslide susceptibility prediction from the perspective of space and time. Geosci. Front., 14 (2023), Article 101619
|
W. Chen, X. Xie, J. Wang, B. Pradhan, H. Hong, D.T. Bui, Z. Duan, J. Ma. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151 (2017), pp. 147-160
|
W. Chen, H. Shahabi, A. Shirzadi, H. Hong, A. Akgun, Y. Tian, J. Liu, A. Zhu, S. Li. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull. Eng. Geol. Environ., 78 (2019), pp. 4397-4419
|
Z. Chen, F. Ye, W. Fu, Y. Ke, H. Hong. The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin. NW China. Nat. Hazards, 101 (2020), pp. 853-877
|
Cohen, W.W., 1995. Fast effective rule induction. In: Proc. Mach. Learn. Proc. 1995, Morgan Kaufmann, pp. 115–123.
|
C. Conoscenti, E. Rotigliano, M. Cama, N.A. Caraballo-Arias, L. Lombardo, V. Agnesi. Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology, 261 (2016), pp. 222-235
|
J. Du, T. Glade, T. Woldai, B. Chai, B. Zeng. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet. Chinese Himalayas. Eng. Geol., 270 (2020), Article 105572
|
A.M. Fanos, B. Pradhan, S. Mansor, Z.M. Yusoff, A.F. Abdullah. A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15 (2018), pp. 1833-1850
|
Fisher, A., Rudin, C., Dominici, F., 2018. Model class reliance: variable importance measures for any machine learning model class, from the “Rashomon” perspective. arXiv Preprint arXiv:1801.01489.
|
M. Fressard, Y. Thiery, O. Maquaire. Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d'Auge plateau hillslopes (Normandy, France). Nat. Hazards Earth Syst. Sci., 14 (2014), pp. 569-588
|
J. Friedman, T. Hastie, R. Tibshirani. . The Elements of Statistical Learning, vol. 1, Springer, New York, NY, USA (2001)
|
Y. Garosi, M. Sheklabadi, H.R. Pourghasemi, A.A. Besalatpour, C. Conoscenti, K. Van Oost. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330 (2018), pp. 65-78
|
J. Goetz, A. Brenning, H. Petschko, P. Leopold. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci., 81 (2015), pp. 1-11
|
A. Gordon, L. Breiman, J. Friedman, R. Olshen, C.J. Stone. Classification and regression trees. Biometrics, 40 (1984), p. 874
|
Han, S., Qubo, C., Meng, H., 2012. Parameter selection in SVM with RBF kernel function, World Autom. Congr., 2012, IEEE, pp. 1–4.
|
Hao, L., Van Westen, C., KS, S., Martha, T. R., Jaiswal, P., McAdoo, B., 2020. Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis. Earth Syst. Sci. Data Discuss. 2020, 1–32.
|
F. Huang, Z. Cao, S.-H. Jiang, C. Zhou, J. Huang, Z. Guo. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides, 17 (2020), pp. 2919-2930
|
F. Huang, L. Pan, X. Fan, S.-H. Jiang, J. Huang, C. Zhou. The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors. Bull. Eng. Geol. Environ., 81 (2022), pp. 1-19
|
Ibrahim, M., Louie, M., Modarres, C., Paisley, J., 2019. Global explanations of neural networks: Mapping the landscape of predictions. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 279-287.
|
L. Jacobs, O. Dewitte, J. Poesen, J. Maes, K. Mertens, J. Sekajugo, M. Kervyn. Landslide characteristics and spatial distribution in the Rwenzori Mountains. Uganda. J. Afr. Earth Sci., 134 (2017), pp. 917-930
|
P. Jaiswal, C.J. van Westen. Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology, 112 (2009), pp. 96-105
|
S.L. Ji, J.F. Li, T.Y. Du, B. Li. Survey on techniques, applications and security of machine learning interpretability. J. Comput. Res. Dev., 56 (2019), pp. 2071-2096
|
R. Kumar, R. Anbalagan. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region. Uttarakhand. J. Geol. Soc. India, 87 (2016), pp. 271-286
|
S. Lee, J.-H. Ryu, I.-S. Kim. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4 (2007), pp. 327-338
|
J.-H. Lee, M.I. Sameen, B. Pradhan, H.-J. Park. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. Geomorphology, 303 (2018), pp. 284-298
|
S. Liu, L. Wang, W. Zhang, W. Sun, J. Fu, T. Xiao, Z. Dai. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir Area. Geosci. Front. (2023), Article 101621
|
J.M. Lobo, A. Jiménez-Valverde, R. Real. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr., 17 (2008), pp. 145-151
|
S.M. Lundberg, S.-I. Lee. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. (2017), p. 30
|
Luo, S., Ivison, H., Han, S. C., Poon, J., 2021. Local interpretations for explainable natural language processing: a survey. arXiv preprint arXiv:2103.11072.
|
P.R. Magesh, R.D. Myloth, R.J. Tom. An explainable machine learning model for early detection of Parkinson's disease using LIME on DaTSCAN imagery. Comput. Biol. Med., 126 (2020), Article 104041
|
B.D. Malamud, D.L. Turcotte, F. Guzzetti, P. Reichenbach. Landslide inventories and their statistical properties. Earth Surf. Process. Landforms, 29 (2004), pp. 687-711
|
M. Marjanović, M. Kovačević, B. Bajat, V. Voženílek. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol., 123 (2011), pp. 225-234
|
T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267 (2019), pp. 1-38
|
Mishra, P., 2022. Model explainability and interpretability. In: Practical Explainable AI Using Python. Springer.
|
C. Molnar. Interpretable machine learning. Lulu.com. (2020)
|
E. Monsieurs, L. Jacobs, C. Michellier, J. Basimike Tchangaboba, G.B. Ganza, F. Kervyn, J.-C. Maki Mateso, T. Mugaruka Bibentyo, C. Kalikone Buzera, L. Nahimana. Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment. Landslides, 15 (2018), pp. 2195-2209
|
D. Myronidis, C. Papageorgiou, S. Theophanous. Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat. Hazards, 81 (2016), pp. 245-263
|
H.A. Nefeslioglu, E.A. Sezer, C. Gokceoglu, Z. Ayas. A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments. Comput. Geosci., 59 (2013), pp. 1-8
|
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. (2019), p. 32
|
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12 (2011), pp. 2825-2830
|
B.T. Pham, D.T. Bui, I. Prakash, M. Dholakia. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149 (2017), pp. 52-63
|
K.-K. Phoon, W. Zhang. Future of machine learning in geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards, 16 (2022), pp. 1-16
|
Z. Qin, X. Zhou, M. Li, Y. Tong, H. Luo. Landslide susceptibility mapping based on resampling method and FR-CNN: a case study of Changdu. Land, 12 (2023), p. 1213
|
P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., 180 (2018), pp. 60-91
|
D. Renza, E.A. Cárdenas, E. Martinez, S.S. Weber. CNN-based model for landslide susceptibility assessment from multispectral data. Appl. Sci., 12 (2022), p. 8483
|
B. Ripley, W. Venables, B. Ripley. Package ‘nnet’. R Package Version, 7 (3–12) (2016), p. 700
|
A. Saponaro, M. Pilz, M. Wieland, D. Bindi, B. Moldobekov, S. Parolai. Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bull. Eng. Geol. Environ., 74 (2015), pp. 1117-1136
|
E. Sevgen, S. Kocaman, H.A. Nefeslioglu, C. Gokceoglu. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest. Sensors, 19 (2019), p. 3940
|
Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
|
S. Steger, A. Brenning, R. Bell, H. Petschko, T. Glade. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology, 262 (2016), pp. 8-23
|
S. Steger, A. Brenning, R. Bell, T. Glade. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides, 14 (2017), pp. 1767-1781
|
D. Sun, Q. Gu, H. Wen, S. Shi, C. Mi, F. Zhang. A hybrid landslide warning model coupling susceptibility zoning and precipitation. Forests, 13 (2022), p. 827
|
J. Sun, G. Yuan, L. Song, H. Zhang. Unmanned aerial vehicles (UAVs) in landslide investigation and monitoring: a review. Drones, 8 (2024), p. 30
|
I. Syarif, A. Prugel-Bennett, G. Wills. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA. 14 (4) (2016), pp. 1502-1509
|
S. Tavakkoli Piralilou, H. Shahabi, B. Jarihani, O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, S.R. Meena, J. Aryal. Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sens., 11 (2019), p. 2575
|
D. Tien Bui, T.A. Tuan, H. Klempe, B. Pradhan, I. Revhaug. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13 (2016), pp. 361-378
|
Tikhonov, A.N., 1963. On the solution of incorrectly put problems and the regularisation method. Outlines Joint Sympos. Partial Differ. Equ. (Novosibirsk, 1963). pp. 261–265.
|
M. Van Den Eeckhaut, J. Hervás, C. Jaedicke, J.-P. Malet, L. Montanarella, F. Nadim. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides, 9 (2012), pp. 357-369
|
Y. Wang, L. Wang, S. Liu, P. Liu, Z. Zhu, W. Zhang. A comparative study of regional landslide susceptibility mapping with multiple machine learning models. Geol. J. (2023), pp. 1-18,
CrossRef
Google scholar
|
A. Wojtuch, R. Jankowski, S. Podlewska. How can SHAP values help to shape metabolic stability of chemical compounds?. J. Cheminform., 13 (2021), pp. 1-20
|
T. Xiao, S. Segoni, L. Chen, K. Yin, N. Casagli. A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides, 17 (2020), pp. 627-640
|
P. Xie, A. Zhou, B. Chai. The application of long short-term memory (LSTM) method on displacement prediction of multifactor-induced landslides. IEEE Access, 7 (2019), pp. 54305-54311
|
J. Yao, S. Qin, S. Qiao, W. Che, Y. Chen, G. Su, Q. Miao. Assessment of landslide susceptibility combining deep learning with semi-supervised learning in Jiaohe County, Jilin Province, China. Appl. Sci., 10 (2020), p. 5640
|
X. Yao, L. Tham, F. Dai. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology, 101 (2008), pp. 572-582
|
Y. Yi, X. Xu, G. Xu, H. Gao. Rapid mapping of slow-moving landslides using an automated SAR processing platform (HyP3) and Stacking-InSAR method. Remote Sens., 15 (2023), p. 1611
|
W. Zhang, X. Gu, L. Tang, Y. Yin, D. Liu, Y. Zhang. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res., 109 (2022), pp. 1-17
|
W. Zhang, Y. He, L. Wang, S. Liu, X. Meng. Landslide Susceptibility mapping using random forest and extreme gradient boosting: a case study of Fengjie, Chongqing. Geol. J., 58 (2023), pp. 2372-2387
|
Y. Zheng, D. Song, F. Meng, T. Liu, Y. Yang, X. Liu. Landslide hazards in alpine region: mechanics and mitigation. Front. Earth Sci., 10 (2022), Article 978930
|
S. Zhou, Z. Guo, G. Huang, K. Liu. Improving the understanding of landslide development in alpine forest regions using the InSAR technique: a case study in Xiaojin County China. Appl. Sci., 13 (2023), p. 11851
|
X. Zhou, H. Wen, Z. Li, H. Zhang, W. Zhang. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto Int. (2022), pp. 1-27
|
/
〈 |
|
〉 |