Potassium isotopes trace the formation of juvenile continental crust

Hamed Gamaleldien, Kun Wang, Tim E. Johnson, Jian-Feng Ma, Mohamed Abu Anbar, Xinmu J. Zhang, Hugo K.H. Olierook, Christopher L. Kirkland

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101882.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101882. DOI: 10.1016/j.gsf.2024.101882

Potassium isotopes trace the formation of juvenile continental crust

Author information +
History +

Abstract

Constraining the processes associated with the formation of new (juvenile) continental crust from mantle-derived (basaltic) sources is key to understanding the origin and evolution of Earth’s landmasses. Here we present high-precision measurements of stable isotopes of potassium (K) from Earth’s most voluminous plagiogranites, exposed near El-Shadli in the Eastern Desert of Egypt. These plagiogranites exhibit a wide range of δ41K values (–0.31‰ ± 0.06‰ to 0.36‰ ± 0.05‰; 2 SE, standard error) that are significantly higher (isotopically heavier) than mantle values (–0.42‰ ± 0.08‰). Isotopic (87Sr/86Sr and 143Nd/144Nd) and trace element data indicate that the large variation in δ41K was inherited from the basaltic source rocks of the El-Shadli plagiogranites, consistent with an origin through partial melting of hydrothermally-altered mid-to-lower oceanic crust. These data demonstrate that K isotopes have the potential to better constrain the source of granitoid rocks and thus the secular evolution of the continental crust.

Keywords

Potassium isotopes / Plagiogranites / Arabian–Nubian Shield / Neoproterozoic / Crustal growth

Cite this article

Download citation ▾
Hamed Gamaleldien, Kun Wang, Tim E. Johnson, Jian-Feng Ma, Mohamed Abu Anbar, Xinmu J. Zhang, Hugo K.H. Olierook, Christopher L. Kirkland. Potassium isotopes trace the formation of juvenile continental crust. Geoscience Frontiers, 2024, 15(6): 101882 https://doi.org/10.1016/j.gsf.2024.101882

CRediT authorship contribution statement

Hamed Gamaleldien: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Writing – original draft. Kun Wang: Formal analysis, Funding acquisition, Methodology, Writing – review & editing. Tim E. Johnson: Investigation, Writing – review & editing. Jian-Feng Ma: Methodology, Writing – review & editing. Mohamed Abu Anbar: Investigation, Methodology. Xinmu J. Zhang: Formal analysis. Hugo K.H. Olierook: Investigation, Writing – review & editing. Christopher L. Kirkland: Investigation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

H.G. thanks Z-X Li for assistance during fieldwork. We thank the Editorial Advisor Prof. M. Santosh, Associate Editor Dr. S. Glorie, and two anonymous reviewers for their comments. H.G. acknowledges funding from the Khalifa University start-up fund (8474000697/FSU-2024-006). K.W. acknowledges support from the McDonnell Center for the Space Sciences and NASA (Emerging Worlds Program Grant No. #80NSSC21K0379). T.E.J. acknowledges funding from the Australian Government through an Australian Research Council Discovery Project (DP200101104). This is a contribution to IGCP 648: Supercontinent Cycles and Global Geodynamics.

References

D.T. Aldiss. Plagiogranites from the ocean crust and ophiolites. Nature, 289 (1981), pp. 577-578,
CrossRef Google scholar
F.F. Basta, A.E. Maurice, B.R. Bakhit, K.A. Ali, W.I. Manton. Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa: Geochemical and Nd and Sr isotopic constraints. Journal of African Earth Sciences, 59 (2011), pp. 227-242,
CrossRef Google scholar
H. Chen, Z. Tian, B. Tuller-Ross, R.L. Korotev, K. Wang. High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight. J Anal at Spectrom, 34 (2019), pp. 160-171,
CrossRef Google scholar
H. Chen, X.M. Liu, K. Wang. Potassium isotope fractionation during chemical weathering of basalts. Earth Planet Sci Lett, 539 (2020), Article 116192,
CrossRef Google scholar
R.G. Coleman, Z.E. Peterman. Oceanic plagiogranite. J Geophys Res, 80 (1975), pp. 1099-1108,
CrossRef Google scholar
P.A. Flagler, J.G. Spray. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19 (1991), pp. 70-73,
CrossRef Google scholar
P.A. Floyd, M.K. Yaliniz, M.C. Goncuoglu. Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos, 42 (1998), pp. 225-241,
CrossRef Google scholar
L. France, J. Koepke, B. Ildefonse, S.B. Cichy, F. Deschamps. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: Experimental and natural observations. Contributions to Mineralogy and Petrology, 160 (2010), pp. 683-704,
CrossRef Google scholar
H. Gamaleldien, Z.-X. Li, Y. Kil, T. Abu-Alam. Origin of arc magmatic signature: A temperature-dependent process for trace element (re)-mobilization in subduction zones. Sci Rep, 9 (2019), p. 7098,
CrossRef Google scholar
H. Gamaleldien, L.S. Doucet, J.B. Murphy, Z.-X. Li. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Sci Rep, 10 (2020),
CrossRef Google scholar
H. Gamaleldien, Z. Li, M. Abu, J.B. Murphy, L.S. Doucet. Geochronological and isotopic constraints on Neoproterozoic crustal growth in the Egyptian Nubian Shield: Review and synthesis. Earth Sci Rev, 235 (2022), Article 104244,
CrossRef Google scholar
H. Gamaleldien, L.G. Wu, H.K.H. Olierook, C.L. Kirkland, U. Kirscher, Z.X. Li, T.E. Johnson, S. Makin, Q.L. Li, Q. Jiang, S.A. Wilde, X.H. Li. Onset of the Earth’s hydrological cycle four billion years ago or earlier. Nat Geosci, 17:6 (17) (2024), pp. 560-565,
CrossRef Google scholar
M. Hille, Y. Hu, T.Y. Huang, F.Z. Teng. Homogeneous and heavy potassium isotopic composition of global oceans. Sci Bull, 64 (2019), pp. 1740-1742,
CrossRef Google scholar
Y. Hu, F.Z. Teng, T. Plank, C. Chauvel. Potassium isotopic heterogeneity in subducting oceanic plates. Sci Adv, 6 (49) (2020), Article eabb2472,
CrossRef Google scholar
T.Y. Huang, F.Z. Teng, R.L. Rudnick, X.Y. Chen, Y. Hu, Y.S. Liu, F.Y. Wu. Heterogeneous potassium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 278 (2020), pp. 122-136,
CrossRef Google scholar
T.-Y. Huang, F.-Z. Teng, Z.-Z. Wang, Y.-S. He, Z.-C. Liu, F.-Y. Wu. Potassium isotope fractionation during granitic magmatic differentiation: Mineral-pair perspectives. Geochim Cosmochim Acta, 343 (2023), pp. 196-211,
CrossRef Google scholar
T.E. Johnson, C.L. Kirkland, Y. Lu, R.H. Smithies, M. Brown, M.I.H. Hartnady. Giant impacts and the origin and evolution of continents. Nature, 608 (2022), pp. 330-335,
CrossRef Google scholar
Kemp, A.I.S., Hawkesworth, C.J., 2014. Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals, in: Treatise on Geochemistry. Elsevier, pp. 379–421. Doi:
CrossRef Google scholar
C.L. Kirkland, T.E. Johnson, J. Gillespie, L. Martin, K. Rankenburg, J. Kaempf, C. Clark. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet Sci Lett, 625 (2024), Article 118491,
CrossRef Google scholar
J. Koepke, S.T. Feig, J. Snow, M. Freise. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, 146 (2004), pp. 414-432,
CrossRef Google scholar
W.W. Kuhnel, S.B. Jacobsen, Y. Li, Y. Ku, M.I. Petaev, S. Huang, Z. Wu, K. Wang. High-Temperature Inter-Mineral Potassium Isotope Fractionation: Implications for K-Ca-Ar Chronology. ACS Earth Space Chem, 5 (2021), pp. 2740-2754,
CrossRef Google scholar
W. Li, X.M. Liu, K. Wang, J. McManus, B.A. Haley, Y. Takahashi, M. Shakouri, Y. Hu. Potassium isotope signatures in modern marine sediments: Insights into early diagenesis. Earth Planet Sci Lett, 599 (2022), Article 117849,
CrossRef Google scholar
W. Li, L.A. Coogan, K. Wang, Y. Takahashi, M. Shakouri, Y. Hu, X.-M. Liu. Hydrothermal origin of heavy potassium isotope compositions in altered oceanic crust: Implications for tracing the elemental cycle. Earth Planet Sci Lett, 625 (2024), Article 118448,
CrossRef Google scholar
H. Liu, K. Wang, W.D. Sun, Y. Xiao, Y.Y. Xue, B. Tuller-Ross. Extremely light K in subducted low-T altered oceanic crust: Implications for K recycling in subduction zone. Geochim Cosmochim Acta, 277 (2020), pp. 206-223,
CrossRef Google scholar
J.F. Ma, X.L. Wang, A.Y. Yang, T.P. Zhao. Tracking Crystal-Melt Segregation and Accumulation in the Intermediate Magma Reservoir. Geophys Res Lett, 50 (2023), pp. e2022G-L102540,
CrossRef Google scholar
W.F. McDonough, S. Sun. The composition of the Earth. Chem Geol, 120 (1995), pp. 223-252,
CrossRef Google scholar
C.A. Parendo, S.B. Jacobsen, K. Wang. K isotopes as a tracer of seafloor hydrothermal alteration. Proc Natl Acad Sci, 114 (2017), pp. 1827-1831,
CrossRef Google scholar
C.A. Parendo, S.B. Jacobsen, J.I. Kimura, R.N. Taylor. Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet Sci Lett, 578 (2022), Article 117291,
CrossRef Google scholar
J.R. Reimink, T. Chacko, R.A. Stern, L.M. Heaman. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci, 7 (2014), pp. 529-533,
CrossRef Google scholar
Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust, in: Treatise on Geochemistry. Elsevier, pp. 1–51. Doi:
CrossRef Google scholar
D.P. Santiago Ramos, L.A. Coogan, J.G. Murphy, J.A. Higgins. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth Planet Sci Lett, 541 (2020), Article 116290,
CrossRef Google scholar
D.P. Santiago Ramos, S.G. Nielsen, L.A. Coogan, P.P. Scheuermann, W.E. Seyfried, J.A. Higgins. The effect of high-temperature alteration of oceanic crust on the potassium isotopic composition of seawater. Geochim Cosmochim Acta, 339 (2022), pp. 1-11,
CrossRef Google scholar
R.H. Smithies, Y. Lu, C.L. Kirkland, T.E. Johnson, D.R. Mole, D.C. Champion, L. Martin, H. Jeon, M.T.D. Wingate, S.P. Johnson. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature, 592 (2021), pp. 70-75,
CrossRef Google scholar
Y. Sun, F.Z. Teng, Y. Hu, X.Y. Chen, K.N. Pang. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim Acta, 278 (2020), pp. 353-360,
CrossRef Google scholar
F.Z. Teng, Y. Hu, J.L. Ma, G.J. Wei, R.L. Rudnick. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochim Cosmochim Acta, 278 (2020), pp. 261-271,
CrossRef Google scholar
K. Wang, H.G. Close, B. Tuller-Ross, H. Chen. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth Space Chem, 4 (2020), pp. 1010-1017,
CrossRef Google scholar
K. Wang, S.B. Jacobsen. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim Cosmochim Acta, 178 (2016), pp. 223-232,
CrossRef Google scholar
Z.Z. Wang, F.Z. Teng, F.Y. Wu, Z.C. Liu, X.C. Liu, S.A. Liu, T.Y. Huang. Extensive crystal fractionation of high-silica magmas revealed by K isotopes. Sci Adv, 8 (2022), p. eabo4492,
CrossRef Google scholar
M. Zimmer, A. Kröner, K.P. Jochum, T. Reischmann, W. Todt. The Gabal Gerf complex: A precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem Geol, 123 (1995), pp. 29-51,
CrossRef Google scholar

27

Accesses

0

Citations

Detail

Sections
Recommended

/