Potassium isotopes trace the formation of juvenile continental crust
Hamed Gamaleldien, Kun Wang, Tim E. Johnson, Jian-Feng Ma, Mohamed Abu Anbar, Xinmu J. Zhang, Hugo K.H. Olierook, Christopher L. Kirkland
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (6) : 101882.
Potassium isotopes trace the formation of juvenile continental crust
Constraining the processes associated with the formation of new (juvenile) continental crust from mantle-derived (basaltic) sources is key to understanding the origin and evolution of Earth’s landmasses. Here we present high-precision measurements of stable isotopes of potassium (K) from Earth’s most voluminous plagiogranites, exposed near El-Shadli in the Eastern Desert of Egypt. These plagiogranites exhibit a wide range of δ41K values (–0.31‰ ± 0.06‰ to 0.36‰ ± 0.05‰; 2 SE, standard error) that are significantly higher (isotopically heavier) than mantle values (–0.42‰ ± 0.08‰). Isotopic (87Sr/86Sr and 143Nd/144Nd) and trace element data indicate that the large variation in δ41K was inherited from the basaltic source rocks of the El-Shadli plagiogranites, consistent with an origin through partial melting of hydrothermally-altered mid-to-lower oceanic crust. These data demonstrate that K isotopes have the potential to better constrain the source of granitoid rocks and thus the secular evolution of the continental crust.
Potassium isotopes / Plagiogranites / Arabian–Nubian Shield / Neoproterozoic / Crustal growth
D.T. Aldiss. Plagiogranites from the ocean crust and ophiolites. Nature, 289 (1981), pp. 577-578,
CrossRef
Google scholar
|
F.F. Basta, A.E. Maurice, B.R. Bakhit, K.A. Ali, W.I. Manton. Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa: Geochemical and Nd and Sr isotopic constraints. Journal of African Earth Sciences, 59 (2011), pp. 227-242,
CrossRef
Google scholar
|
H. Chen, Z. Tian, B. Tuller-Ross, R.L. Korotev, K. Wang. High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight. J Anal at Spectrom, 34 (2019), pp. 160-171,
CrossRef
Google scholar
|
H. Chen, X.M. Liu, K. Wang. Potassium isotope fractionation during chemical weathering of basalts. Earth Planet Sci Lett, 539 (2020), Article 116192,
CrossRef
Google scholar
|
R.G. Coleman, Z.E. Peterman. Oceanic plagiogranite. J Geophys Res, 80 (1975), pp. 1099-1108,
CrossRef
Google scholar
|
P.A. Flagler, J.G. Spray. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19 (1991), pp. 70-73,
CrossRef
Google scholar
|
P.A. Floyd, M.K. Yaliniz, M.C. Goncuoglu. Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos, 42 (1998), pp. 225-241,
CrossRef
Google scholar
|
L. France, J. Koepke, B. Ildefonse, S.B. Cichy, F. Deschamps. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: Experimental and natural observations. Contributions to Mineralogy and Petrology, 160 (2010), pp. 683-704,
CrossRef
Google scholar
|
H. Gamaleldien, Z.-X. Li, Y. Kil, T. Abu-Alam. Origin of arc magmatic signature: A temperature-dependent process for trace element (re)-mobilization in subduction zones. Sci Rep, 9 (2019), p. 7098,
CrossRef
Google scholar
|
H. Gamaleldien, L.S. Doucet, J.B. Murphy, Z.-X. Li. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Sci Rep, 10 (2020),
CrossRef
Google scholar
|
H. Gamaleldien, Z. Li, M. Abu, J.B. Murphy, L.S. Doucet. Geochronological and isotopic constraints on Neoproterozoic crustal growth in the Egyptian Nubian Shield: Review and synthesis. Earth Sci Rev, 235 (2022), Article 104244,
CrossRef
Google scholar
|
H. Gamaleldien, L.G. Wu, H.K.H. Olierook, C.L. Kirkland, U. Kirscher, Z.X. Li, T.E. Johnson, S. Makin, Q.L. Li, Q. Jiang, S.A. Wilde, X.H. Li. Onset of the Earth’s hydrological cycle four billion years ago or earlier. Nat Geosci, 17:6 (17) (2024), pp. 560-565,
CrossRef
Google scholar
|
M. Hille, Y. Hu, T.Y. Huang, F.Z. Teng. Homogeneous and heavy potassium isotopic composition of global oceans. Sci Bull, 64 (2019), pp. 1740-1742,
CrossRef
Google scholar
|
Y. Hu, F.Z. Teng, T. Plank, C. Chauvel. Potassium isotopic heterogeneity in subducting oceanic plates. Sci Adv, 6 (49) (2020), Article eabb2472,
CrossRef
Google scholar
|
T.Y. Huang, F.Z. Teng, R.L. Rudnick, X.Y. Chen, Y. Hu, Y.S. Liu, F.Y. Wu. Heterogeneous potassium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 278 (2020), pp. 122-136,
CrossRef
Google scholar
|
T.-Y. Huang, F.-Z. Teng, Z.-Z. Wang, Y.-S. He, Z.-C. Liu, F.-Y. Wu. Potassium isotope fractionation during granitic magmatic differentiation: Mineral-pair perspectives. Geochim Cosmochim Acta, 343 (2023), pp. 196-211,
CrossRef
Google scholar
|
T.E. Johnson, C.L. Kirkland, Y. Lu, R.H. Smithies, M. Brown, M.I.H. Hartnady. Giant impacts and the origin and evolution of continents. Nature, 608 (2022), pp. 330-335,
CrossRef
Google scholar
|
Kemp, A.I.S., Hawkesworth, C.J., 2014. Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals, in: Treatise on Geochemistry. Elsevier, pp. 379–421. Doi:
CrossRef
Google scholar
|
C.L. Kirkland, T.E. Johnson, J. Gillespie, L. Martin, K. Rankenburg, J. Kaempf, C. Clark. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet Sci Lett, 625 (2024), Article 118491,
CrossRef
Google scholar
|
J. Koepke, S.T. Feig, J. Snow, M. Freise. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, 146 (2004), pp. 414-432,
CrossRef
Google scholar
|
W.W. Kuhnel, S.B. Jacobsen, Y. Li, Y. Ku, M.I. Petaev, S. Huang, Z. Wu, K. Wang. High-Temperature Inter-Mineral Potassium Isotope Fractionation: Implications for K-Ca-Ar Chronology. ACS Earth Space Chem, 5 (2021), pp. 2740-2754,
CrossRef
Google scholar
|
W. Li, X.M. Liu, K. Wang, J. McManus, B.A. Haley, Y. Takahashi, M. Shakouri, Y. Hu. Potassium isotope signatures in modern marine sediments: Insights into early diagenesis. Earth Planet Sci Lett, 599 (2022), Article 117849,
CrossRef
Google scholar
|
W. Li, L.A. Coogan, K. Wang, Y. Takahashi, M. Shakouri, Y. Hu, X.-M. Liu. Hydrothermal origin of heavy potassium isotope compositions in altered oceanic crust: Implications for tracing the elemental cycle. Earth Planet Sci Lett, 625 (2024), Article 118448,
CrossRef
Google scholar
|
H. Liu, K. Wang, W.D. Sun, Y. Xiao, Y.Y. Xue, B. Tuller-Ross. Extremely light K in subducted low-T altered oceanic crust: Implications for K recycling in subduction zone. Geochim Cosmochim Acta, 277 (2020), pp. 206-223,
CrossRef
Google scholar
|
J.F. Ma, X.L. Wang, A.Y. Yang, T.P. Zhao. Tracking Crystal-Melt Segregation and Accumulation in the Intermediate Magma Reservoir. Geophys Res Lett, 50 (2023), pp. e2022G-L102540,
CrossRef
Google scholar
|
W.F. McDonough, S. Sun. The composition of the Earth. Chem Geol, 120 (1995), pp. 223-252,
CrossRef
Google scholar
|
C.A. Parendo, S.B. Jacobsen, K. Wang. K isotopes as a tracer of seafloor hydrothermal alteration. Proc Natl Acad Sci, 114 (2017), pp. 1827-1831,
CrossRef
Google scholar
|
C.A. Parendo, S.B. Jacobsen, J.I. Kimura, R.N. Taylor. Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet Sci Lett, 578 (2022), Article 117291,
CrossRef
Google scholar
|
J.R. Reimink, T. Chacko, R.A. Stern, L.M. Heaman. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci, 7 (2014), pp. 529-533,
CrossRef
Google scholar
|
Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust, in: Treatise on Geochemistry. Elsevier, pp. 1–51. Doi:
CrossRef
Google scholar
|
D.P. Santiago Ramos, L.A. Coogan, J.G. Murphy, J.A. Higgins. Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater. Earth Planet Sci Lett, 541 (2020), Article 116290,
CrossRef
Google scholar
|
D.P. Santiago Ramos, S.G. Nielsen, L.A. Coogan, P.P. Scheuermann, W.E. Seyfried, J.A. Higgins. The effect of high-temperature alteration of oceanic crust on the potassium isotopic composition of seawater. Geochim Cosmochim Acta, 339 (2022), pp. 1-11,
CrossRef
Google scholar
|
R.H. Smithies, Y. Lu, C.L. Kirkland, T.E. Johnson, D.R. Mole, D.C. Champion, L. Martin, H. Jeon, M.T.D. Wingate, S.P. Johnson. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature, 592 (2021), pp. 70-75,
CrossRef
Google scholar
|
Y. Sun, F.Z. Teng, Y. Hu, X.Y. Chen, K.N. Pang. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim Cosmochim Acta, 278 (2020), pp. 353-360,
CrossRef
Google scholar
|
F.Z. Teng, Y. Hu, J.L. Ma, G.J. Wei, R.L. Rudnick. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochim Cosmochim Acta, 278 (2020), pp. 261-271,
CrossRef
Google scholar
|
K. Wang, H.G. Close, B. Tuller-Ross, H. Chen. Global Average Potassium Isotope Composition of Modern Seawater. ACS Earth Space Chem, 4 (2020), pp. 1010-1017,
CrossRef
Google scholar
|
K. Wang, S.B. Jacobsen. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim Cosmochim Acta, 178 (2016), pp. 223-232,
CrossRef
Google scholar
|
Z.Z. Wang, F.Z. Teng, F.Y. Wu, Z.C. Liu, X.C. Liu, S.A. Liu, T.Y. Huang. Extensive crystal fractionation of high-silica magmas revealed by K isotopes. Sci Adv, 8 (2022), p. eabo4492,
CrossRef
Google scholar
|
M. Zimmer, A. Kröner, K.P. Jochum, T. Reischmann, W. Todt. The Gabal Gerf complex: A precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem Geol, 123 (1995), pp. 29-51,
CrossRef
Google scholar
|
/
〈 |
|
〉 |