Does environmental policy stringency alter the natural resources-emissions nexus? Evidence from G-7 countries
Roni Bhowmik, Arshian Sharif, Ahsan Anwar, Qasim Raza Syed, Phan The Cong, Ngo Ngan Ha
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101874.
Does environmental policy stringency alter the natural resources-emissions nexus? Evidence from G-7 countries
Natural resource management is indispensable keeping in view their positive economic impacts as well as their detrimental environmental consequences. To achieve certain SDGs, it is inevitable to manage natural resources through effective policies that help to inhibit adverse environmental impacts. Based on this approach, the current empirical analysis aims to probe whether environmental policy stringency intensifies, meagres, and/or halts the abysmal environmental impact of natural resources in G-7 countries (United Kingdom, United States, Canada, Italy, France, Japan, and Germany) for the period from 1990 to 2020. To that end, we rely on the second-generation panel data approaches and panel quantile regression. The outcomes reveal that natural resources increase carbon dioxide emission whereas the synergy of natural resources and environmental policy stringency plunges emissions across the quantiles. These findings suggest adoption of a strict environmental policy for attaining the targets of SGD-08 (economic growth), SDG-09 (innovations), SDG-11 (sustainable cities), SDG-12 (responsible consumption of natural resources), and SDG-13 (climate action).
Environmental policy stringency / Natural resources / CO2 emissions / G-7 countries
S. Afshan, I. Ozturk, T. Yaqoob. Facilitating renewable energy transition, ecological innovations and stringent environmental policies to improve ecological sustainability: evidence from MM-QR method. Renew. Energy, 196 (2022), pp. 151-160
|
K. Ahmed. Environmental policy stringency, related technological change and emissions inventory in 20 OECD countries. J. Environ. Manage., 274 (2020), Article 111209
|
K. Ahmed, S. Ahmed. A predictive analysis of CO2 emissions, environmental policy stringency, and economic growth in China. Environ. Sci. Pollut. Res., 25 (16) (2018), pp. 16091-16100
|
Z. Ahmed, M.M. Asghar, M.N. Malik, K. Nawaz. Moving towards a sustainable environment: the dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy, 67 (2020), Article 101677
|
C.T. Albulescu, M.E. Boatca-Barabas, A. Diaconescu. The asymmetric effect of environmental policy stringency on CO2 emissions in OECD countries. Environ. Sci. Pollut. Res., 29 (18) (2022), pp. 27311-27327
|
G.R. Assamoi, S. Wang. Asymmetric effects of economic policy uncertainty and environmental policy stringency on environmental quality: evidence from China and the United States. Environ. Sci. Pollut. Res., 30 (11) (2023), pp. 29996-30016
|
A.A. Awosusi, M.N. Mata, Z. Ahmed, M.F. Coelho, M. Altuntaş, J.M. Martins, S.T. Onifade. How do renewable energy, economic growth and natural resources rent affect environmental sustainability in a globalized economy? Evidence from Colombia based on the gradual shift causality approach. Front. Energy Res., 9 (2022), Article 739721
|
A.K. Bera, A.F. Galvao Jr, G.V. Montes-Rojas, S.Y. Park. Asymmetric laplace regression: Maximum likelihood, maximum entropy and quantile regression. Journal of Econometric Methods, 5 (1) (2016), pp. 79-101
|
G. Caijuan, F. Durani, A. Hamid, Q.R. Syed, K.H. Keoy, A. Anwar. Navigating the green growth spectrum: Exploring the synergy between geopolitical risk, environmental policy stringency, and green production practices. Energy Environ. (2024), Article 0958305X241248377
|
F. Chien, K.Y. Chau, M. Sadiq. Impact of climate mitigation technology and natural resource management on climate change in China. Resour. Policy, 81 (2023), Article 103367
|
L. Dauda, X. Long, C.N. Mensah, M. Salman. The effects of economic growth and innovation on CO2 emissions in different regions. Environ. Sci. Pollut. Res., 26 (2019), pp. 15028-15038
|
E.M. De Angelis, M. Di Giacomo, D. Vannoni. Climate change and economic growth: the role of environmental policy stringency. Sustainability, 11 (8) (2019), p. 2273
|
P.N.K. De Silva, S.J.R. Simons, P. Stevens. Economic impact analysis of natural gas development and the policy implications. Energy Policy, 88 (2016), pp. 639-651
|
T. Dietz, E.A. Rosa. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev., 1 (2) (1994), pp. 277-300
|
F. Durani, R. Bhowmik, A. Sharif, A. Anwar, Q.R. Syed. Role of economic uncertainty, financial development, natural resources, technology, and renewable energy in the environmental Phillips curve framework. J. Clean. Prod., 420 (2023), Article 138334
|
C. Fischer, R.G. Newell. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag., 55 (2) (2008), pp. 142-162
|
Frankel, J.A., 2010. The Natural Resource Curse: A Survey (Vol. 15836, pp. 1-55). National Bureau of Economic Research, Cambridge, MA.
|
M. Gupta, S. Saini, M. Sahoo. Determinants of ecological footprint and PM2.5: Role of urbanization, natural resources and technological innovation. Environmental Challenges, 7 (2022), Article 100467
|
B.A. Gyamfi, S.T. Onifade, C. Nwani, F.V. Bekun. Accounting for the combined impacts of natural resources rent, income level, and energy consumption on environmental quality of G7 economies: a panel quantile regression approach. Environ. Sci. Pollut. Res., 29 (2) (2022), pp. 2806-2818
|
A. Jahanger, M. Usman, M. Murshed, H. Mahmood, D. Balsalobre-Lorente. The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations. Resour. Policy, 76 (2022), Article 102569
|
A. Jahanger, A. Awan, A. Anwar, T.S. Adebayo. Greening the Brazil, Russia, India, China and South Africa (BRICS) economies: Assessing the impact of electricity consumption, natural resources, and renewable energy on environmental footprint. Nat. Res. Forum, 47 (3) (2023), pp. 484-503,
CrossRef
Google scholar
|
S.I. Khattak, M. Ahmad, Z.U. Khan, A. Khan. Exploring the impact of innovation, renewable energy consumption, and income on CO2 emissions: new evidence from the BRICS economies. Environ. Sci. Pollut. Res., 27 (12) (2020), pp. 13866-13881
|
R. Koenker. Quantile regression for longitudinal data. J. Multivar. Anal., 91 (1) (2004), pp. 74-89
|
R. Koenker, G. Bassett Jr. Regression quantiles. Econometrica, 46 (1978), pp. 33-50
|
T. Kruse, A. Dechezleprêtre, R. Saffar, L. Robert. . Measuring environmental policy stringency in OECD countries: An update of the OECD composite EPS indicator. OECD Economics Department Working Papers, No. 1703, OECD Publishing, Paris, https://doi.org/10.1787/90ab82e8-en (2022)
|
T. Lancaster. The incidental parameter problem since 1948. Journal of Econometrics, 95 (2) (2000), pp. 391-413
|
C.J. Li, A. Razzaq, M. Irfan, A. Luqman. Green innovation, environmental governance and green investment in China: Exploring the intrinsic mechanisms under the framework of COP26. Technol. Forecast. Soc. Chang., 194 (2023), Article 122708
|
S. Liu, F. Durani, Q.R. Syed, M. Haseeb, J. Shamim, Z. Li. Exploring the dynamic relationship between energy efficiency, trade, economic growth, and CO2 emissions: Evidence from novel fourier ARDL approach. Front. Environ. Sci., 10 (2022), Article 945091
|
OECD, 2023. Organisation for Economic Co-operation and Development (OECD) Database. https://stats.oecd.org/ (accessed 2nd Jan, 2023).
|
OECD, 2016. How stringent are environmental policies? http://www.oecd.org/eco/greeneco/how–stringent–are–environmental–policies.htm.
|
S.T. Onifade, B.A. Gyamfi, I. Haouas, F.V. Bekun. Re-examining the roles of economic globalization and natural resources consequences on environmental degradation in E7 economies: are human capital and urbanization essential components?. Resour. Policy, 74 (2021), Article 102435
|
Pigou, A.C., 1920. The Economics of Welfare. In: 4th edition 1938. Weidenfeld and Nicolson, London.
|
M.H. Pesaran. A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22 (2) (2007), pp. 265-312
|
M.E. Porter, C.V.D. Linde. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect., 9 (4) (1995), pp. 97-118
|
K. Raiser, H. Naims, T. Bruhn. Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Res. Soc. Sci., 27 (2017), pp. 1-8
|
J.D. Sachs, A.M. Warner. The curse of natural resources. Eur. Econ. Rev., 45 (4–6) (2001), pp. 827-838
|
E.R. Sadik-Zada, M. Ferrari. Environmental policy stringency, technical progress and pollution haven hypothesis. Sustainability, 12 (9) (2020), p. 3880
|
M. Salman, X. Long, L. Dauda, C.N. Mensah, S. Muhammad. Different impacts of export and import on carbon emissions across 7 ASEAN countries: a panel quantile regression approach. Sci. Total Environ., 686 (2019), pp. 1019-1029
|
F. Shaheen, M.S. Lodhi, J. Rosak-Szyrocka, K. Zaman, U. Awan, M. Asif, W. Ahmed, M. Siddique. Cleaner technology and natural resource management: An environmental sustainability perspective from China. Clean Technologies, 4 (3) (2022), pp. 584-606
|
B. Sherwood, L. Wang. Partially linear additive quantile regression in ultra-high dimension. Ann. Stat., 44 (1) (2016), pp. 288-317
|
K. Sohag, O. Mariev, N. Davidson. Revising environmental Kuznets curve in Russian regions: role of environmental policy stringency. Environ. Sci. Pollut. Res., 28 (38) (2021), pp. 52873-52886
|
L. Sun, X. Cao, M. Alharthi, J. Zhang, F. Taghizadeh-Hesary, M. Mohsin. Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers. J. Clean. Prod., 264 (2020), Article 121664
|
Y. Sun, A. Razzaq. Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries. Sustain. Dev., 30 (5) (2022), pp. 944-957
|
Q.R. Syed, R. Bhowmik, F.F. Adedoyin, A.A. Alola, N. Khalid. Do economic policy uncertainty and geopolitical risk surge CO2 emissions? New insights from panel quantile regression approach. Environ. Sci. Pollut. Res., 29 (19) (2022), pp. 27845-27861
|
Q.R. Syed, F. Durani, K.M. Kisswani, A.A. Alola, A. Siddiqui, A. Anwar. Testing natural resource curse hypothesis amidst geopolitical risk: Global evidence using novel Fourier augmented ARDL approach. Resour. Policy, 88 (2024), Article 104317
|
C. Taylor, S. Pollard, S. Rocks, A. Angus. Selecting policy instruments for better environmental regulation: a critique and future research agenda. Environ. Policy Gov., 22 (4) (2012), pp. 268-292
|
M. Usman, D. Balsalobre-Lorente, A. Jahanger, P. Ahmad. Are Mercosur economies going green or going away? An empirical investigation of the association between technological innovations, energy use, natural resources and GHG emissions. Gondwana Res., 113 (2023), pp. 53-70
|
R. Waheed, S. Sarwar, C. Wei. The survey of economic growth, energy consumption and carbon emission. Energy Rep., 5 (2019), pp. 1103-1115
|
W. Wang, D. Balsalobre-Lorente, A. Anwar, T.S. Adebayo, P.T. Cong, N.N. Quynh, M.Q. Nguyen. Shaping a greener future: The role of geopolitical risk, renewable energy and financial development on environmental sustainability using the LCC hypothesis. J. Environ. Manage., 357 (2024), Article 120708
|
F. Wang, T. Rani, A. Razzaq. Environmental impact of fiscal decentralization, green technology innovation and institution’s efficiency in developed countries using advance panel modelling. Energy Environ., 34 (4) (2023), pp. 1006-1030
|
Q. Wang, M. Su. The effects of urbanization and industrialization on decoupling economic growth from carbon emission–a case study of China. Sustain. Cities Soc., 51 (2019), Article 101758
|
K. Wang, M. Yan, Y. Wang, C.P. Chang. The impact of environmental policy stringency on air quality. Atmos. Environ., 231 (2020), p. 117522
|
Z. Wang, K. Yen-Ku, Z. Li, N.B. An, Z. Abdul-Samad. The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators. Renew. Energy, 188 (2022), pp. 70-80
|
L. Wei, S. Ullah. International tourism, digital infrastructure, and CO2 emissions: fresh evidence from panel quantile regression approach. Environ. Sci. Pollut. Res., 29 (24) (2022), pp. 36273-36280
|
J. Westerlund. Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69 (6) (2007), pp. 709-748
|
Y. Wolde-Rufael, E. Mulat-Weldemeskel. Do environmental taxes and environmental stringency policies reduce CO2 emissions? Evidence from 7 emerging economies. Environ. Sci. Pollut. Res., 28 (2021), pp. 22392-22408
|
Y. Wolde-Rufael, E.M. Weldemeskel. Environmental policy stringency, renewable energy consumption and CO2 emissions: Panel cointegration analysis for BRIICTS countries. Int. J. Green Energy, 17 (10) (2020), pp. 568-582
|
World Bank, 2023. World Development Indicators, Online Database. https://data.worldbank.org/ (accessed on 07 February 2023).
|
L. Xin, T.L. Vu, T.T.H. Phan, M. Sadiq, N.T.M. Xuyen, T.Q. Ngo. Nexus of natural resources, urbanization and economic recovery in Asia: The moderating role of innovation. Resour. Policy, 81 (2023), Article 103328
|
Q. Yirong. Does environmental policy stringency reduce CO2 emissions? Evidence from high-polluted economies. J. Clean. Prod., 341 (2022), Article 130648
|
X. Zang, T.S. Adebayo, S.D. Oladipupo, D. Kirikkaleli. Asymmetric impact of renewable energy consumption and technological innovation on environmental degradation: designing an SDG framework for developed economy. Environ. Technol., 44 (6) (2023), pp. 774-791
|
H. Zhu, L. Duan, Y. Guo, K. Yu. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: evidence from panel quantile regression. Econ. Model., 58 (2016), pp. 237-248
|
H. Zhu, H. Xia, Y. Guo, C. Peng. The heterogeneous effects of urbanization and income inequality on CO2 emissions in BRICS economies: evidence from panel quantile regression. Environ. Sci. Pollut. Res., 25 (2018), pp. 17176-17193
|
/
〈 |
|
〉 |