Large dinosaur egg accumulations and their significance for understanding nesting behaviour

L. Ezquerro, R. Coimbra, B. Bauluz, C. Núñez-Lahuerta, T. Román-Berdiel, M. Moreno-Azanza

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101872.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101872. DOI: 10.1016/j.gsf.2024.101872

Large dinosaur egg accumulations and their significance for understanding nesting behaviour

Author information +
History +

Abstract

The accurate identification of dinosaur egg accumulations as nests or clutches is crucial for understanding the reproductive behaviour of these extinct species. However, existing methods often rely on the presence of complete eggs and embryo remains, and sedimentological criteria that are only applicable to well-structured sediments. In this study, we introduce an innovative approach to characterize egg accumulations in structureless sediments, where traditional nest structures may not be preserved. Our methodology employs a unique combination of sedimentological, taphonomic, geochemical, and geophysical proxies for the study of egg accumulations. We applied this approach to the egg accumulation from Paimogo (Jurassic, Portugal), traditionally interpreted as a nest. Our findings reveal that the Paimogo egg assemblage is a secondary deposit, resulting from a flooding event in a fluvial plain that dismantled several allosauroid and crocodylomorph clutches. The eggshell vapor conductance results, coupled with sedimentological evidence, suggest that allosauroid dinosaurs buried their eggs in the dry terrain of overbank areas close to a main channel during the breeding season, likely during the dry season to prevent the embryos from drowning. This research underscores the necessity of multidisciplinary approaches in interpreting egg accumulations and offers a novel methodology for studying these accumulations in structureless sediments. Our findings provide new insights into the breeding behaviour and nesting preferences of these extinct organisms, contributing to our understanding of dinosaur ecology.

Keywords

Breeding behaviour / Theropod / Taphonomy / Stable isotopes / Magnetic susceptibility / Jurassic

Cite this article

Download citation ▾
L. Ezquerro, R. Coimbra, B. Bauluz, C. Núñez-Lahuerta, T. Román-Berdiel, M. Moreno-Azanza. Large dinosaur egg accumulations and their significance for understanding nesting behaviour. Geoscience Frontiers, 2024, 15(5): 101872 https://doi.org/10.1016/j.gsf.2024.101872

CRediT authorship contribution statement

L. Ezquerro: Conceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing. R. Coimbra: Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing. B. Baulúz: Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing. C. Núñez-Lahuerta: Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing. T. Román-Berdiel: Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing. M. Moreno-Azanza: Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported the PLEC2021-008203 project and RYC2021-034473-I, funded by MCIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR”; Fundação para a Ciência e Tecnologia (FCT-MCTES) of Portugal (projects PTDC/CTA-PAL/31656/2017 and PTDC/CTA-PAL/2217/2021), and Research Unit GeoBioTec UIDB/04035/2020. Also, the work is part of the Carmen Nunez-Lahuerta is supported by FJC2020-044561-I-; MCIN, co-financed by the NextGeneration EU/PRTR.

References

[]
Allen, J.R.L., 1982. Sedimentary Structures: Their Character and Physical Basis. Elsevier, New York, Vol. I & II.
[]
T.M. Alves, R.L. Gawthorpe, D.H. Hunt, J.H. Monteiro. Jurassic tectono-sedimentary evolution of the northern Lusitanian basin (offshore Portugal). Marine Petroleum Geology, 19 (2002), pp. 727-754
[]
M.T. Antunes, P. Taquet, V. Ribeiro. Upper Jurassic dinosaur and crocodile eggs from Paimogo nesting site (Lourinha-Portugal). Memorias Da Academia De Ciencias De Lisboa, 37 (1998), pp. 83-100
[]
A. Ar, H. Rahn. Pores in avian eggshells: gas conductance, gas exchange and embryonic growth rate. Respir Physiol, 61 (1) (1985), pp. 1-20
[]
G. Basilici, E.M. Hechenleitner, L.E. Fiorelli, P.F. Bó, N.P. Mountney. Preservation of titanosaur egg clutches in Upper Cretaceous cumulative palaeosols (Los Llanos Formation, La Rioja, Argentina). Palaeogeog. Palaeoclimatol. Palaeoecol., 482 (2017), pp. 83-102
[]
P.W. Birkeland. Soils and Geomorphology. Oxford University Press, New York, USA (1999)
[]
G.J. Borradaile, B. Henry. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev., 42 (1997), pp. 49-93
[]
G. Botfalvai, Z. Csiki-Sava, D. Grigorescu, S. Vasile. Taphonomical and palaeoecological investigation of the late cretaceous (Maastrichtian) Tuştea vertebrate assemblage (Romania; Haţeg Basin) - insights into a unique dinosaur nesting locality. Palaeogeog. Palaeoclimatol. Palaeoecol., 468 (2017), pp. 228-262
[]
B. Bradák, Y. Seto, M. Chadima, J. Kovács, P. Tanos, G. Újvári, M. Hyodo. Magnetic fabric of loess and its significance in Pleistocene environment reconstructions. Earth Sci. Rev., 210 (2020), Article 103385
[]
B. Bradák-Hayashi, T. Biro, E. Horvath, T. Vegh, G. Csillag. New aspects of the interpretation of the loess magnetic fabric, Cerna Valley succession. Hungary. Quat. Res., 86 (2016), pp. 348-358
[]
M.E. Brookfield. . Principles of Stratigraphy, Blackwell Publishing Ltd (2004)
[]
E. Buffetaut, G. Grellet-Tinner, V. Suteethorn, G. Cuny, H. Tong, A. Košir, L. Cavin, S. Chitsing, P.J. Griffiths, J. Tabouelle, J. Le Loeuff. Minute theropod eggs and embryo from the Lower Cretaceous of Thailand and the dinosaur–bird transition. Naturwissenschaften, 92 (2005), pp. 477-482
[]
S.W. Buol, R.J. Southard, R.C. Graham, O.A. McDaniel. Soil Genesis and Classification. (Sixth edition), Wiley-Blackwell, Oxford (2011)
[]
K. Carpenter. Eggs, Nests, and Baby Dinosaurs: A Look at Dinosaur Reproduction. Indiana University Press, Bloomington, IN, USA (1999)
[]
Carrano, M., Mateus, O., Mitchell, J., 2013. First definitive association between embryonic allosaurus bones and Prismatoolithus eggs in the Morrison Fm. (Upper Jurassic, Wyoming, USA). Society of vertebrate paleontology, Abstracts of papers 73rd Annual meeting, 101A.
[]
J. Carvalho, L. Matias, L. Torres, G. Manupella, R. Pereira, L.M. Victor. The structural and sedimentary evolution of the Arruda and Lower Tagus sub-basins, Portugal. Marine Petroleum Geology, 22 (2005), pp. 427-453
[]
A. Catena, D. Hembree, B. Saylor, F. Anaya, D. Croft. Paleosol and ichnofossil evidence for significant Neotropical habitat variation during the late middle Miocene (Serravallian). Palaeogeog. Palaeoclimatol. Palaeoecol., 487 (2017), pp. 381-398
[]
Chadima, M., Jelinek, V., 2009. Anisoft 4.2: Anisotropy Data Browser for Windows. Agico, Inc.
[]
M. Chadima, F. Hrouda, R. Melichar. Magnetic fabric study of the SE Rhenohercynian Zone (Bohemian Massif): implications for dynamics of the Paleozoic accretionary wedge. Tectonophysics, 418 (2006), pp. 93-109
[]
M. Chadima, F. Hrouda. Cureval 8.0: Thermomagnetic Curve Browser for Windows. Agico Inc (2009)
[]
K. Cheong-Bin, A. Ihsan, G. Fereydoun, C. Ho. Stable isotopic composition of dinosaur eggshells and pedogenic carbonates in the upper cretaceous seonso formation, South Korea: Paleoenvironmental and diagenetic implications. Cretaceous Res., 30 (2009), pp. 93-99
[]
L.M. Chiappe, J.G. Schmitt, F.D. Jackson, A. Garrido, L. Dingus, G. Grellet-Tinner. Nest structure for sauropods: sedimentary criteria for recognition of dinosaur-nesting traces. PALAIOS, 19 (2004), pp. 89-95
[]
F. Cifelli, M. Mattei, M. Chadima, S. Lenser, A.M. Hirt. The magnetic fabric in “undeformed clays”: AMS and neutron texture analyses from the Rif Chain (Morocco). Tectonophysics, 466 (2009), pp. 79-88
[]
F. Cifelli, P. Ballato, H. Alimohammadian, J. Sabouri, M. Mattei. Tectonic magnetic lineation and oroclinal bending of the Alborz range: implications on the Iran-Southern Caspian geodynamics. Tectonics, 34 (2015), pp. 116-132
[]
C. Coimbra, M. Moreno-Azanza, L. Ezquerro, C. Nuñez-Lahuerta, J.M. Gasca, A. Immenhauser, O. Mateus, F. Rocha. Evaluating and comparing geochemical sampling protocols in dinosaur eggshells: refining Cretaceous ecosystem research. Cretaceous Res., 151 (2023), p. 105632
[]
I. Cojan, M. Renard, L. Emmanuel. Palaeoenvironmental reconstruction of dinosaur nesting sites based on a geochemical approach to eggshells and associated palaeosols (Maastrichtian, Provence Basin, France). Palaeogeog. Palaeoclimatol. Palaeoecol., 191 (2003), pp. 118-138
[]
J. Collinson, N. Mountney, D. Thompson. Sedimentary Structures. Terra Publishing, London (2006)
[]
P. Cunha. A sedimentologia da jazida de ovos (ninhos de dinossauros e crocodilos) de Paimogo (Kimeridgiano terminal-Titoniano basal. Unpublished report, Lourinhá - Portugal) (2001)
[]
Cunha, P.P., Mateus, O., Antunes, M.T., 2004. The sedimentology of the Paimogo dinosaur nest site (Portugal, Upper Jurassic). 23rd IAS Meet., Abstr. Book, Coimbra, 93.
[]
P.J. Currie, D.A. Eberth. Palaeontology, sedimentology and palaeoecology of the Iren Dabasu Formation (Upper Cretaceous), Inner Mongolia. People's Republic of China. Cretaceous Res., 14 (1993), pp. 127-144
[]
J.M. Daniels. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology, 56 (2003), pp. 225-242
[]
R.R. Dawson, D.J. Field, P.M. Hull, D.K. Zelenitsky, F. Therrien, H.P. Affek. Eggshell geochemistry reveals ancestral metabolic thermal regulation in Dinosauria. Sci. Adv., 6 (7) (2020), Article eaax9361,
CrossRef Google scholar
[]
D.C. Deeming. Ultrastructural and functional morphology of eggshells supports idea that dinosaur eggs were incubated buried in a substrate. Paleontology, 49 (2006), pp. 171-185
[]
D.C. Deeming, M.W.J. Ferguson. . Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press (1991), p. 462
[]
L. Domingo, F. Barroso-Barcenilla, O. Cambra-Moo. Paleoenvironmental reconstruction of the “Lo Hueco” Fossil Site (Upper Cretaceous, Cuenca, Spain): Preliminary stable isotope analyses on crocodilians and dinosaurs. PALAIOS, 28 (2013), pp. 195-202
[]
Z.-M. Dong, P.J. Currie. On the discovery of an oviraptorid skeleton on a nest of eggs at Bayan Mandahu, Inner Mongolia, People’s Republic of China. Can. J. Earth Sci., 33 (1996), pp. 631-636
[]
J. Dong, R. Gao, Y. Wang, S. Zhang, P. Yao, Z. Chi, Z. Zhao. Magnetic fabric study of Late Holocene sediments in Huangqihai Lake, Inner Mongolia and its sedimentary significance. Acta Geol. Sin., 87 (1) (2013), pp. 186-196
[]
B.B. Ellwood, J.A. Whitney. Magnetic fabric of the Elberton granite, Northeast Georgia. J. Geophys. Res., 85 (1980), pp. 1481-1486
[]
H.K. Erben, J. Hoefs, K.H. Wedepohl. Paleobiological and isotopic studies of eggshells from a declining dinosaur species. Paleobiology, 5 (1979), pp. 380-414
[]
F. Felleti, E. Dall'Olio, G. Muttoni. Determining flow directions in turbidites: an integrated sedimentological and magnetic fabric study of the Miocene Marnoso Arenacea Formation (northern Apennines, Italy). Sediment. Geol., 335 (2016), pp. 197-215
[]
A. Fernandes, O. Mateus, B. Balauz, R. Coimbra, L. Ezquerro, C. Núñez-Lahuerta, C. Suteu, M. Moreno-Azanza. The Paimogo dinosaur egg clutch revisited: using one of Portugal’s most notable fossils to exhibit the scientific method. Geoheritage, 13 (2021), p. 66
[]
C. García-Lasanta, B. Oliva-Urcia, T. Román-Berdiel, A.M. Casas, F. Pérez-Lorente. Development of magnetic fabric in sedimentary rocks: insights from early compactional structures. Geophys. J. Int., 194 (2013), pp. 182-199
[]
G. Grellet-Tinner, L. Chiappe, M. Norell, D. Bottjer. Dinosaur eggs and nesting behaviors: a paleobiological investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232 (2006), pp. 294-321
[]
G. Grellet-Tinner, L.E. Fiorelli. A new Argentinean nesting site showing neosauropod dinosaur reproduction in a Cretaceous hydrothermal environment. Nat. Commun., 1 (2010), p. 32
[]
G. Grellet-Tinner, L.E. Fiorelli, R.B. Salvador. Water vapor conductance of the lower Cretaceous dinosaurian eggs from Sanagasta, La Rioja, Argentina: paleobiological and paleoecological implications for South American faveoloolithid and megaloolithid eggs. PALAIOS, 30 (2012), pp. 207-223
[]
D. Grigorescu, G. Garcia, Z. Csiki, V. Codrea, A.V. Bojar. Uppermost Cretaceous megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings: search for explanation. Palaeogeog. Palaeoclimatol. Palaeoecol., 293 (2010), pp. 360-374
[]
E.M. Hechenleitner, L.E. Fiorelli, G. Grellet-Tinner, L. Leuzinger, G. Basilici, J.A. Taborda, S.R. de la Vega, C.A. Bustamante. A new Upper Cretaceous titanosaur nesting site from La Rioja (NW Argentina) with implications for titanosaur nesting strategies. Palaeontology, 59 (2016), pp. 1-14
[]
G. Hill. The sedimentology and lithostratigraphy of the Upper Jurassic Lourinha formation, Lusitanian Basin, Portugal. Ph.D. thesis. Open University, London (unpublished) (1988)
[]
Hogan, J.D., Varricchio, D.J., 2023. Chthonic severance: dinosaur eggs of the Mesozoic, the significance of partially buried eggs and contact incubation precursors. Phil. Trans. R. Soc. B, 37820220144.
[]
K.F. Hirsch. Upper Jurassic eggshells from western interior of North America. K. Carpenter, K. Hirsch, J.R. Horner (Eds.), Eggs and Babies, Cambridge University Press, Cambridge (1994), pp. 137-150
[]
J.R. Horner. Egg clutches and embryos of two Hadrosaurian dinosaurs. J. Vertebr. Paleontol., 19 (1999), pp. 607-611
[]
J.R. Horner. Dinosaour reproduction and parenting. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 19-45
[]
J.R. Horner, R. Makela. Nest of juveniles provides evidence of family structure among dinosaurs. Nature, 282 (1979), pp. 296-298
[]
F. Hrouda. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., 5 (1982), pp. 37-82
[]
F. Hrouda, M. Chadima. Examples of tectonic overprints of magnetic fabrics in rocks of the Bohemian Massif and Western Carpathians. Int. J. Earth Sci., 109 (2019), pp. 1-16
[]
M. Huh, D.K. Zelenitsky. Rich dinosaur nesting site from the Cretaceous of Bosung County, Chullanam-do Province, South Korea. J. Vertebr. Paleontol., 22 (2002), pp. 716-718
[]
F.D. Jackson, A. Garrido, J.G. Schmitt, L. Chiappe, L. Dingus, D. Loope. Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Nuequén Province Argentina. J. Vertebr. Paleontol., 24 (2004), pp. 913-922
[]
F.D. Jackson, D.J. Varricchio, R.A. Jackson, A. Walde, G. Bishop. Taphonomy of extant desert tortoise and loggerhead sea turtle nesting sites: implications for interpreting the fossil record. PALAIOS, 30 (2015), pp. 207-223
[]
F.D. Jackson, D.J. Varricchio. Fossil egg and eggshells from the Upper Cretaceous Hell Creek Formation. Montana. J. Vertebr. Paleontol., 36 (2016), p. e1185432
[]
V. Jelinek. Characterization of the magnetic fabric of rocks. Tectonophysics, 79 (1981), pp. 63-70
[]
S. Kim, I.G. Hwang, Y.S. Ghim, N.-H. Kim, Y.-N. Lee. Upper Cretaceous (Coniacian-Santonian) dinosaur nesting colony preserved in abandoned crevasse splay deposits Wi Island, South Korea. Palaeogeogr. Palaeoclimatol., Palaeoecol, 585 (1) (2022), Article 110728,
CrossRef Google scholar
[]
M.J. Kraus. Palaeosols in clastic sedimentary rocks: their geologic applications. Earth Sci. Rev., 47 (1999), pp. 41-70
[]
J.M. Kraus, A. Alsan. Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. J. Sediment. Petrol., 63 (1993), pp. 453-463
[]
M.J. Kraus, S.T. Hasiotis. Significance of different modes of rhizolith preservation to interpreting. Palaeoenvironmental and palaeohydrologic settings: examples from Palaeogene palaeosols, Bighorn Basin, Wyoming, U.S.A. J. Sediment. Res., 76 (2006), pp. 633-646
[]
Kullberg, J.C., 2000. Evolução tectónica mesozóica da Bacia Lusitaniana. PhD Thesis. Univ. Nova Lisboa, 361 p. https://run.unl.pt/handle/10362/1465.
[]
A.H. Laskar, D. Mohabey, S.K. Bhattacharya, M. Liang. Variable thermoregulation of Late Cretaceous dinosaurs inferred by clumped isotope analysis of fossilized eggshell carbonates. Heliyon, 6 (2020), p. e05265
[]
R.R. Leinfelder, R.C.L. Wilson. Seismic and sedimentologic features of Oxfordian-Kimmeridgian syn-rift sediments on the eastern margin of the Lusitanian Basin. Geol. Rundschau, 78 (1989), pp. 81-104
[]
X. Liang, S. Wan, D. Yang, S. Zhou, S. Wu. Dinosaur eggs and dinosaur egg-bearing deposits (Upper Cretaceous) of Henan Province, China: Occurrences, palaeoenvironments, taphonomy and preservation. Prog. Nat. Sci., 19 (2009), pp. 1587-1601
[]
S. Lucas, L. Tanner. Late Pennsylvanian calcareous paleosols from central New Mexico: implications for paleoclimate. New Mex. Geol., 43 (2021), pp. 3-9
[]
Machette, N.M., 1985. Calcic soils of the southwestern United States. In: Weide, D.L. (Ed.), Soils and Quaternary Geology of the Southwestern United States. Geological Society of America, Special Paper 203, pp. 10–21.
[]
G.H. Mack, W.C. James, H.C. Monger. Classification of palaeosols. Geol. Soc. Am. Bull., 105 (1993), pp. 129-136
[]
E. Malafaia, P. Mocho, F. Escaso, F. Ortega. A new carcharodontosaurian theropod from the Lusitanian Basin: evidence of allosauroid sympatry in the European Late Jurassic. J. Vertebr. Paleontol., 40 (2020), p. e1768106
[]
S.B. Marriott, V.P. Wright. Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. J. Geol. Soc. Lond., 150 (1993), pp. 1109-1120
[]
A.W. Martinius, S. Gowland. Tide-influenced fluvial bedforms and tidal bore deposits (Late Jurassic Lourinhã Formation, Lusitanian Basin, Western Portugal). Sedimentology, 58 (2011), pp. 285-324
[]
Mateus, I., Mateus, H., Antunes, M. T., Mateus, O., Taquet, P., Ribeiro, V., Manuppella, G., 1998. Upper Jurassic theropod dinosaur embryos from Lourinhã (Portugal). In: Antunes, M.T. (Ed.), Upper Jurassic palaeoenvironments in Portugal. Memórias da Academia de Ciências de Lisboa 37, 101-110.
[]
I. Mateus, H. Mateus, M.T. Antunes, O. Mateus, P. Taquet, V. Ribeiro, G. Manuppella. Couvée, oeufs et embryons d'un Dinosaure Théropode du Iurassique superieur de Lourinhã (Portugal). C.R. Académie Des Sciences, Sciences De La Terre Et Des Planètes, Paris, 325 (1997), pp. 71-78
[]
O. Mateus, A. Walen, M.T. Antunes. The large theropod fauna of the Lourinha Formation (Portugal) and its similarity to that of the Morrison Formation with a description of a new species of Allosaurus. Paleontology and Geology of the Upper Jurassic Morrison Formation: Bulletin, 36 (2006), p. 123
[]
O. Mateus, M.T. Antunes, P. Taquet. Dinosaur ontogeny: the case of Lourinhanosaurus (Late Jurassic, Portugal). J. Vertebr. Paleontol., 21 (2001), p. 78
[]
O. Mateus, J. Dinis, P. Cunha. The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal – landscapes where dinosaurs walked. Ciências Da Terra, 19 (2017), pp. 75-97
[]
M. Moretti, J.M. Soria, P. Alfaro, N. Walsh. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies, 44 (2001), pp. 283-294
[]
Morrison, R.B., 1964. Soil stratigraphy: principles, applications to differentiation and correlation of quaternary deposits and landforms, and applications to soil science. PhD Thesis, Univ. of Nevada (Unpublished).
[]
T.S. Myers, N.J. Tabor, L.L. Jacobs, O. Mateus. Palaeoclimate of the Late Jurassic of Portugal: comparison with the western United States. Sedimentology, 59 (2012), pp. 1695-1717
[]
G. Nichols. Sedimentology and Stratigraphy. (2nd Edition.), Wiley-Blackwell, New-York (2009)
[]
M.A. Norell, J.M. Clark, L.M. Chiappe, D. Dashzeveg. A nesting dinosaur. Nature, 378 (1995), pp. 774-776
[]
B. Novak, B. Housen, Y. Kitamura, T. Kanamatsuc, K. Kawamura. Magnetic fabric analyses as a method for determining sediment transport and deposition in deep sea sediments. Mar. Geol., 356 (2014), pp. 19-30
[]
S. Oser, F. Jackson. Sediment and eggshell interactions: using abrasion to assess transport in fossil eggshell accumulations. Hist. Biol., 26 (2) (2014), pp. 165-172,
CrossRef Google scholar
[]
Owen, G., 1987. Deformation processes in unconsolidated sands. In: Deformation of sediments and sedimentary rocks. Eds. Jones, M.E., Preston, R.M.F. Geological Society Spec. Publ. 29. 11-24.
[]
C.V. Paganelli, A. Olszowka, A. Ar. The avian eggs: Surface area, volume and density. Condor, 76 (1974), pp. 319-325
[]
M.E. Park, H. Cho, M. Son, Y.K. Sohn. Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea a constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Mar. Pet. Geol., 48 (2013), pp. 206-223
[]
G. Pietucowski. Dinosaur nesting ground from the Early Jurassic fluvial deposits, Holy Cross Mountains (Poland). Geological Quarterly, 42 (1998), pp. 461-476
[]
O. Pueyo Anchuela, J. Ramajo, A. Gil Imaz, G. Meléndez. Analysis of anisotropy of magnetic susceptibility in iron-oolitic beds: a potential tool for paleocurrent identification. Int. J. Earth Sci. (geol Rundsch), 102 (2013), pp. 1131-1149
[]
E.S. Rasmussen, S. Lomholt, C. Andersen, O.V. Vejbæk. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300 (1998), pp. 199-225
[]
A.I. Rees, W.A. Woodall. The magnetic fabric of some laboratory-deposited sediments. Earth Planet. Sci. Lett., 25 (1975), pp. 121-130
[]
A.I. Rees, C.M. Brown, E.A. Hailwood, P.J. Riddy. Magnetic fabric of bioturbated sediment from the northern Rockall Trough: comparison with modern currents. Mar. Geol., 46 (1982), pp. 161-173
[]
G. Retallack. Field recognition of paleosols. Geol. Soc. Am. Spec. Pap., 216 (1988), pp. 1-19
[]
A. Ricqlès, O. Mateus, M.T. Antunes, P. Taquet. Histomorphogenesis of embryos of Upper Jurassic Theropods from Lourinha (Portugal). Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et. Des Planetes, 332 (2001), pp. 647-656
[]
V. Riera, P. Anadón, O. Oms, R. Estrada, E. Maestro. Dinosaur eggshell isotope geochemistry as tools of palaeoenvironmental reconstruction for the Upper Cretaceous from the Tremp Formation (Southern Pyrenees). Sediment. Geol., 294 (2013), pp. 356-370
[]
P. Rochette, M. Jackson, C. Aubourg. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys., 30 (1992), pp. 209-226
[]
J. Rodríguez-López, A. Soria, C. Liesa. Extreme-flood-related peat blocks: an anthropocene analogue to ancient coal-forming environments. J. Sediment. Res., 91 (2021), pp. 243-261
[]
K. Sabath. Upper Cretaceous amniotic eggs from the gobi desert. Acta Paleontol. Pol., 36 (1991), pp. 151-192
[]
L. Sagnotti. Magnetic Anisotropy. H.K. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics, Springer, Dordrecht (2011)
[]
PM Sander, C Peitz, FD Jackson, LM. Chiappe. Upper Cretaceous titanosaur nesting sites and their implications for sauropod dinosaur reproductive biology. Palaeontogr Abt. A, 284 (2008), pp. 69-107
[]
A. Sarkar, S.K. Bhattacharya, D.M. Mohabey. Stable-isotope analyses of dinosaur eggshells: paleoenvironmental implications. Geology, 19 (1991), pp. 1068-1071
[]
C.A. Schneider, W.S. Rasband, K.W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9 (2012), pp. 671-675
[]
R.C. Selley. Applied Sedimentology. Academic Press (2000)
[]
R.S. Seymour. Dinosaur eggs: gas conductance through the shell, water loss during incubation and clutch size. Paleobiology, 5 (1979), pp. 1-11
[]
Soil Survey Staff. Keys to Soil Taxonomy, 11th. USDA Natural Resources Conservation Service, Washington, DC, USA (2010)
[]
R. Soto, J. Kullberg, B. Oliva-Urcia, A. Casas-Sainz, J.J. Villalaín. Switch of Mesozoic extensional tectonic style in the Lusitanian basin (Portugal): Insights from magnetic fabrics. Tectonophysics, 536 (2012), pp. 122-135
[]
A. Stachowska, M. Łoziński, M. Śmigielski, A. Wysocka, L. Jankowski, P. Ziółkowski. Anisotropy of magnetic susceptibility as an indicator for palaeocurrent analysis in folded turbidites (Outer Western Carpathians, Poland). Sedimentology, 67 (2020), pp. 3783-3808
[]
J.P.M. Syvitski. Principles, Methods, and Application of Particle Size Analysis. Cambridge University Press, New York (1991)
[]
A. Taira. Magnetic fabrics and depositional processes. A. Taira, F. Masuda (Eds.), Sedimentary Facies in the Active Plate Margin, Terra Scientific Publishing Company, Tokyo (1989), pp. 43-77
[]
Tanaka, K., Zelenitsky, D.K., Therrien, F., Kobayashi, Y., 2018. Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits. Sci. Rep. 8, 3170. https:// doi .org /10 .1038 /s41598 -018 -21386 –x.
[]
K. Tanaka, D.K. Zelenitsky, F. Therrien. Eggshell porosity provides insight on evolution of nesting in dinosaurs. PLoS One, 10 (11) (2015), p. e0142829
[]
K. Tanaka, Y. Kobayashi, D. Zelenitsky, F. Therrien, Y. Lee, R. Barsbold, K. Kubota, H. Lee, T. Chinzorig, I. Damdinsuren. Exceptional preservation of a Late Cretaceous dinosaur nesting site from Mongolia reveals colonial nesting behavior in a non-avian theropod. Geology, 47 (2019), pp. 843-847
[]
D.H. Tarling, F. Hrouda. The Magnetic Anisotropy of Rocks. Chapman & Hall, London (1993)
[]
A.M. Taylor, S. Gowland, S. Leary, K.J. Keogh, A.W. Martinius. Stratigraphical correlation of the Late Jurassic Lourinhã Formation in the Consolacão Subbasin (Lusitanian Basin) Portugal. Geol. J., 49 (2014), pp. 143-162
[]
D.J. Varricchio, F. Jackson, J.J. Borkowski, C.N. Trueman. A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus. J. Vertebr. Paleontol., 19 (1999), pp. 91-100
[]
B. Vila, F.D. Jackson, J. Fortuny, A.G. Sellés, A. Galobart. 3-D modelling of megaloolithid clutches: insights about nest construction and dinosaur behaviour. PLoS One, 5 (2010), p. e10362
[]
F.W. Vollmer. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid. Comput. Geosci., 115 (2018), pp. 134-142,
CrossRef Google scholar
[]
P. Waldhausl, C. Ogleby. 3x3-Rules for simple photogrammetric documentation of architecture. Proceedings of the Symposium of the ISPRS Commission V Close Range Techniques and Machine Vision. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (1994), pp. 426-429
[]
Wilson, R.C.L., Hiscott, R.N., Willis, M.G., Gradstein, F.M., 1989. The Lusitanian Basin of West-Central Portugal: Mesozoic and Tertiary tectonic, stratigraphic, and subsidence History. In: Tankard, A.J., Balkwill, H.R. (Eds.), Extensional Tectonics and Stratigraphy of the North Atlantic margins. AAPG Mem. 46, 341–361.
[]
T.R. Yang, T. Engler, J.N. Lallensack, A. Samathi, M. Makowska, B. Schillinger. Hatching asynchrony in oviraptorid dinosaurs sheds light on their unique nesting biology. Integr. Org. Biol., 1 (1) (2019), p. obz030
[]
D.K. Zelenitsky. Reproductive traits of non-avian theropods. J. Paleont. Soc. Korea, 22 (2006), pp. 209-216
[]
D.K. Zelenitsky, F. Therrien. Phylogenetic analysis of reproductive traits of Maniraptoran theropods and its implications for egg parataxonomy. Paleontology, 51 (4) (2008), pp. 807-816
[]
L. Zhao, F. Wu. Simulation of runoff hydrograph on soil surfaces with different microtopography using a travel time method at the plot scale. PLoS One, 10 (2015), Article e0130794

18

Accesses

0

Citations

40

Altmetric

Detail

Sections
Recommended

/