In situ apatite and carbonate Lu-Hf and molybdenite Re-Os geochronology for ore deposit research: Method validation and example application to Cu-Au mineralisation
Alexander Simpson, Stijn Glorie, Martin Hand, Sarah E. Gilbert, Carl Spandler, Marija Dmitrijeva, Greg Swain, Angus Nixon, Jacob Mulder, Carsten Münker
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101867.
In situ apatite and carbonate Lu-Hf and molybdenite Re-Os geochronology for ore deposit research: Method validation and example application to Cu-Au mineralisation
The development of laser ablation inductively coupled plasma quadrupole tandem mass spectrometry (LA-ICP-Q-MS/MS) opens new opportunities to rapidly date a variety of hydrothermal minerals. Here we present in situ Lu-Hf and Re-Os dates for hydrothermal apatite and molybdenite, respectively. We further report the first in situ Lu-Hf dates for bastnäsite, dolomite, and siderite, and assess their potential for constraining ore deposit geochronology. For method validation, we report isotope-dilution Lu-Hf dates for apatite reference material Bamble-1 (1102 ± 5 Ma) and calcite reference material ME-1 (1531 ± 7 Ma), enabling improved accuracy on matrix-matched calibration for LA-ICP-MS/MS Lu-Hf dating. The new methods are applied to the Vulcan Iron-Oxide Copper-Gold (IOCG) prospect in the Olympic Cu-Au Province of South Australia. Such deposits have been difficult to accurately date, given the general lack of reliable mineral geochronometers that are cogenetic with IOCG mineralisation. Hydrothermal apatite Lu-Hf dates and molybdenite Re-Os dates demonstrate that mineralisation at Vulcan largely occurred at ca. 1.6 Ga, contemporaneous with the world class Olympic Dam deposit. Our data also indicates that the Lu-Hf system in apatite is more robust than the U-Pb system for determining the timing of primary apatite formation in an IOCG system. We further demonstrate that dolomite can retain Lu-Hf growth ages over an extended time period (>1.5 billion years), providing constraints on the timing of primary ore mineral crystallisation during brecciation and IOCG mineralisation. Finally, late Neoproterozoic (ca. 589–544 Ma) and Carboniferous (ca. 334 ± 7 Ma) Lu-Hf dates were obtained for texturally late Cu-bearing carbonate veins, illustrating that the carbonate Lu-Hf method allows direct dating of Cu remobilisation events. This has important implications for mineral exploration as the remobilised Cu may have been transferred to younger deposits hosted in Neoproterozoic sedimentary basins overlaying the Olympic IOCG province.
Reaction-cell ICP-MS / In-situ geochronology / Lu-Hf / Re-Os / Iron Oxide Copper Gold / Metal fluids
O.B. Apukhtina, et al.. Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol., 112 (6) (2017), pp. 1531-1542
|
J. Babo, et al.. The High-Grade Mo-Re Merlin Deposit, Cloncurry District, Australia: paragenesis and geochronology of hydrothermal alteration and ore formation. Econ. Geol., 112 (2) (2017), pp. 397-422
|
G.H. Barfod, O. Otero, F. Albarède. Phosphate Lu–Hf geochronology. Chem. Geol., 200 (3–4) (2003), pp. 241-253
|
G.H. Barfod, E.J. Krogstad, R. Frei, F. Albarède. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite. Geochim. Cosmochim. Acta, 69 (7) (2005), pp. 1847-1859
|
R. Bast, et al.. A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. J. Anal. At. Spectrom, 30 (11) (2015), pp. 2323-2333
|
E.N. Bastrakov, R.G. Skirrow, G.J. Davidson. Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton. South Australia. Economic Geology, 102 (8) (2007), pp. 1415-1440
|
A. Belperio, R. Flint, H. Freeman. Prominent Hill: A Hematite-Dominated, Iron Oxide Copper-Gold System. Econ. Geol., 102 (8) (2007), pp. 1499-1510
|
B. Bowden, et al.. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia. Mineralium Deposita, 52 (6) (2017), pp. 863-881
|
J.D. Bradshaw, P.R. Evans. Palaeozoic Tectonics, Amadeus Basin, Central Australia. APPEA J., 28 (1) (1988), pp. 267-282
|
J. Brugger, et al.. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?. Chem. Geol., 447 (2016), pp. 219-253
|
L.S. Campbell, W. Compston, K.N. Sircombe, C.C. Wilkinson. Zircon from the East Orebody of the Bayan Obo Fe–Nb–REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events. Contrib. Miner. Petrol., 168 (2) (2014), p. 1041
|
B.W. Cave, R. Lilly, S. Glorie, J. Gillespie. Geology, Apatite Geochronology, and Geochemistry of the Ernest Henry Inter-lens: Implications for a Re-Examined Deposit Model. Minerals, 8 (9) (2018), p. 405
|
B. Cave, R. Lilly, P. Rea. In Situ U-Pb monazite geochronology records multiple events at the mount ISA Cu (± Zn-Pb-Ag) DEPOSIT, Northern Australia. Economic Geology, 118 (1) (2022), pp. 225-236
|
D.J. Cherniak, W.A. Lanford, F.J. Ryerson. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochem. Geophys. Geosyst., 55 (1991), pp. 1663-1673
|
A.R. Cherry, et al.. Linking Olympic Dam and the Cariewerloo Basin: Was a sedimentary basin involved in formation of the world’s largest uranium deposit?. Precambr. Res., 300 (2017), pp. 168-180
|
A.R. Cherry, et al.. Tectonothermal events in the Olympic IOCG Province constrained by apatite and REE-phosphate geochronology. Aust. J. Earth Sci., 65 (5) (2018), pp. 643-659
|
D.M. Chew, J.A. Petrus, B.S. Kamber. U-Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol., 363 (2014), pp. 185-199
|
C.L. Ciobanu, B.P. Wade, N.J. Cook, A. Schmidt Mumm, D. Giles. Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambr. Res., 238 (2013), pp. 129-147
|
J.C. Claoue-Long, R.W. King, R. Kerrich. Archaean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralisation. Earth Planet. Sci. Lett., 98 (1) (1990), pp. 109-128
|
R. Cochrane, et al.. High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta, 127 (2014), pp. 39-56
|
L. Corriveau, J.F. Montreuil, E.G. Potter. Alteration facies linkages among iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the great bear magmatic zone, Northwest Territories, Canada*. Econ. Geol., 111 (8) (2016), pp. 2045-2072
|
L. Courtney-Davies, et al.. A Synthetic Haematite Reference Material for LA-ICP-MS U-Pb Geochronology and Application to Iron Oxide-Cu-Au Systems. Geostand. Geoanal. Res., 45 (1) (2020), pp. 143-159
|
G.J. Davidson, H. Paterson, S. Meffre, R.F. Berry. Characteristics and Origin of the Oak Dam East Breccia-Hosted, Iron Oxide Cu-U-(Au) Deposit: Olympic Dam Region, Gawler Craton, South Australia. Economic Geology, 102 (8) (2007), pp. 1471-1498
|
R.J. Duncan, et al.. A New Geochronological Framework for Mineralization and Alteration in the Selwyn-Mount Dore Corridor, Eastern Fold Belt, Mount Isa Inlier, Australia: Genetic Implications for Iron Oxide Copper-Gold Deposits. Econ. Geol., 106 (2) (2011), pp. 169-192
|
P. Duuring, W. Bleeker, S.W. Beresford, N. Hayward. Towards a volcanic–structural balance: relative importance of volcanism, folding, and remobilisation of nickel sulphides at the Perseverance Ni–Cu–(PGE) deposit. Western Australia. Mineralium Deposita, 45 (3) (2010), pp. 281-311
|
K. Ehrig, et al.. Staged formation of the supergiant Olympic Dam uranium deposit. Australia. Geology, 49 (11) (2021), pp. 1312-1316
|
G. Faure, T.M. Mensing. Isotopes, principles and applications. John Wiley & Sons Inc, United States (2005)
|
C.M. Fisher, J.D. Vervoort. Using the magmatic record to constrain the growth of continental crust—The Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett., 488 (2018), pp. 79-91
|
J. Foden, K. Barovich, M. Jane, G. O'Halloran. Sr-isotopic evidence for Late Neoproterozoic rifting in the Adelaide Geosyncline at 586 Ma: implications for a Cu ore forming fluid flux. Precambr. Res., 106 (3) (2001), pp. 291-308
|
S. Gilbert, et al.. A Comparative Study of Five Reference Materials and the Lombard Meteorite for the Determination of the Platinum-Group Elements and Gold by LA-ICP-MS. Geostand. Geoanal. Res., 37 (1) (2013), pp. 51-64
|
S.E. Gilbert, S. Glorie. Removal of Hg interferences for common Pb correction when dating apatite and titanite by LA-ICP-MS/MS. J. Anal. At. Spectrom, 35 (7) (2020), pp. 1472-1481
|
J. Gillespie, et al.. Lu–Hf, Sm–Nd, and U-Pb isotopic coupling and decoupling in apatite. Geochim. Cosmochim. Acta, 338 (2022), pp. 121-135
|
S. Glorie, et al.. Detrital apatite Lu-Hf and U-Pb geochronology applied to the southwestern Siberian margin. Terra Nova, 34 (3) (2022), pp. 201-209
|
S. Glorie, et al.. Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins. Geosci. Front., 14 (6) (2023), Article 101629
|
Gregory, C.J., Reid, A.J., Say, P., Teale, G.S., 2011. U-Pb geochronology of hydrothermal allanite and titanite and magmatic zircon from the Hillside Cu-Au deposit, Yorke Peninsula. South Australia. Department of Primary Industries and Resources. Report Book 2011/00003.
|
P.W. Haines, M. Hand, M. Sandiford. Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Aust. J. Earth Sci., 48 (6) (2001), pp. 911-928
|
J.W. Hall, et al.. Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems. Gondw. Res., 56 (2018), pp. 90-104
|
M. Hand, J.O. Mawby, P. Kinny, J. Foden. U-Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. J. Geol. Soc. London, 156 (4) (1999), pp. 715-730
|
M. Hand, A. Reid, L. Jagodzinski. Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Econ. Geol., 102 (2007), pp. 1377-1395
|
D.E. Harlov, R. Wirth, H.-J. Förster. An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib. Miner. Petrol., 150 (3) (2005), pp. 268-286
|
K.J. Hogmalm, I. Dahlgren, I. Fridolfsson, T. Zack. First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS. Miner. Deposita, 54 (6) (2019), pp. 821-828
|
Z. Hu, et al.. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom, 23 (8) (2008), pp. 1093-1101
|
Q. Huang, et al.. Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambr. Res., 271 (2015), pp. 160-172
|
T. Iizuka, T. Yamaguchi, Y. Hibiya, Y. Amelin. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth. Proc. Natl. Acad. Sci. USA, 112 (17) (2015), pp. 5331-5336
|
L. Gustafson, W. Compston. . Rb-Sr dating of Olympic Dam core samples, Report to Western Mining Corporation, 18, Research School of Earth Sciences: Australian National University (1979)
|
Jagodzinski, E., 2014. The age of magmatic and hydrothermal zircon at Olympic Dam. In: 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Geological Society of Australia,Newcastle, New South Wales. July 7–10.
|
J.P. Johnson, K.C. Cross. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol., 90 (5) (1995), pp. 1046-1063
|
M. Lagos, et al.. High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece. Chem. Geol., 243 (1) (2007), pp. 16-35
|
Leach, D.L. et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/AV100.18.
|
R. Maas, et al.. Olympic Dam U-Cu-Au deposit, Australia: New age constraints. Mineral. Mag., 75 (2011), p. 1375
|
R. Maas, et al.. Carbonates at the supergiant Olypmic Dam Cu-U-Au-Ag deposit, South Australia part 2: Sm-Nd, Lu-Hf and Sr-Pb isotope constraints on the chronology of carbonate deposition. Ore Geol. Rev., 140 (2022), Article 103745
|
T.C. McCuaig, S. Beresford, J. Hronsky. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev., 38 (3) (2010), pp. 128-138
|
B.I.A. McInnes, R.R. Keays, D.D. Lambert, J. Hellstrom, J.S. Allwood. Re–Os geochronology and isotope systematics of the Tanami, Tennant Creek and Olympic Dam Cu–Au deposits. Aust. J. Earth Sci., 55 (6–7) (2008), pp. 967-981
|
McLaren, S. et al., 2003. The hot southern continent: heat flow and heat production in Australian Proterozoic terranes. In: Hillis, R.R., Müller, R.D. (Eds.), Evolution and Dynamics of the Australian Plate. Geological Society of America. https://doi.org/10.1130/0-8137-2372-8.157.
|
J. McPhie, V.S. Kamenetsky, I. Chambefort, K. Ehrig, N. Green. Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: Was a sedimentary basin involved?. Geology, 39 (8) (2011), pp. 795-798
|
J. McPhie, K.J. Ehrig, M.B. Kamenetsky, J.L. Crowley, V.S. Kamenetsky. Geology of the Acropolis prospect, South Australia, constrained by high-precision CA-TIMS ages. Aust. J. Earth Sci., 67 (5) (2020), pp. 699-716
|
C. Münker, S. Weyer, E. Scherer, K. Mezger. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst., 2 (2001), p. 1064,
CrossRef
Google scholar
|
J.S. Myers, R.D. Shaw, I.M. Tyler. Tectonic evolution of Proterozoic Australia. Tectonics, 15 (6) (1996), pp. 1431-1446
|
A.L. Nixon, et al.. Low-temperature thermal history of the McArthur Basin: Influence of the Cambrian Kalkarindji Large Igneous Province on hydrocarbon maturation. Basin Res., 34 (6) (2022), pp. 1936-1959
|
A. Norris, L. Danyushevsky. Towards estimating the complete uncertainty budget of quantified results measured be LA-ICP-MS. Goldschmidt, Boston, USA (2018)
|
N.H.S. Oliver, et al.. 100th Anniversary Special Paper: Numerical Models of Extensional Deformation, Heat Transfer, and Fluid Flow across Basement-Cover Interfaces during Basin-Related Mineralization. Econ. Geol., 101 (1) (2006), pp. 1-31
|
B. Rasmussen, I.R. Fletcher, J.R. Muhling, W.S. Thorne, G.C. Broadbent. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planet. Sci. Lett., 258 (1) (2007), pp. 249-259
|
J.S. Reeves, K.C. Cross, N. Oreskes. Olympic Dam copper-uranium-gold-silver deposit. Australasian Institute of Mining and Metallurgy, 14 (1990), pp. 1009-1135
|
A. Reid. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals, 9 (6) (2019), p. 371
|
Reid, A., Smith, R.N., Baker, T., Jagodzinski, E.A., Selby, D., Gregory, C.J., Skirrow, R.G., 2013. Re-Os DATING OF Molybdenite within hematite breccias from the vulcan Cu-Au PROSPECT, Olympic Cu-Au Province, South Australia. Economic Geology 108 (4), 883–894. doi: https://doi.org/10.2113/econgeo.108.4.883
|
N.M.W. Roberts, et al.. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst., 18 (7) (2017), pp. 2807-2814
|
N.M.W. Roberts, et al.. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress, and limitations. Geochronology, 2 (1) (2020), pp. 33-61
|
N.M.W. Roberts, R.J. Walker. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44 (7) (2016), pp. 531-534
|
R.L. Romer, J.E. Wright. Lead mobilization during tectonic reactivation of the western Baltic Shield. Geochim. Cosmochim. Acta, 57 (11) (1993), pp. 2555-2570
|
V.J.M. Salters, A. Zindler. Extreme 176Hf/177Hf in the sub-oceanic mantle. Earth Planet. Sci. Lett., 129 (1) (1995), pp. 13-30
|
M. Sawyer. Carrapateena iron oxide Cu-Au-Ag-U deposit. G.N. Phillips (Ed.), Australian Ore Deposits, The Australasian Institute of Mining and Metallurgy, Australia (2017), pp. 615-620
|
E. Scherer, C. Münker, K. Mezger. Calibration of the Lutetium-Hafnium Clock. Science, 293 (5530) (2001), pp. 683-687
|
D. Selby, R.A. Creaser. Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia. Canada. Economic Geology, 96 (1) (2001), pp. 197-204
|
D. Selley. Geological framework and copper mineralsation in South Australia, AMIRA Project P544 - Proterozoic sediment-hosted copper deposits. Pongratz and Blake Production (2000)
|
A. Simpson, et al.. In-situ LuHf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chem. Geol., 577 (2021), Article 120299
|
A. Simpson, et al.. In situ Lu–Hf geochronology of calcite. Geochronology, 4 (1) (2022), pp. 353-372
|
R. Skirrow, et al.. Timing of Iron Oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton, South Australia. Econ. Geol., 102 (2007), pp. 1441-1470
|
R.G. Skirrow. Iron oxide copper-gold (IOCG) deposits – A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geol. Rev., 140 (2022), Article 104569
|
R. Skirrow, R. Maas, P.M. Ashley. New age constraints for Cu-Au(-Mo) mineralisation and regional alteration in the Olary-Broken hill region. AGSO Research Newsletter, 31 (1999)
|
U. Söderlund, P.J. Patchett, J.D. Vervoort, C.E. Isachsen. The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett., 219 (3) (2004), pp. 311-324
|
C. Spandler, et al.. MKED1: A new titanite standard for in situ analysis of Sm–Nd isotopes and U-Pb geochronology. Chem. Geol., 425 (2016), pp. 110-126
|
C.J. Spencer, C.L. Kirkland, R.J.M. Taylor. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front., 7 (4) (2016), pp. 581-589
|
P. Sprung, E.E. Scherer, D. Upadhyay, I. Leya, K. Mezger. Non-nucleosynthetic heterogeneity in non-radiogenic stable Hf isotopes: Implications for early solar system chronology. Earth Planet. Sci. Lett., 295 (1) (2010), pp. 1-11
|
J.S. Stacey, J.D. Kramers. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26 (2) (1975), pp. 207-221
|
F. Tera, G.J. Wasserburg. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14 (1972), pp. 36-51
|
J. Thompson, et al.. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom, 31 (6) (2016), pp. 1206-1215
|
S.N. Thomson, G.E. Gehrels, J. Ruiz, R. Buchwaldt. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst., 13 (2) (2012), p. Q0AA21
|
N.M. Tucker, M. Hand, D.E. Kelsey, R.A. Dutch. A duality of timescales: Short-lived ultrahigh temperature metamorphism preserving a long-lived monazite growth history in the Grenvillian Musgrave–Albany–Fraser Orogen. Precambr. Res., 264 (2015), pp. 204-234
|
P. Vermeesch. IsoplotR: A free and open toolbox for geochronology. Geosci. Front., 9 (5) (2018), pp. 1479-1493
|
P. Vermeesch. (anchored) isochrons in IsoplotR. Geochronology Discuss., 2024 (2024), pp. 1-16
|
J. Vervoort, P.J. Patchett. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim. Cosmochim. Acta, 60 (19) (1996), pp. 3717-3733
|
A.K. Walsh, et al.. P-T–t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondw. Res., 28 (2) (2015), pp. 531-564
|
M. Wilke, et al.. Zircon solubility and zirconium complexation in H2O+Na2O+SiO2±Al2O3 fluids at high pressure and temperature. Earth Planet. Sci. Lett., 349–350 (2012), pp. 15-25
|
W. Zhai, et al.. Hydrothermal zircon: Characteristics, genesis and metallogenic implications. Ore Geol. Rev., 149 (2022), Article 105111
|
R. Tamblyn, S. Gilbert, S. Glorie, C. Spandler, A. Simpson, M. Hand, D. Hasterok, X. Ware, S. Tessalina. Molybdenite Reference Materials for In Situ LA-ICP-MS/MS Re-Os Geochronology. Geostand Geoanal Res., 49 (2024), pp. 393-410,
CrossRef
Google scholar
|
/
〈 |
|
〉 |