Late Neoproterozoic to early Cambrian high-grade metamorphism from Mikir Hills (Assam-Meghalaya gneissic Complex, northeast India): Implications for eastern Gondwana assembly

Rahul Nag, H. Hrushikesh, Nathan Cogné, N. Prabhakar

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101850.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101850. DOI: 10.1016/j.gsf.2024.101850

Late Neoproterozoic to early Cambrian high-grade metamorphism from Mikir Hills (Assam-Meghalaya gneissic Complex, northeast India): Implications for eastern Gondwana assembly

Author information +
History +

Abstract

Mikir Hills region, which represents the eastern segment of the Assam-Meghalaya Gneissic Complex (AMGC) in northeast India, constitutes part of the Eastern Gondwana. The Mikir Hills preserves multiple metamorphic and magmatic events ranging from Early Mesoproterozoic to Early Cambrian. Out of these events, documenting the late Neoproterozoic to early Cambrian tectonothermal events is helpful in correlating the continental blocks of Eastern Gondwana. We present an integrated study involving field relations, petrology, P–T history and zircon-monazite geochronology of hitherto poorly studied pelitic and quartzo-feldspathic gneisses from the Mikir Hills region. These gneisses have experienced at least three deformation events (D1, D2 and D3) with dominant foliation indicated by ENE–WSW striking and shallow-moderately dipping (<40°) S2 gneissic foliation. The peak metamorphism in pelitic and quartzo-feldspathic gneisses is characterized by garnet(core)–K-feldspar–sillimanite–plagioclase–biotite–rutile–quartz–ilmenite–melt and garnet–plagioclase–K-feldspar–biotite–quartz–ilmenite–melt assemblages, respectively. The application of thermobarometric methods constrains the peak P–T conditions of 7.5–8.4 kbar at 674–778 °C and 6.7–7.4 kbar at 601–618 °C for pelitic and quartzo-feldspathic gneisses, respectively. These results are consistent with the values estimated using phase equilibria modelling and melt reintegration approach. The results of pseudosection modelling suggests a clockwise  P–T  path for pelitic gneisses involving migmatisation during peak metamorphism followed by near isothermal decompression from 8.0 to 8.6 kbar at 768–780 °C to 4.0–5.0 kbar at 720–765 °C. In contrast, quartzo-feldspathic gneisses preserved slightly lower peak P–T conditions at 3.8–4.6 kbar and 590–650 °C. The U–Pb zircon dating of migmatised pelitic and quartzo-feldspathic gneisses yielded concordant ages of 1647 ± 11 Ma and 1590 ± 7 Ma, respectively. These dates represent the inherited igneous protolith components, possibly equivalent to the Mesoproterozoic granulite facies metamorphism in the western AMGC. The rarely preserved cores of monazite in pelitic gneisses yielded an older population of 1058 ± 35 Ma, most likely representing a weak tectonic imprint associated with the amalgamation of India with Western Australia and East Antarctica in the Rodinia assembly. However, the majority of monazite grains in pelitic and quartzo-feldspathic gneisses show high Th/U ratios with ages between 496 ± 7 Ma and 467 ± 16 Ma, indicating the timing of migmatisation that is contemporary with voluminous ∼ 500 Ma granite magmatism in and around the Mikir Hills. The similarities in  P–T–t  histories estimated in this study (eastern AMGC) and those obtained from the Sonapahar-Umpretha region (central AMGC) confirm that these domains experienced common tectonometamorphic history during Pan-African orogeny. The dominance of Late Neoproterozoic migmatisation and magmatism in the Mikir Hills region indicate that the eastern AMGC represent an active convergent margin with Western Australia and East Antarctica and evolved as a hot orogen during the assembly of Western and Eastern Gondwana continental fragments.

Keywords

Gondwana / Assam-Meghalaya Gneissic Complex / Migmatisation / Neoproterozoic / Geochronology / P–T–t history

Cite this article

Download citation ▾
Rahul Nag, H. Hrushikesh, Nathan Cogné, N. Prabhakar. Late Neoproterozoic to early Cambrian high-grade metamorphism from Mikir Hills (Assam-Meghalaya gneissic Complex, northeast India): Implications for eastern Gondwana assembly. Geoscience Frontiers, 2024, 15(5): 101850 https://doi.org/10.1016/j.gsf.2024.101850

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Rahul Nag: Conceptualization, Validation, Investigation, Data Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. H. Hrushikesh: Formal analysis, Investigation, Writing – Review & Editing. Nathan Cogné: Formal analysis, Investigation, Writing – Review & Editing. N. Prabhakar: Resources, Writing – Review & Editing, Supervision, Project administration.

Acknowledgements

This manuscript is a part of the doctoral research work of Rahul Nag at the Indian Institute of Technology Bombay. Rahul’s research work is supported by the Prime Minister’s Research Fellows (PMRF) scheme from the Ministry of Education, New Delhi, Government of India (PMRF ID: 1300753). Fieldwork and laboratory studies were financially supported by the Science and Engineering Research Board (SERB, Govt. of India) core research grant (CRG/2019/000812) to N. Prabhakar. Mineral and monazite analyses were performed using the SERB-funded EPMA National Facility at the Department of Earth Sciences, IIT Bombay (IRPHA grant no. IR/S4/ESF-16/2009). Prabhakar acknowledges the core research grant (file no. CRG/2019/000812) for the financial support given for laboratory analysis. Javed M. Shaikh is thanked for his help with EPMA analysis. We thank two anonymous reviewers for their useful comments that helped improved this manuscript. The Authors also acknowledge editorial handling of Prof. M. Santosh and Vinod Samuel.

References

[]
J.R. Ashworth, E.L. McLellan. Textures. J.R. Ashworth (Ed.), Migmatites, Springer, Boston, MA (1985), pp. 180-203
[]
F. Bea, P. Montero. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim. Cosmochim. Acta., 63 (1999), pp. 1133-1153
[]
A. Bhattacharya, A.C. Mazumdar, S.K. Sen. Fe-Mg mixing in cordierite; constraints from natural data and implications for cordierite-garnet geothermometry in granulites. Am. Mineral., 73 (1988), pp. 338-344
[]
M. Bidyananda, M.P. Deomurari. Geochronological constraints on the evolution of Meghalaya massif, northeastern India: an ion microprobe study. Curr. Sci., 93 (2007), pp. 1620-1623
[]
R. Bilham, P. England. Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature, 410 (6830) (2001), pp. 806-809
[]
S. Biswas, B. Grasemann. Quantitative morphotectonics of the southern Shillong plateau (Bangladesh/India). Aust. J. Earth Sci., 97 (2005), p. e93
[]
S.D. Boger. Antarctica—before and after Gondwana. Gondwana Res., 19 (2011), pp. 335-371
[]
S.D. Boger, R. Maas, M. Pastuhov, P.H. Macey, W. Hirdes, B. Schulte, C.M. Fanning, C.A.M. Ferreira, T. Jenett, R. Dallwig. The tectonic domains of southern and western Madagascar. Precambr. Res., 327 (2019), pp. 144-175
[]
S.D. Boger, C.J.L. Wilson. Early Cambrian crustal shortening and a clockwise P-T–t path from the southern Prince Charles Mountains, East Antarctica: implications for the formation of Gondwana. J. Metamorph. Geol., 23 (2005), pp. 603-623
[]
P. Borah, P. Hazarika, A.C. Mazumdar, M. Rabha. Monazite and xenotime U-Th–Pbtotal ages from basement rocks of the (central) Shillong-Meghalaya Gneissic Complex, Northeast India. J. Earth Sys. Sci., 128 (2019), pp. 1-20
[]
S. Bose, S. Dasgupta. Eastern Ghats Belt, Grenvillian-age tectonics and the evolution of the Greater Indian Landmass: a critical perspective. J. Indian Inst. Sci., 98 (2018), pp. 345-363
[]
S. Bose, N. Sorcar, K. Das, P. Ganguly, S. Mukherjee. Pulsed tectonic evolution in long-lived orogenic belts: An example from the Eastern Ghats Belt, India. Precambr. Res., 369 (2022), Article 106522
[]
I. Braun, M. Raith, G.R. Kumar. Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: a case study from the Kerala khondalite belt, southern India. J. Petrol., 37 (1996), pp. 1285-1305
[]
O. Bruguier, D. Bosch, R.T. Pidgeon, D.R. Byrne, L.B. Harris. U-Pb chronology of the Northampton Complex, Western Australia - evidence for Grenvillian sedimentation, metamorphism and deformation and geodynamic implications. Contrib. Mineral. Petrol., 136 (1999), pp. 258-272
[]
C.J. Carson, R. Powell, C.J.L. Wilson, P.H.G.M. Dirks. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. J. Metamorph. Geol., 15 (1997), pp. 105-126
[]
N. Chatterjee. Constraints from monazite and xenotime growth modelling in the Mn CKFMASH-PYCe system on the P-T path of a metapelite from Shillong-Meghalaya Plateau: implications for the Indian shield assembly. J. Metamorph. Geol., 35 (2017), pp. 393-412
[]
N. Chatterjee, A.C. Mazumdar, A. Bhattacharya, R.R. Saikia. Mesoproterozoic granulites of the Shillong-Meghalaya Plateau: evidence of westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambr. Res., 152 (2007), pp. 1-26
[]
N. Chatterjee, A. Bhattacharya, B.P. Duarah, A.C. Mazumdar. Late Cambrian reworking of Paleo-Mesoproterozoic granulites in Shillong-Meghalaya gneissic complex (Northeast India): evidence from P-T pseudosection analysis and monazite chronology and implications for East Gondwana assembly. The J. Geol., 119 (2011), pp. 311-330
[]
L. Chen, W. Wang, X. Liu, Y. Zhao. Metamorphism and zircon U-Pb dating of high-pressure pelitic granulites from glacial moraines in the Grove Mountains, East Antarctica. Adv. Polar Sci., 29 (2018), pp. 118-134
[]
G.L. Clarke, R. Powell. Decompressional coronas and symplectites in granulites of the Musgrave Complex, central Australia. J. Metamorph. Geol., 9 (1991), pp. 441-450
[]
A.S. Collins. Structure and age of the northern Leeuwin Complex, Western Australia: constraints from field mapping and U-Pb isotopic analysis. Aust. J. Earth Sci., 50 (2003), pp. 585-599
[]
A.S. Collins, S.A. Pisarevsky. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth-Sci. Rev., 71 (2005), pp. 229-270
[]
J.A. Connolly. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., 236 (2005), pp. 524-541
[]
S. Dasgupta, S. Chakraborty, S. Neogi. Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am. J. Sci., 309 (2009), pp. 43-84
[]
W.A. Deer, R.A. Howie, J. Zussman. An Introduction to The Rock-Forming Minerals. England, Longman Scientific and Technology, Essex (1992), p. 696
[]
T. Deshmukh, N. Prabhakar, A. Bhattacharya, K. Madhavan. Late Paleoproterozoic clockwise P-T history in the Mahakoshal Belt, Central Indian Tectonic zone: implications for Columbia supercontinent assembly. Precambr. Res., 298 (2017), pp. 56-78
[]
S. Dey, A. Mitra, J. Nandy, S. Mondal, A. Topno, Y. Liu, K. Zong. Early crustal evolution as recorded in the granitoids of the Singhbhum and Western Dharwar Cratons. Earth’s Oldest Rocks., 1 (2019), pp. 741-792
[]
P.L. Dharmapriya, S.P. Malaviarachchi, M. Santosh, L. Tang, K. Sajeev. Late-Neoproterozoic ultrahigh-temperature metamorphism in the Highland Complex, Sri Lanka. Precambr. Res., 271 (2015), pp. 311-333
[]
J.F.A. Diener, R.W. White, R. Powell. Granulite facies metamorphism and subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia. J. Metamorph. Geol., 26 (2008), pp. 603-622
[]
C.J. Dobmeier, M.M. Raith. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geol. Soc. London Spec. Publ., 206 (2003), pp. 145-168
[]
S.B. Dwivedi. Geodynamic evolution of Mesoproterozoic granulites of Meghalaya: Evidence from geothermobarometry, P-T path and P-T pseudosection. Mem. Geol. Soc. India, 77 (2011), pp. 85-101
[]
S.B. Dwivedi, K. Theunuo, R.R. Kumar. Characterization and metamorphic evolution of Mesoproterozoic granulites from Sonapahar (Meghalaya), NE India, using EPMA monazite dating. Geol. Mag., 157 (2020), pp. 1409-1427
[]
S.B. Dwivedi, P. Pathak, K. Theunuo, R.R. Kumar. U-Pb SHRIMP zircon dating and geochemistry of metapelites from the Shillong Meghalaya Gneissic Complex, NE India: Implications for nature of protolith and tectonic setting. Geosys. Geoenviron., 2 (2023), Article 100161
[]
T. Endo, T. Tsunogae, M. Santosh, E. Shaji. Phase equilibrium modeling of incipient charnockite formation in NCKFMASHTO and MnNCKFMASHTO systems: A case study from Rajapalaiyam, Madurai Block, southern India. Geosci. Front., 3 (2012), pp. 801-811
[]
N.A. Eremenco, B.S. Negi, M.V. Nasianov, A.M. Seregin, B.G. Despande, S.N. Sengupta, S.N. Talukdar, V.V. Sastri, I.P. Sokaluv, A.T. Pavbukov, A.K. Datta, A.T.R. Raju. Tectonic map of India - Principles of preparation. Bull. ONGC., 6 (1969), pp. 1-111
[]
P. Evans. The tectonic framework of Assam. Geol. Soc. India., 5 (1964), pp. 80-96
[]
I.C.W. Fitzsimons. Metapelitic migmatites from Brattstrand Bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust. J. Petrol., 37 (1996), pp. 395-414
[]
I.C.W. Fitzsimons. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. Geol. Soc. London Spec. Publ., 206 (2003), pp. 93-130
[]
H. Fritz, M. Abdelsalam, K.A. Ali, B. Bingen, A.S. Collins, A.R. Fowler, W. Ghebreab, C.A. Hauzenberger, P.R. Johnson, T.M. Kusky, P. Macey. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci., 86 (2013), pp. 65-106
[]
J. Ganguly, S. Chakraborty, T.G. Sharp, D. Rumble. Constraint on the time scale of biotite-grade metamorphism during Acadian orogeny from a natural garnet-garnet diffusion couple. Am. Mineral., 81 (1996), pp. 1208-1216
[]
S. Ghosh, J.K. Bhalla, D.K. Paul, A. Sarkar, P.K. Bishul, S.N. Gupta, S. Chakraborty. Geochronology and geochemistry of graniteplutons from East Khasi Hills, Meghalaya. J. Geol. Soc. Ind., 37 (1991), pp. 331-342
[]
S. Ghosh, D.K. Paul, J.K. Bhalla, P.K. Bishui, S.N. Gupta, S. Chakraborty. New Rb-Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in middle- to late Proterozoic crustal evolution. Ind. Min., 48 (1994), pp. 33-34
[]
S. Ghosh, A.E. Fallick, D.K. Paul, P.J. Potts. Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: Implications for linkage with amalgamation of Gondwana supercontinent. Gondwana Res., 8 (2005), pp. 421-432
[]
A. Gogoi, D. Majumdar, J. Cottle, P. Dutta. Geochronology and geochemistry of Mesoproterozoic porphyry granitoids in the northern Karbi Hills, NE India: Implications for early tectonic evolution of the Karbi Massif. J. Asian Earth Sci., 179 (2019), pp. 65-79
[]
D.R. Gray, D.A. Foster, J.G. Meert, B.D. Goscombe, R. Armstrong, R.A.J. Trouw, C.W. Passchier. A Damara orogen perspective on the assembly of southwestern Gondwana. Geol. Soc. London Spec. Publ., 294 (2008), pp. 257-278
[]
E.S. Grew, C.J. Carson, A.G. Christy, R. Maas, G.M. Yaxley, S.D. Boger, C.M. Fanning. New constraints from U-Pb, Lu–Hf and Sm–Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambr. Res., 206 (2012), pp. 87-108
[]
C. Groppo, F. Rolfo, A. Indares. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal: the effect of decompression and implications for the ‘Channel Flow’ model. J. Petrol., 53 (2012), pp. 1057-1088
[]
R.P. Gupta, A.K. Sen. Imprints of the ninety-east ridge in the Shillong Plateau, Indian Shield. Tectonophysics, 154 (1988), pp. 335-341
[]
N.B.W. Harris, M. Caddick, J. Kosler, S. Goswami, D. Vance, A.G. Tindle. The pressure–temperature–time path of migmatites from the Sikkim Himalaya. J. Metamorph. Geol., 22 (2004), pp. 249-264
[]
N.B.W. Harris, S. Inger. Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., 110 (1992), pp. 46-56
[]
N. Harris, J. Massey. Decompression and anatexis of Himalayan metapelites. Tectonics, 13 (1994), pp. 1537-1546
[]
D.J. Henry, C.V. Guidotti, J.A. Thomson. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineral., 90 (2005), pp. 316-328
[]
B.J. Hensen. Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contrib. Mineral. Petrol., 33 (1971), pp. 191-214
[]
C.J. Hetherington, D.E. Harlov, B. Budzyń. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral. Petrol., 99 (2010), pp. 165-184
[]
E. Hoffer. The reaction sillimanite+ biotite+ quartz ⇌ cordierite+ K-feldspar+ H2O and partial melting in the system K2O-FeO-MgO-Al2O3-SiO2-H2O. Contrib. Mineral. Petrol., 55 (1976), pp. 127-130
[]
M.J. Holdaway. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am. Mineral., 85 (2000), pp. 881-892
[]
T.J.B. Holland, R.T.J.B. Powell. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16 (1998), pp. 309-343
[]
M.S. Horstwood, J. Košler, G. Gehrels, S.E. Jackson, N.M. McLean, C. Paton, N.J. Pearson, K. Sircombe, P. Sylvester, P. Vermeesch, J.F. Bowring. Community-derived standards for LA-ICP-MS U-(Th)-Pb geochronology–Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanalytical Res., 40 (2016), pp. 311-332
[]
P.W.O. Hoskin, L.P. Black. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol., 18 (2000), pp. 423-439
[]
P.W. Hoskin, U. Schaltegger. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., 53 (2003), pp. 27-62
[]
H. Hrushikesh, N. Prabhakar, A. Bhattacharya. Mesoproterozoic P-T–t–d history in the Vinjamuru domain, Nellore schist belt (SE India), and implications for SE India-East Antarctica correlation. Precambr. Res., 327 (2019), pp. 273-295
[]
V. Hurai, J.L. Paquette, O. Lexa, P. Konečný, I. Dianiška. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins. Mineral. Petrol., 109 (2015), pp. 519-530
[]
W.C. Jiang, H. Li, N.J. Evans, J.H. Wu. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn–Mo–Bi polymetallic deposit, South China. Ore Geol. Rev., 115 (2019), Article 103160
[]
N. Jöns, V. Schenk. The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent. Eur. J. Mineral., 23 (2011), pp. 127-156
[]
D.E. Kelsey, M. Hand. On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci. Front., 6 (2015), pp. 311-356
[]
D.E. Kelsey, M. Hand, C. Clark, C.J.L. Wilson. On the application of in situ monazite chemical geochronology to constraining P-T–t histories in high-temperature (> 850° C) polymetamorphic granulites from Prydz Bay, East Antarctica. J. Geol. Soc., 164 (2007), pp. 667-683
[]
H. Keppler, P.J. Wyllie. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 348 (6301) (1990), pp. 531-533
[]
F.J. Korhonen, M. Brown, C. Clark, S. Bhattacharya. Osumilite–melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P-T–t evolution of the Eastern Ghats Province, India. J. Metamorph. Geol., 31 (2013), pp. 881-907
[]
A.K. Ksienzyk, J. Jacobs, S.D. Boger, J. Košler, K.N. Sircombe, M.J. Whitehouse. U-Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: evidence of two orogenic cycles in Western Australia. Precambr. Res., 198 (2012), pp. 37-50
[]
S. Kumar. Petrochemistry and geochronology of pink granite from Songsak, east Garo Hills, Meghalaya. J. Geol. Soc. Ind., 35 (1990), pp. 39-45
[]
S. Kumar, V. Rino, Y. Hayasaka, K. Kimura, S. Raju, K. Terada, M. Pathak. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, 277 (2017), pp. 356-375
[]
Y. Kuribara, T. Tsunogae, Y. Takamura, Y. Tsutsumi. Petrology, geochemistry, and zircon U-Pb geochronology of the Zambezi Belt in Zimbabwe: Implications for terrane assembly in southern Africa. Geosci. Front., 10 (2019), pp. 2021-2044
[]
R.S. La Roche, F. Gervais, A. Tremblay, J.L. Crowley, G. Ruffet. Tectono-metamorphic history of the eastern Taureau shear zone, Mauricie area, Québec: Implications for the exhumation of the mid-crust in the Grenville Province. Precambr. Res., 257 (2015), pp. 22-46
[]
P. Lanari, O. Vidal, V. De Andrade, B. Dubacq, E. Lewin, E.G. Grosch, S. Schwartz. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci., 62 (2014), pp. 227-240
[]
X. Liu, L. Sun, Z. Xie, X. Yin, R. Zhu, Y. Wang. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments. Boreas, 36 (2007), pp. 182-197
[]
X. Liu, J. Hu, Y. Zhao, Y. Lou, C. Wei, X. Liu. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T–t path, collisional orogeny and implications for assembly of East Gondwana. Precambr. Res., 174 (2009), pp. 181-199
[]
X. Liu, Y. Zhao, J. Hu. The c. 1000–900 Ma and c. 550–500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution. Geol. Soc. London Spec. Publ., 383 (2013), pp. 95-112
[]
K.H. Mahan, P. Goncalves, M.L. Williams, A.M. Jercinovic. Dating metamorphic reactions and fluid flow: Application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. J. Metamorph. Geol., 24 (2006), pp. 193-217
[]
D. Majumdar, P. Dutta. Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: evidence from geochemistry and isotope geology. J. Asian Earth Sci., 117 (2016), pp. 256-268
[]
M.A. Mange, A.C. Morton. Geochemistry of heavy minerals. Developments in Sedimentology, 58 (2007), pp. 345-391
[]
V. Markwitz, C.L. Kirkland, N.J. Evans. Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: Implications for the structure of the West Australian Craton margin. Lithosphere, 9 (2017), pp. 3-13
[]
Matthews, J.A., 2013. Impact of accessory minerals on the distribution of trace elements in the continental crust: an integrated petrologic and phase equilibria modeling study of migmatites. Ph. D. Thesis. Colorado School of Mines, 236 pp.
[]
S.K. Mazumdar. A summary of the Precambrian geology of the Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., 23 (1976), pp. 311-334
[]
J.G. Meert. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362 (2003), pp. 1-40
[]
J.G. Meert, B.S. Lieberman. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res., 14 (2008), pp. 5-21
[]
A.S. Merdith, S.E. Williams, R.D. Müller, A.S. Collins. Kinematic constraints on the Rodinia to Gondwana transition. Precambr. Res., 299 (2017), pp. 132-150
[]
K. Mezger, M.A. Cosca. The thermal history of the Eastern Ghats Belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals: implications for the SWEAT correlation. Precambr. Res., 94 (1999), pp. 251-271
[]
I. Milord, E.W. Sawyer, M. Brown. Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France. J. Petrol., 42 (2001), pp. 487-505
[]
J.A. Mulder, J.A. Halpin, N.R. Daczko, K. Orth, S. Meffre, J.M. Thompson, L.J. Morrissey. A multiproxy provenance approach to uncovering the assembly of East Gondwana in Antarctica. Geology, 47 (2019), pp. 645-649
[]
J.S. Myers. Precambrian tectonic evolution of part of Gondwana, southwestern Australia. Geology, 18 (1990), pp. 537-540
[]
D.R. Nandy. Geodynamics of the Northeastern India and the Adjoining Region. ACB Publishers, Delhi (2001), p. 209
[]
R.C. Newton, T.V. Charlu, O.J. Kleppa. Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta., 44 (1980), pp. 933-941
[]
R.M. Palin, O.M. Weller, D.J. Waters, B. Dyck. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front., 7 (2016), pp. 591-607
[]
C.W. Passchier, R.A. Trouw. Microtectonics. Springer, Berlin, Heidelberg (2005), p. 366
[]
A.E. Patiño Douce, N. Harris. Experimental constraints on Himalayan anatexis. J. Petrol., 39 (4) (1998), pp. 689-710
[]
L.L. Perchuk, L.Y. Aranovich, K.K. Podlesskii, I. Lavrant’eva, V.Y. Gerasimov, V.V. Fed’Kin, V.I. Kitsul, L.P. Karsakov, N.V. Berdnikov. Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J. Metamorph. Geol., 3 (1985), pp. 265-310
[]
J.M. Pickering, D.A. Johnston. Fluid-absent melting behavior of a two-mica metapelite: experimental constraints on the origin of Black Hills granite. J. Petrol., 39 (1998), pp. 1787-1804
[]
D. Plavsa, A.S. Collins, J.D. Foden, C. Clark. The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India. Tectonics., 34 (2015), pp. 820-857
[]
R. Powell, T.J.B. Holland. On thermobarometry. J. Metamorph. Geol., 26 (2008), pp. 155-179
[]
A. Putnis. Mineral replacement reactions. Rev. Mineral. Geochem., 70 (2009), pp. 87-124
[]
C.L. Rosenberg, M.R. Handy. Experimental deformation of partially melted granite revisited: implications for the continental crust. J. Metamorph. Geol., 23 (2005), pp. 19-28
[]
D. Rubatto. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol., 184 (2002), pp. 123-138
[]
D. Rubatto. Zircon: the metamorphic mineral. Rev. Mineral. Geochem., 83 (2017), pp. 261-295
[]
M. Santosh, T. Tsunogae, S.P. Malaviarachchi, Z. Zhang, H. Ding, L. Tang, P.L. Dharmapriya. Neoproterozoic crustal evolution in Sri Lanka: insights from petrologic, geochemical and zircon U-Pb and Lu–Hf isotopic data and implications for Gondwana assembly. Precambr. Res., 255 (2014), pp. 1-29
[]
M. Santosh, C.N. Hu, X.F. He, S.S. Li, T. Tsunogae, E. Shaji, G. Indu. Neoproterozoic arc magmatism in the southern Madurai block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Res., 45 (2017), pp. 1-42
[]
E.W. Sawyer. Formation and evolution of granite magmas during crustal reworking: the significance of diatexites. J. Petrol., 39 (1998), pp. 1147-1167
[]
E.W. Sawyer. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. J. Metamorph. Geol., 19 (2001), pp. 291-309
[]
M.P. Searle, J.M. Cottle, M.J. Streule, D.J. Waters. Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh., 100 (2009), pp. 219-233
[]
J.M. Sheikh, S.C. Patel, A.K. Champati, K. Madhavan, D. Behera, A. Naik, A. Gerdes. Nepheline syenite intrusions from the Rengali Province, eastern India: Integrating geological setting, microstructures, and geochronological observations on their syntectonic emplacement. Precambr. Res., 346 (2020), Article 105802
[]
N. Sorcar, U. Hoppe, S. Dasgupta, S. Chakraborty. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: rapid cooling unrelated to exhumation?. Contrib. Mineral. Petrol., 167 (2014), pp. 1-34
[]
F.S. Spear, F.P. Florence. Thermobarometry in granulites: pitfalls and new approaches. Precambr. Res., 55 (1992), pp. 209-241
[]
S.K. Spreitzer, J.B. Walters, A. Cruz-Uribe, M.L. Williams, M.G. Yates, M.J. Jercinovic, E.S. Grew, C.J. Carson. Monazite petrochronology of polymetamorphic granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica. J. Metamorph. Geol., 39 (2021), pp. 1205-1228
[]
R.J. Stern. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci., 22 (1994), pp. 319-351
[]
M.J. Streule, M.P. Searle, D.J. Waters, M.S. Horstwood. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29 (2010), p. TC5011
[]
K. Stüwe. Geodynamics of the Lithosphere. Springer, Berlin (2002), p. 449
[]
K. Suzuki, M. Adachi. The chemical Th-U-total Pb isochron ages of zircon and monazite from the Gray Granite of the Hida terrane, Japan. Earth Sci. Nagoya Univ., 38 (1991), pp. 11-37
[]
K. Suzuki, T. Kato. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res., 14 (2008), pp. 569-586
[]
L. Tong, Z. Liu, Z.X. Li, X. Liu, X. Zhou. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: PT path, U-Pb ages and tectonic implications. Precambr. Res., 326 (2019), pp. 385-398
[]
P. Vermeesch. IsoplotR: A free and open toolbox for geochronology. Geosci. Front., 9 (2018), pp. 1479-1493
[]
R.H. Vernon, G.L. Clarke. Principles of Metamorphic Petrology. Cambridge University Press (2008), p. 478
[]
D. Vielzeuf. The spinel and quartz associations in high-grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. Contrib. Mineral. Petrol., 82 (1983), pp. 301-311
[]
D.R. Waldbaum, J.B. Thompson Jr.. Mixing properties of sanidine crystalline solutions: II. Calculations based on volume data. American Mineralogist. J. Earth Planet. Mat., 53 (1968), pp. 2000-2017
[]
X.L. Wang, M.A. Coble, J.W. Valley, X.J. Shu, K. Kitajima, M.J. Spicuzza, T. Sun. Influence of radiation damage on Late Jurassic zircon from southern China: Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chem. Geol., 389 (2014), pp. 122-136
[]
Y. Wang, D. Liu, S.L. Chung, L. Tong, L. Ren. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica. Am. J. Sci., 308 (2008), pp. 573-617
[]
W. Wang, Y. Zhao, C. Wei, N.R. Daczko, X. Liu, W. Xiao, Z. Zhang. High-ultrahigh temperature metamorphism in the Larsemann Hills: insights into the tectono-thermal evolution of the Prydz Bay Region, East Antarctica. J. Petrol., 63 (2022), p. egac002
[]
R.W. White, R. Powell, G.L. Clarke. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol., 20 (2002), pp. 41-55
[]
R.W. White, R. Powell, J.A. Halpin. Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. J. Metamorph. Geol., 22 (2004), pp. 825-845
[]
R.W. White, R. Powell, T.E. Johnson. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese-bearing minerals. J. Metamorph. Geol., 32 (2014), pp. 809-828
[]
D.L. Whitney, B.W. Evans. Abbreviations for names of rock-forming minerals. Am. Mineral., 95 (2010), pp. 185-187
[]
I.S. Williams, S. Claesson. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol., 97 (1987), pp. 205-217
[]
M.L. Williams, M.J. Jercinovic, P. Goncalves, K. Mahan. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem. Geol., 225 (2006), pp. 1-15
[]
C.M. Wu. Calibration of the garnet–biotite–Al2SiO5–quartz geobarometer for metapelites. J. Metamorph. Geol., 35 (2017), pp. 983-998
[]
C.M. Wu, J. Zhang, L.D. Ren. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium-to high-grade metapelites. J. Petrol., 45 (2004), pp. 1907-1921
[]
L. Xing, D. Trail, E.B. Watson. Th and U partitioning between monazite and felsic melt. Chem. Geol., 358 (2013), pp. 46-53
[]
C. Yakymchuk, C.L. Kirkland, C. Clark. Th/U ratios in metamorphic zircon. J. Metamorph. Geol., 36 (2018), pp. 715-737
[]
A. Yin, C.S. Dubey, A.A.G. Webb, T.K. Kelty, M. Grove, G.E. Gehrels, W.P. Burgess. Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geol. Soc. Am. Bull., 122 (2010), pp. 336-359
[]
J.W. Zi, J.R. Muhling, B. Rasmussen. Geochemistry of low-temperature (< 350° C) metamorphic and hydrothermal monazite. Earth-Sci. Rev., 249 (2023), Article 104668
[]
S. Zong, L. Ren, M. Wu. Grenville-age metamorphism in the Larsemann Hills: PT evolution of the felsic orthogneiss in the Broknes Peninsula, East Antarctica. Int. Geol. Rev., 63 (2021), pp. 866-881

23

Accesses

0

Citations

Detail

Sections
Recommended

/