Effects of source facies and maturity on individual carbon isotopic compositions of oil

Jingkun Zhang, Jian Cao, Baoli Xiang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101846.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101846. DOI: 10.1016/j.gsf.2024.101846

Effects of source facies and maturity on individual carbon isotopic compositions of oil

Author information +
History +

Abstract

Carbon isotopes have been used extensively in tracing the sources of oil. However, primary source facies and secondary alteration controls on oil isotopic compositions have not been well resolved, resulting in application uncertainties. A case study was undertaken for an alkaline lacustrine oil system in a lower Permian formation in the Junggar Basin, NW China. Results indicate that increasing maturity causes the carbon isotopic composition to become heavier for only short–middle-chain compounds, whereas source facies-related carbon assimilation controls the compositions of short-, middle-, and long-chain compounds. In particular, light-carbon assimilation during organic-matter degradation makes the isotopic composition lighter, whereas heavy carbon from the water mass makes it heavier. Accordingly, oils in this study area were divided into Type U and Type N oils based on individual compound carbon isotopic compositions, reflecting the difference in source facies in a highly saline and reducing stratified water environment. The results provide a better understanding of the controls on carbon isotopes in oil in sedimentary basins, reducing the uncertainty in oil–source correlation and addressing the origin of oil.

Keywords

Carbon assimilation / Water stratification / Carbon isotopes / Alkaline lacustrine / Junggar Basin

Cite this article

Download citation ▾
Jingkun Zhang, Jian Cao, Baoli Xiang. Effects of source facies and maturity on individual carbon isotopic compositions of oil. Geoscience Frontiers, 2024, 15(5): 101846 https://doi.org/10.1016/j.gsf.2024.101846

CRediT authorship contribution statement

Mohammed Musah: Conceptualization, Data curation, Formal analysis, Methodology. Stephen Taiwo Onifade: Conceptualization, Methodology, Supervision, Writing – original draft, Writing – review & editing. Elma Satrovic: Data curation, Writing – original draft, Visualization. Joseph Akwasi Nkyi: Writing – original draft.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix.

CS-ARDL model specifications

The study’s CS-ARDL models augmented with the lags of the cross-sectional averages of the input and output variables to account for cross-sectional dependence are specified as;
Interactive Model:(A1)lnEFPit=wi+j=1pyλijlnEFPit-j+j=0pxβ1jlnFGit-j+j=0pxβ2jlnGIit-j+j=0pxβ3jlnYit-j+j=0pxβ4jlnY2it-j+j=0pxβ5jlnNRRit-j+j=0pxδ1jlnFGGIit-j+j=0pγ1jlnEFP¯t-j+j=0pγ2jlnFG¯t-j+j=0pγ3jlnGI¯t-j+j=0pγ4jlnY¯t-j+j=0pγ5jlnY2¯t-j+j=0pγ6jlnNRR¯t-j+j=0pγ7jlnGIFG¯t-j+εitlnEFPit=wi+j=1pyλijlnEFPit-j+j=0pxβ1jlnFGit-j+j=0pxβ2jlnGIit-j+j=0pxβ3jlnYit-j+j=0pxβ4jlnY2it-j+j=0pxβ5jlnNRRit-j+j=0pxδ1jlnFGGIit-j+j=0pγ1jlnEFP¯t-j+j=0pγ2jlnFG¯t-j+j=0pγ3jlnGI¯t-j+j=0pγ4jlnY¯t-j+j=0pγ5jlnY2¯t-j+j=0pγ6jlnNRR¯t-j+j=0pγ7jlnGIFG¯t-j+εit
Nonlinear Model:(A2)lnEFPit=wi+j=1pyλijlnEFPit-j+j=0pxβ1jlnFGit-j+j=0pxβ2jlnGIit-j+j=0pxβ3jlnYit-j+j=0pxβ4jlnY2it-j+j=0pxβ5jlnNRRit-j+j=0pxπ1jlnFG2it-j+j=0pγ1jlnEFP¯t-j+j=0pγ2jlnFG¯t-j+j=0pγ3jlnGI¯t-j+j=0pγ4jlnY¯t-j+j=0pγ5jlnY2¯t-j+j=0pγ6jlnNRR¯t-j+j=0pγ7jlnFG2¯t-j+εitlnEFPit=wi+j=1pyλijlnEFPit-j+j=0pxβ1jlnFGit-j+j=0pxβ2jlnGIit-j+j=0pxβ3jlnYit-j+j=0pxβ4jlnY2it-j+j=0pxβ5jlnNRRit-j+j=0pxπ1jlnFG2it-j+j=0pγ1jlnEFP¯t-j+j=0pγ2jlnFG¯t-j+j=0pγ3jlnGI¯t-j+j=0pγ4jlnY¯t-j+j=0pγ5jlnY2¯t-j+j=0pγ6jlnNRR¯t-j+j=0pγ7jlnFG2¯t-j+εitwhere lnEFP¯lnEFP¯, lnFG¯lnFG¯, lnGI¯lnGI¯, lnY¯lnY¯, lnY2¯,lnNRR¯lnY2¯,lnNRR¯, lnGIFG¯lnGIFG¯, and lnFG2¯lnFG2¯ are the cross-sectional means of the endogenous and exogenous series correspondingly.

CCEMG model specifications

In the CCEMG procedure, the estimated model is augmented with cross-sectional averages of the regressors to account for cross-sectional correlations. Our study’s augmented CCEMG models to control for cross-sectional dependence are specified as;
Interactive Model:(A3)lnEFPit=α0+β1lnFGit+β2lnGIit+β3lnYit+β4lnY2it+β5lnNRRit+δ1lnGIFGit+ψ1lnFGit¯+ψ2lnGIit¯+ψ3lnYit¯+ψ4lnY2it¯+ψ5lnNRRit¯+ψ6lnGIFGit¯+εitlnEFPit=α0+β1lnFGit+β2lnGIit+β3lnYit+β4lnY2it+β5lnNRRit+δ1lnGIFGit+ψ1lnFGit¯+ψ2lnGIit¯+ψ3lnYit¯+ψ4lnY2it¯+ψ5lnNRRit¯+ψ6lnGIFGit¯+εit
Nonlinear Model:(A4)lnEFPit=α0+β1lnFGit+β2lnGIit+β3lnYit+β4lnY2it+β5lnNRRit+π1lnFG2it+Ω1lnFGit¯+Ω2lnGIit¯+Ω3lnYit¯+Ω4lnY2it¯+Ω5lnNRRit¯+Ω6lnFG2it¯+εitlnEFPit=α0+β1lnFGit+β2lnGIit+β3lnYit+β4lnY2it+β5lnNRRit+π1lnFG2it+Ω1lnFGit¯+Ω2lnGIit¯+Ω3lnYit¯+Ω4lnY2it¯+Ω5lnNRRit¯+Ω6lnFG2it¯+εitFrom the above equations lnFGit¯lnFGit¯, lnGIit¯lnGIit¯, lnYit¯lnYit¯, lnY2it,¯lnY2it,¯ lnNRRit¯lnNRRit¯, lnGIFGit¯lnGIFGit¯, and lnFG2it¯lnFG2it¯ denote the cross-sectional averages of the input variables.

AMG model specifications

The AMG approach follows a two-staged process. At the first stage, Eqs. (1), (2), and (3) are specified in a T−1 dummies and first differenced form as;
Interactive Model:(A5)ΔlnEFPit=α0+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+δ1lnGIFGit+t=2TtΔDt+εitΔlnEFPit=α0+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+δ1lnGIFGit+t=2TtΔDt+εit
Nonlinear Model:(A6)ΔlnEFPit=α0+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+π1lnFG2it+t=2TtΔDt+εitΔlnEFPit=α0+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+π1lnFG2it+t=2TtΔDt+εitFrom the equations above, ΔDtΔDt is the first difference order of T−1 dummies, and tt is its coefficient.
In the second stage, common dynamic processes are formed by transforming tt to PtPt(tt = PtPt) as;
Interactive Model:(A7)ΔlnEFPit=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+Ptdt+δ1lnGIFGit+εitΔlnEFPit=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+Ptdt+δ1lnGIFGit+εit(A8)ΔlnEFPit-Ptdt=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+δ1lnGIFGit+εitΔlnEFPit-Ptdt=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+δ1lnGIFGit+εit
Nonlinear Model:(A9)ΔlnEFPit=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+Ptdt+π1lnFG2it+εitΔlnEFPit=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+Ptdt+π1lnFG2it+εit(A10)ΔlnEFPit-Ptdt=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+π1lnFG2it+εitΔlnEFPit-Ptdt=αi+β1ΔlnFGit+β2ΔlnGIit+β3ΔlnYit+β4ΔlnY2it+β5ΔlnNRRit+π1lnFG2it+εitwhere dtdt is the dynamic process.
After the transformations, the elasticities of the predictors are respectively computed as;
Interactive Model:(A11)β1,AMG=1Ni=1Nβ1i,β2,AMG=1Ni=1Nβ2i,β3,AMG=INi=1Nβ3i,β4,AMG=INi=1Nβ4i,β5,AMG=INi=1Nβ5i,δ1,AMG=INi=1Nδ1i,β1,AMG=1Ni=1Nβ1i,β2,AMG=1Ni=1Nβ2i,β3,AMG=INi=1Nβ3i,β4,AMG=INi=1Nβ4i,β5,AMG=INi=1Nβ5i,δ1,AMG=INi=1Nδ1i,
Nonlinear Model:(A12)β1,AMG=1Ni=1Nβ1i,β2,AMG=1Ni=1Nβ2i,β3,AMG=INi=1Nβ3i,β4,AMG=INi=1Nβ4i,β5,AMG=INi=1Nβ5i,π1,AMG=INi=1Nπ1i,β1,AMG=1Ni=1Nβ1i,β2,AMG=1Ni=1Nβ2i,β3,AMG=INi=1Nβ3i,β4,AMG=INi=1Nβ4i,β5,AMG=INi=1Nβ5i,π1,AMG=INi=1Nπ1i,

References

J. Cao, S.P. Yao, Z.J. Jin, W.X. Hu, Y.J. Zhang, X.L. Wang, Y.Q. Zhang, Y. Tang. Petroleum migration and mixing in the northwestern Junggar Basin (NW China): constraints from oil-bearing fluid inclusion analyses. Org. Geochem., 37 (2006), pp. 827-846
J. Cao, D.W. Lei, Y.W. Li, Y. Tang, Abulimit, Q.S. Chang, T.T. Wang. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng formation, Junggar basin. Acta Perolei Sinica, 36 (2015), pp. 781-790
J. Cao, L.W. Xia, T.T. Wang, D.M. Zhi, Y. Tang, W.W. Li. An alkaline lake in the Late Paleozoic Ice Age (LPIA): a review and new insights into paleoenvironment and petroleum geology. Earth-Sci. Rev., 202 (2020), Article 103091
Z.L. Chen, G.D. Liu, X.L. Wang, G. Gao, B.L. Xiang, J.L. Ren, W.Y. Ma, Q. Zhang. Origin and mixing of crude oils in Triassic reservoirs of Mahu slope area in Junggar Basin, NW China: Implication for control on oil distribution in basin having multiple source rocks. Mar. Pet. Geol., 78 (2016), pp. 373-389
J.L. Clayton, J. Yang, J.D. King, P.G. Lillis, A. Warden. Geochemistry of oils from the Junggar Basin, northwest China. Am. Assoc. Pet. Geol. Bull., 81 (1997), pp. 1926-1944
J.W. Collister, R.E. Summons, E. Lichtfouse, J.M. Mayes. An isotopic biogeochemical study of the Green River oil shale. Org. Geochem., 19 (1992), pp. 265-276
Y. Duan, H. Zhang, B.X. Wu, C.Y. Zheng. Carbon isotope studies of individual n-alkanes in crude oils from Qaidam Basin. Mineral. Petrol., 23 (2003), pp. 91-94
K.J. Ficken, B. Li, G. Swain, D.L. Eglinton. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem., 31 (2000), pp. 745-749
M. Francavilla, P. Kamaterou, S. Intini, M. Monteleone, A. Zabaniotou. Cascading microalgae biorefinery: First pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res., 11 (2015), pp. 184-193
E. Gelpi, H. Schneider, J. Mann, J. Oro. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9 (1970), pp. 603-612
J.M. Hayes. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar. Geol., 113 (1993), pp. 111-125
J.M. Hayes, R. Takigiku, R. Ocampo, H.J. Callot, P. Albrecht. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale. Nature, 329 (1987), pp. 48-51
S.H. Hossein, B. Horsfield, S. Poetz, H. Wilkes, M.N. Yalcin, O. Kavak. Role of maturity in controlling the composition of solid bitumens in veins and vugs from SE Turkey as revealed by conventional and advanced geochemical tools. Energy Fuel., 31 (2017), pp. 2398-2413
P. Huang, J.L. Ren, E.T. Li, W.Y. Ma, H. Xu, S. Yu, Y.R. Zou, C.C. Pan. Biomarker and carbon isotopic compositions of source rock extracts and crude oils from Mahu Sag, Junggar Basin. Geochimica, 45 (2016), pp. 303-314
Z.S. Jiang, M.G. Fowler. Carotenoid-derived alkanes in oils from northwestern China. Org. Geochem., 10 (1986), pp. 831-839
W.M. Jiang, Y. Li, Y.Q. Xiong. Source and thermal maturity of crude oils in the Junggar Basin in northwest China determined from the concentration and distribution of diamondoids. Org. Geochem., 128 (2019), pp. 148-160
W.W. Li, J. Cao, D.M. Zhi, Y. Tang, W.J. He, T.T. Wang, L.W. Xia. Controls on shale oil accumulation in alkane lacustrine settings: Late Paleozoic Fengcheng Formation, northwestern Junggar Basin. Mar. Pet. Geol., 129 (2021), Article 105107
Z.X. Li, J.L. He, S.K. Xie. Compound-specific isotopic compositions of the Upper Jurassic-Lower Cretaceous Shenglihe oil shales in the Qiangtang Basin, Northern Xizang. Acta Geol. Sin., 91 (2017), pp. 453-464
H.J. Li, L.L. Li, R. Zhang, D.M. Tong, C.W. Hu. Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. Journal of Energy Chemistry, 23 (2014), pp. 732-741
S.M. Li, X.Q. Pang, H.J. Yang, Q.Y. Gu, J.F. Han, L. Shi. Characteristics and genetic type of the oils in the Tazhong Uplift. Earth Science-Journal of China University of Geosciences, 33 (2008), pp. 635-642
L. Ma, Y. Zhang, Z.H. Zhang, G.L. Zhang, S.Z. Wang. The geochemical characteristics of the Fengcheng Formation source rocks from the Halaalate area, Junggar Basin. China. J. Pet. Sci. Eng., 184 (2019), Article 106561
R. Mead, Y. Xu, J. Chong, R. Jaffé. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org. Geochem., 36 (2005), pp. 363-370
K.E. Peters, J.M. Moldowan. The Biomarker Guide. Prentice Hall, Englewood Cliffs N.J. (1993), p. 254
K.E. Peters, C.C. Walters, J.M. Moldowan. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press (2005), p. 1155
Qin, Y., 2006. Molecular, carbon and hydrogen isotopic composition of organic matter from Salt Lake depositional environment and hydrocarbon-generation characterization of sulfur-rich kerogen. Ph.D Thesis. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).
M. Radke, H. Willsch, D.H. Welte. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem., 52 (1980), pp. 406-411
T.E. Ruble, A.J. Bakel, R.P. Philp. Compound specific isotopic variability in Uinta Basin native bitumens: paleoenvironmental implications. Org. Geochem., 21 (1994), pp. 661-671
S. Schouten, W.C.M. Klein Breteler, P. Blokker, N. Schogt, W.I.C. Rijpstra, K. Grice, M. Baas, J.S. Sinninghe Damstéa. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim. Cosmochim. Acta, 62 (1998), pp. 1397-1406
S. Schouten, S.G. Wakeham, J.S. Sinninghe Damsté. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea. Org. Geochem., 32 (2001), pp. 1277-1281
Y. Tang, W.J. He, Y.B. Bai, X. Zhang. Source rock evaluation and hydrocarbon generation model of a Permian Alkaline Lakes—A case study of the Fengcheng Formation in the Mahu Sag, Junggar Basin. Minerals, 11 (2021), p. 644
K.Y. Tao, J. Cao, X. Chen, Z.M. Nueraili, W.X. Hu, C.H. Shi. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks. Mar. Pet. Geol., 109 (2019), pp. 623-640
L. Wang, X.X. Cao, Y. Li, Q. Yin, Z.G. Song. The carbon isotopic composition of individual biomarkers in lacustrine source rocks from Songliao Basin and its biogeochemical implication. Geochimica, 44 (2015), pp. 337-347
C.J. Wang, J.M. Fu, G.Y. Sheng. Molecular carbon isotopic geochemistry of buried-hill oils and source rocks of the West Liaohe Depression, China. Geochimica, 35 (2006), pp. 68-80
Y. Wang, L.F. Liu, H.C. Ji, G.J. Song, Z.H. Luo, X.Z. Li, T. Xu, L.Z. Li. Origin and accumulation of crude oils in Triassic reservoirs of Wuerhe-Fengnan area (WFA) in Junggar Basin, NW China: Constraints from molecular and isotopic geochemistry and fluid inclusion analysis. Mar. Pet. Geol., 96 (2018), pp. 71-93
S. Wang, G.W. Wang, L.L. Huang, L.T. Song, Y.L. Zhang, D. Li, Y.Y. Huang. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. Mar. Pet. Geol., 133 (2021), Article 105299
L.M. Wenger, G.H. Isaksen. Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments. Org. Geochem., 33 (2002), pp. 1277-1292
Z.L. Xiao, S.J. Chen, C.W. Liu, Z.X. Lu, J. Zhu, M.M. Han. Lake basin evolution from Early to Middle Permian and origin of Triassic Baikouquan oil in the western margin of Mahu Sag, Junggar Basin, China: Evidence from geochemistry. J. Pet. Sci. Eng., 203 (2021), Article 108612
S. Yu, X.L. Wang, B.L. Xiang, J.L. Ren, E.T. Li, J. Wang, P. Huang, G.B. Wang, H. Xu, C.C. Pan. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar Basin, China. Org. Geochem., 113 (2017), pp. 27-42
W.Z. Zhang, G. Pei, D.S. Guan, K.F. Cheng. Carbon isotopic components of individual and n-alkanes hydrocarbon in several basins, China. Geological Review, 39 (1993), pp. 79-85
M.F. Zhang, J.C. Tuo, C.J. Wu, X.J. Zhang, L.J. Guo. Carbon and hydrogen isotopic composition of individual n-alkanes for crude oil from north margin of Qaidam Basin. Acta Sedimentol. Sin., 13 (2012), pp. 109-115
Zhang, Y.J., 2020. Molecular and stable isotopic geochemical characteristics of crude oils from Jiyang Depression. Ph.D Thesis. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).
M.J. Zhao, D.F. Huang. Carbon isotopic distributive characteristics of crude oil monomers produced in different sedimentary environments. Experimental Petroleum Geology, 17 (1995), pp. 171-179
Y.M. Zhu, A.G. Su, D.G. Liang, K.M. Cheng, D.H. Peng. Geochemical characteristics of Tertiary saline lacustrine oils in the Qaidam Basin. Chin. J. Geol., 39 (2004), pp. 475-485

29

Accesses

0

Citations

Detail

Sections
Recommended

/