Understanding arsenic behavior in alluvial aquifers: Evidence from sediment geochemistry, solute chemistry and environmental isotopes
Shailesh Kumar Yadav, AL. Ramanathan, Chidambaram Sabarathinam, Alok Kumar, Manoj Kumar, Anshula Dhiman
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101844.
Understanding arsenic behavior in alluvial aquifers: Evidence from sediment geochemistry, solute chemistry and environmental isotopes
The hydro-geochemistry and isotopic variations in groundwater, coupled with sediment geochemistry, were investigated in the Middle Gangetic Plain, India, to better understand the aquifer dynamics that influence the arsenic (As) evolution and mobilization. Eighty-four groundwater samples, thirteen River water samples, and two sediment cores (33 mbgl) were studied. The samples were analyzed for major ions and trace metals, including As and stable isotopic variability (δ2H, δ18O, and δ13C). The study area was categorized into older and younger alluvium based on existing geomorphological differences. Younger alluvium exhibits higher As enrichment in sediment and groundwater, ranging of 2.59–31.52 mg/kg and bdl to 0.62 mg/L. Groundwater samples were thermodynamically more stable with As(OH)3 species ranging from 88.5% to 91.4% and FeOOH from 69% to 81%, respectively. PHREEQC and mineralogical analysis suggested goethite and siderite act as a source and sink for As. However, statistical analysis suggested reductive dissolution as the primary mechanism for As mobilization in the study area. Spatio-temporal analysis revealed elevated concentrations of As in the central and northeastern regions of the study area. Stable isotope (δ2H and δ18O) analysis inferred active recharge conditions primarily driven by precipitation. The depleted d-excess value and enriched δ18O in the groundwater of younger alluvium indicate the effect of groundwater recharge with significant evaporation enrichment. Groundwater recharge potentially decreased the quantity of arsenic in groundwater, whereas evaporation enrichment increased it. Rainwater infiltration during recharge introduces oxygenated water into the aquifer, leading to changes in the redox conditions and facilitating biogeochemical reactions. The carbon isotope (δ13C) results suggest that high microbial activity in younger alluvium promotes As leaching from sediment into the groundwater.
Groundwater recharge / Reductive dissolution / Older alluvium / Younger alluvium / Ghazipur / Stable isotope
S. Ahamed, M.K. Sengupta, A. Mukherjee, M.A. Hossain, B. Das, B. Nayak, A. Pal, S.C. Mukherjee, S. Pati, R.N. Dutta. Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci. Total Environ., 370 (2006), pp. 310-322,
CrossRef
Google scholar
|
A. Ahmad, L. Heijnen, L. de Waal, F. Battaglia-Brunet, W. Oorthuizen, B. Pieterse, P. Bhattacharya, A. van der Wal. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Water Res., 178 (2020), Article 115826,
CrossRef
Google scholar
|
A. APHA, W. P. C. F.. Standard methods for water and wastewater examination, twenty-firsted. APHA, Washington, DC, USA (2005)
|
M. Barbieri, M.D. Barberio, F. Banzato, A. Billi, T. Boschetti, S. Franchini, F. Gori, M. Petitta. Climate change and its effect on groundwater quality. Environ Geochem Health, 45 (2023), pp. 1133-1144,
CrossRef
Google scholar
|
A. Biswas, B. Nath, P. Bhattacharya, D. Halder, A.K. Kundu, U. Mandal, A. Mukherjee, D. Chatterjee, C.-M. Mörth, G. Jacks. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci. Total Environ., 431 (2012), pp. 402-412,
CrossRef
Google scholar
|
A. Biswas, P. Bhattacharya, A. Mukherjee, B. Nath, H. Alexanderson, A.K. Kundu, D. Chatterjee, G. Jacks. Shallow hydrostratigraphy in an arsenic affected region of Bengal Basin: Implication for targeting safe aquifers for drinking water supply. Sci. Total Environ., 485 (2014), pp. 12-22,
CrossRef
Google scholar
|
H.C. Bonsor, A.M. MacDonald, K.M. Ahmed, W.G. Burgess, M. Basharat, R.C. Calow, A. Dixit, S.S.D. Foster, K. Gopal, D.J. Lapworth. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrgeol. J., 25 (2017), pp. 1377-1406,
CrossRef
Google scholar
|
D. Chakraborti, S.K. Singh, M.M. Rahman, R.N. Dutta, S.C. Mukherjee, S. Pati, P.B. Kar. Groundwater arsenic contamination in the Ganga River Basin: a future health danger. Int. J. Environ. Res. Public Health, 15 (2018), p. 180,
CrossRef
Google scholar
|
V.S. Chauhan, R.T. Nickson, D. Chauhan, L. Iyengar, N. Sankararamakrishnan. Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release. Chemosphere, 75 (2009), pp. 83-91,
CrossRef
Google scholar
|
Z. Chi, X. Xie, K. Pi, Y. Wang, J. Li, K. Qian. The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone. Sci. Total Environ., 637 (2018), pp. 191-199,
CrossRef
Google scholar
|
S. Chidambaram, M.V. Prasanna, A.L. Ramanathan, K. Vasu, S. Hameed, U.K. Warrier, K. Srinivasamoorthy, R. Manivannan, K. Tirumalesh, P. Anandhan, G. Johnsonbabu. A study on the factors affecting the stable isotopic composition in precipitation of Tamil Nadu, India. Hydrol. Process., 23 (2009), pp. 1792-1800,
CrossRef
Google scholar
|
S. Chidambaram, U. Karmegam, P. Sasidhar, M.V. Prasanna, R. Manivannan, S. Arunachalam, S. Manikandan, P. Anandhan. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India. J Earth Syst Sci, 120 (2011), pp. 897-909,
CrossRef
Google scholar
|
S. Chidambaram, J. Sarathidasan, K. Srinivasamoorthy, C. Thivya, R. Thilagavathi, M.V. Prasanna, C. Singaraja, M. Nepolian. Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India. Appl Water Sci, 8 (2018), p. 27,
CrossRef
Google scholar
|
S. Chidambaram, B. Panda, T. Keesari, M.V. Prasanna, D.K. Singh, A.L. Ramanathan. Isotopic signatures to address the groundwater recharge in coastal aquifers. Mar. Pollut. Bull., 174 (2022), Article 113273,
CrossRef
Google scholar
|
H. Craig. Isotopic Variations in Meteoric Waters. Science, 133 (1961), pp. 1702-1703,
CrossRef
Google scholar
|
P. Das, A. Mukherjee, S.A. Hussain, M.S. Jamal, K. Das, A. Shaw, M.K. Layek, P. Sengupta. Stable isotope dynamics of groundwater interactions with Ganges river. Hydrol. Process., 35 (2021), p. e14002
|
S. Gates-Rector, T. Blanton. The powder diffraction file: a quality materials characterization database. Powder Diffr., 34 (2019), pp. 352-360,
CrossRef
Google scholar
|
R.J. Gibbs. Mechanisms Controlling World Water Chemistry. Science, 170 (1970), pp. 1088-1090,
CrossRef
Google scholar
|
M. Hossain, P. Bhattacharya, S.K. Frape, G. Jacks, M.M. Islam, M.M. Rahman, M. von Brömssen, M.A. Hasan, K.M. Ahmed. Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. Sci. Total Environ., 493 (2014), pp. 615-625,
CrossRef
Google scholar
|
India Water Resources Information System Ministry of Jal Shakti, Government of India (access on 24 October 2023).
|
N. Janardhana Raju. Arsenic exposure through groundwater in the middle Ganga plain in the Varanasi environs, India: A future threat. J Geol Soc India, 79 (2012), pp. 302-314,
CrossRef
Google scholar
|
S.K. Joshi, S.P. Rai, R. Sinha, S. Gupta, A.L. Densmore, Y.S. Rawat, S. Shekhar. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). J. Hydrol., 559 (2018), pp. 835-847,
CrossRef
Google scholar
|
T. Keesari, U.K. Sinha, D. Saha, S.N. Dwivedi, R.R. Shukla, H. Mohokar, A. Roy. Isotope and hydrochemical systematics of groundwater from a multi-tiered aquifer in the central parts of Indo-Gangetic Plains, India–implications for groundwater sustainability and security. Sci. Total Environ., 789 (2021), Article 147860,
CrossRef
Google scholar
|
T.A. Khan, A. Rahman, I. Ali, J. Khan, S.D. Alam. Assessing spatial variations of groundwater arsenic with surface elevation, slope and water-table using geospatial techniques in Ballia district, India. Model. Earth Syst. Environ., 2 (2016), p. 83,
CrossRef
Google scholar
|
M. Konert, J. Vandenberghe. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44 (1997), pp. 523-535,
CrossRef
Google scholar
|
A. Kontny, M. Schneider, E. Eiche, E. Stopelli, M. Glodowska, B. Rathi, J. Göttlicher, J.M. Byrne, A. Kappler, M. Berg. Iron mineral transformations and their impact on As (im) mobilization at redox interfaces in As-contaminated aquifers. Geochim. Cosmochim. Acta, 296 (2021), pp. 189-209,
CrossRef
Google scholar
|
G. Krishan, D.J. Lapworth, A.M. MacDonald, M.S. Rao. Groundwater recharge sources and processes in northwest India: Evidence from high frequency water isotope observations. J. Hydrol.: Reg. Stud., 50 (2023), Article 101570,
CrossRef
Google scholar
|
P. Kumar, R. Avtar, A. Kumar, C.K. Singh, P. Tripathi, G. Senthil Kumar, A.L. Ramanathan. Geophysical approach to delineate arsenic hot spots in the alluvial aquifers of Bhagalpur district, Bihar (India) in the central Gangetic plains. Appl Water Sci, 4 (2014), pp. 89-97,
CrossRef
Google scholar
|
S. Kumar, S.K. Joshi, N. Pant, S. Singh, B. Chakravorty, R.K. Saini, V. Kumar, A. Singh, N.C. Ghosh, A. Mukherjee, P. Rai, V. Singh. Hydrogeochemical evolution and groundwater recharge processes in arsenic enriched area in central Gangetic plain. India. Applied Geochemistry, 131 (2021), Article 105044,
CrossRef
Google scholar
|
M. Kumar, A.K. Patel, A. Das, P. Kumar, R. Goswami, P. Deka, N. Das. Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health, 39 (2017), pp. 161-178,
CrossRef
Google scholar
|
M. Kumar, A.K. Patel, A. Singh. Anthropogenic dominance on geogenic arsenic problem of the groundwater in the Ganga-Brahmaputra floodplain: A paradox of origin and mobilization. Sci. Total Environ., 807 (2022), Article 151461,
CrossRef
Google scholar
|
M. Kumar, A.L. Ramanathan. Vertical geochemical variations and speciation studies of As, Fe, Mn, Zn, and Cu in the sediments of the central gangetic basin: Sequential extraction and statistical approach. Int. J. Environ. Res. Public Health, 15 (2018), p. 183,
CrossRef
Google scholar
|
M. Kumar, A.L. Ramanathan, M.M. Rahman, R. Naidu. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Sci. Total Environ., 573 (2016), pp. 1103-1114,
CrossRef
Google scholar
|
M. Kumar, A.L. Ramanathan, A. Mukherjee, S. Verma, M.M. Rahman, R. Naidu. Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environ. Technol. Innov., 12 (2018), pp. 243-260,
CrossRef
Google scholar
|
M. Kumar, A.L. Ramanathan, A. Mukherjee, R. Sawlani, S. Ranjan. Delineating sources of groundwater recharge and carbon in Holocene aquifers of the central Gangetic basin using stable isotopic signatures. Isot. Environ. Health Stud., 55 (2019), pp. 254-271,
CrossRef
Google scholar
|
A. Kumar, Y. Ray, R. Ghosh, S. Bandyopadhyay, V. Singh, P. Srivastava. Late Quaternary sedimentation history of the Himalaya and its foreland. Episodes J. Internat. Geosci., 43 (2020), pp. 498-510, 10.18814/epiiugs/2020/020032
|
I.Q. Lima, O.E.R. Ramos, M.O. Munoz, M.I.C. Tapia, J.Q. Aguirre, A. Ahmad, J.P. Maity, M.T. Islam, P. Bhattacharya. Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of Lower Katari Basin, Bolivian Altiplano. J. Hydrol., 594 (2021), Article 125778,
CrossRef
Google scholar
|
Y. Liu, T. Ma, J. Chen, C. Xiao, R. Liu, Y. Du, S. Fendorf. Contribution of clay-aquitard to aquifer iron concentrations and water quality. Sci. Total Environ., 741 (2020), Article 140061,
CrossRef
Google scholar
|
C. Mahanta, G. Enmark, D. Nordborg, O. Sracek, B. Nath, R.T. Nickson, R. Herbert, G. Jacks, A. Mukherjee, A.L. Ramanathan. Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra river floodplain, India. J. Hydrol.: Reg. Stud., 4 (2015), pp. 154-171,
CrossRef
Google scholar
|
D. Marghade, G. Mehta, S. Shelare, G. Jadhav, K.C. Nikam. Arsenic Contamination in Indian Groundwater: From Origin to Mitigation Approaches for a Sustainable Future. Water, 15 (2023), p. 4125,
CrossRef
Google scholar
|
M. Meybeck. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci., 287 (1987), pp. 401-428
|
M. Midhun, P.R. Lekshmy, R. Ramesh, K. Yoshimura, K.K. Sandeep, S. Kumar, R. Sinha, A. Singh, S. Srivastava. The Effect of Monsoon Circulation on the Stable Isotopic Composition of Rainfall. JGR Atmospheres, 123 (2018), pp. 5205-5221,
CrossRef
Google scholar
|
A.K. Mishra, H. Shinjo, H.S. Jat, M.L. Jat, R.K. Jat, S. Funakawa, J.M. Sutaliya. Farmers’ perspectives as determinants for adoption of conservation agriculture practices in Indo-Gangetic Plains of India. Resour. Conservat. Recycl. Adv., 15 (2022), Article 200105,
CrossRef
Google scholar
|
A. Mukherjee. Groundwater chemistry and arsenic enrichment of the ganges river basin aquifer systems. A. Mukherjee (Ed.), Groundwater of South Asia, Groundwater Quality and Pollution, Springer, Singapore, (2018), pp. 275-289
|
A. Mukherjee, P. Bhattacharya, K. Savage, A. Foster, J. Bundschuh. Distribution of geogenic arsenic in hydrologic systems: controls and challenges. J. Contam. Hydrol., 99 (2008), pp. 1-7,
CrossRef
Google scholar
|
A. Mukherjee, B.R. Scanlon, A.E. Fryar, D. Saha, A. Ghosh, S. Chowdhuri, R. Mishra. Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): influence of geology and geomorphology. Geochim. Cosmochim. Acta, 90 (2012), pp. 283-302,
CrossRef
Google scholar
|
S.S. Nimya, S. Sengupta, A. Parekh, S.K. Bhattacharya, R. Pradhan. Region-specific performances of isotope enabled general circulation models for Indian summer monsoon and the factors controlling isotope biases. Clim Dyn, 59 (2022), pp. 3599-3619,
CrossRef
Google scholar
|
Parkhurst, D. L., 1995. User's guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations (Report No. 95-4227). US Department of the Interior, US Geological Survey. https://doi.org/10.3133/wri954227
|
A.M. Piper. A graphic procedure in the geochemical interpretation of water-analyses. Trans. AGU, 25 (1944), p. 914,
CrossRef
Google scholar
|
M.A. Rahman, M.A.B. Siddique, R. Khan, A.S. Reza, A.H.A.N. Khan, M.A. Akbor, M.S. Islam, A.B. Hasan, M.I. Hasan, I.B. Elius. Mechanism of arsenic enrichment and mobilization in groundwater from southeastern Bangladesh: water quality and preliminary health risks assessment. Chemosphere, 294 (2022), Article 133556,
CrossRef
Google scholar
|
A.L. Ramanathan, P. Tripathi, M. Kumar, A. Kumar, P. Kumar, M. Kumar, P. Bhattacharya. Arsenic in groundwaters of the central Gangetic Plain Regions of India. Understanding the Geological and Medical Interface of Arsenic-As 2012: Proceedings of the 4th International Congress on Arsenic in the Environment, 22-27 July 2012, CRC Press, Cairns, Australia (2012), p. 63
|
P.S. Roy, R.M. Ramachandran, O. Paul, P.K. Thakur, S. Ravan, M.D. Behera, C. Sarangi, V.P. Kanawade. Anthropogenic Land use and land cover changes—A review on its environmental consequences and climate change. J Indian Soc Remote Sens, 50 (2022), pp. 1615-1640,
CrossRef
Google scholar
|
D. Saha. Arsenic groundwater contamination in parts of middle Ganga plain, Bihar. Curr. Sci., 97 (2009), pp. 753-755
|
D. Saha, S. Sahu. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Environ. Geochem. Health, 38 (2016), pp. 315-337,
CrossRef
Google scholar
|
D. Saha, S.S. Sarangam, S.N. Dwivedi, K.G. Bhartariya. Evaluation of hydrogeochemical processes in arsenic-contaminated alluvial aquifers in parts of Mid-Ganga Basin, Bihar, Eastern India. Environ. Earth Sci., 61 (2010), pp. 799-811,
CrossRef
Google scholar
|
D. Saha, U.K. Sinha, S.N. Dwivedi. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain. Appl. Geochem., 26 (2011), pp. 432-443,
CrossRef
Google scholar
|
B.A. Shah. Arsenic in groundwater, Quaternary sediments, and suspended river sediments from the Middle Gangetic Plain, India: distribution, field relations, and geomorphological setting. Arab. J. Geosci., 7 (2014), pp. 3525-3536,
CrossRef
Google scholar
|
E. Shaji, M. Santosh, K.V. Sarath, P. Prakash, V. Deepchand, B.V. Divya. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front., 12 (2021), Article 101079,
CrossRef
Google scholar
|
L. Shapiro. Rapid analysis of Silicate, Carbonate, And Phosphate Rocks: Revised Edition (Report No. 1401). Bulletin, U.S. Government Printing Office (1975)
|
I.B. Singh. Late quaternary history of the Ganga plain. Geol. Soc. India, 64 (2004), pp. 431-454
|
A. Singh, A.K. Patel, J.P. Deka, M. Kumar. Natural recharge transcends anthropogenic forcing that influences arsenic vulnerability of the quaternary alluviums of the Mid-Gangetic Plain. npj Clean Water, 3 (2020), p. 27,
CrossRef
Google scholar
|
M. Singh, A.K. Singh, S. Swati, S. Singh, A.K. Chowdhary. Arsenic mobility in fluvial environment of the Ganga Plain, northern India. Environ. Earth Sci., 59 (2010), pp. 1703-1715,
CrossRef
Google scholar
|
R. Sinha, S.K. Tandon, M.R. Gibling, P.S. Bhattacharjee, A.S. Dasgupta. Late Quaternary geology and alluvial stratigraphy of the Ganga basin. Himal. Geol., 26 (2005), pp. 223-240
|
K. Srinivasamoorthy, M. Gopinath, S. Chidambaram, M. Vasanthavigar, V.S. Sarma. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J. King Saud Univ.-Sci., 26 (2014), pp. 37-52,
CrossRef
Google scholar
|
I. Standards. Indian standard drinking water–specification (Second revision) IS 10500 (2012): drinking water. Water Supply, 25 (2012), pp. 1-3
|
L. Surinaidu, U. Amarasinghe, R. Maheswaran, M.J. Nandan. Assessment of long-term hydrogeological changes and plausible solutions to manage hydrological extremes in the transnational Ganga river basin. H2Open J., 3 (2020), pp. 457-480,
CrossRef
Google scholar
|
Y. Suzuki, E. Tanoue, H. Ito. A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement. Deep Sea Research Part A. Oceanogr. Res. Papers, 39 (1992), pp. 185-198,
CrossRef
Google scholar
|
Takeno, N., 2005. Atlas of Eh-pH diagrams. Geological survey of Japan open file report 419, 285 pp.
|
J.K. Tripathi, P. Ghazanfari, V. Rajamani, S.K. Tandon. Geochemistry of sediments of the Ganges alluvial plains: evidence of large-scale sediment recycling. Quat. Int., 159 (2007), pp. 119-130,
CrossRef
Google scholar
|
S. Verma, A. Mukherjee, R. Choudhury, C. Mahanta. Brahmaputra river basin groundwater: solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings. J. Hydrol.: Reg. Stud., 4 (2015), pp. 131-153,
CrossRef
Google scholar
|
S.K. Yadav, A.L. Ramanathan, M. Kumar, S. Chidambaram, Y.P. Gautam, C. Tiwari. Assessment of arsenic and uranium co-occurrences in groundwater of central Gangetic Plain, Uttar Pradesh, India. Environ. Earth Sci., 79 (2020), pp. 1-14,
CrossRef
Google scholar
|
Z. Zhao, Y. Meng, Q. Yuan, Y. Wang, L. Lin, W. Liu, F. Luan. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Sci. Total Environ., 763 (2021), Article 144613,
CrossRef
Google scholar
|
/
〈 |
|
〉 |