A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2

Gaurav Srivastava, Harshita Bhatia, Poonam Verma, Yogesh P. Singh, Shailesh Agrawal, Torsten Utescher, R.C. Mehrotra

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101838.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101838. DOI: 10.1016/j.gsf.2024.101838

A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2

Author information +
History +

Abstract

The equatorial evergreen forests nourish the world's biodiversity hotspots and are considered the lungs of the Earth. However, their future survival is uncertain, due to anthropogenically increased carbon emissions and changes in the hydrological cycle. Understanding the changes in the hydrological cycle in the equatorial region due to an increase in carbon emission is of prime importance. The early Paleogene hyperthermal events are potential analogs to understand the consequences of high carbon emission on the hydrological cycle. In this communication, we quantify the terrestrial seasonal climate using the plant proxy and infer that during the Eocene Thermal Maximum 2 when atmospheric carbon dioxide concentration was > 1000 ppmv near the palaeo-equator (∼0.6°N), the rainfall decreased significantly, leading to the expansion of deciduous forests. This study raises important questions about the future survival of equatorial rainforests and biodiversity hotspots under increased carbon emissions.

Keywords

Coexistence approach / Climate / ETM-2 / Global warming / Hyperthermal / Paleogene

Cite this article

Download citation ▾
Gaurav Srivastava, Harshita Bhatia, Poonam Verma, Yogesh P. Singh, Shailesh Agrawal, Torsten Utescher, R.C. Mehrotra. A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2. Geoscience Frontiers, 2024, 15(5): 101838 https://doi.org/10.1016/j.gsf.2024.101838

CRediT authorship contribution statement

Luyi Yang: Formal analysis, Methodology, Writing – original draft. Xuan Ji: Conceptualization, Funding acquisition, Writing – review & editing. Meng Li: Data curation. Pengwu Yang: Data curation. Wei Jiang: Writing – review & editing. Linyan Chen: Writing – review & editing. Chuanjian Yang: Writing – review & editing. Cezong Sun: Writing – review & editing. Yungang Li: Conceptualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF1302405), the Yunnan Province Key Research and Development Program (Grant No. 202203AC100005), the National Natural Science Foundation of China (Grant No. 42061005, 42067033), and Applied Basic Research Programs of Yunnan Province (Grant No. 202101AT070110, 202001BB050073).

References

S. Agarwal, P. Verma, M.R. Rao, R. Garg, V.V. Kapur, S. Bajpai. Lignite deposits of the Kutch Basin, western India: Carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. J. Asian Earth Sci., 146 (2017), pp. 296-303
T. Agterhuis, M. Ziegler, N.J. de Winter, L.J. Lourens. Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Communications Earth and Environment, 3 (2022), p. 39
M.R. Allen, W.J. Ingram. Constraints on future changes in climate and the hydrological cycle. Nature, 419 (2002), pp. 224-232
D. Barboni, R. Bonnefille, S. Prasad, B.R. Ramesh. Variation in modern pollen from tropical evergreen forests and the monsoon seasonality gradient in SW India. J. Veg. Sci., 14 (2003), pp. 551-562
S.K. Biswas. Basin framework, palaeoenvironment and depositional history of the Mesozoic sediments of Kutch Basin, western India. Quarterly Journal of the Geological, Mining, and Metallurgical Society of India, 53 (1981), pp. 56-85
S.K. Biswas. Rift basins in western margin of India with special reference to Kutch Basin and its hydrocarbon prospects. Am. Assoc. Pet. Geol. Bull., 65 (1982), pp. 1497-1513
S.K. Biswas. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135 (1987), pp. 307-327
S.K. Biswas. Tertiary stratigraphy of Kutch. J. Palaeontol. Soc. India, 37 (1992), pp. 1-29
S.K. Biswas, D.S.N. Raju. Note of the rock-stratigraphic classification of the Tertiary sediments of Kutch. Q. J. Geol. Min. Metall. Soc. India, 43 (1971), pp. 117-180
S.K. Biswas, D.S.N. Raju. The rock–stratigraphic classification of the Tertiary sediments of Kutch. Bull. Oil Nat. Gas Comm., 10 (1973), pp. 37-46
O.V. Bondarenko, N.I. Blokhina, V. Mosbrugger, T. Utescher. Paleogene climate dynamics in the Primorye Region, Far East of Russia, based on a Coexistence Approach analysis of palaeobotanical data. Palaeobiodivers. Palaeoenviron., 100 (2020), pp. 5-31
H.G. Champion, S.K. Seth. . A Revised Survey of Forest Types of India, Natraj Publisher, Dehradun, India (1968), pp. 404-pp
A.E. Chew. Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2. Clim. Past, 11 (2015), pp. 1223-1237
R.T. Corlett, R.B. Primack. Tropical Rain Forests: An Ecological and Biogeographical Comparison. Wiley-Blackwell, Oxford (2011), p. 336 pp
T.L.P. Couvreur, W.J. Baker. Tropical rain forest evolution: palms as a model group. BMC Biol., 11 (2013), pp. 1-4
B.S. Cramer, J.D. Wright, D.V. Kent, M.P. Aubry. Orbital climate forcing of 13δC excursions in the late Paleocene-early Eocene (chrons C24n–C25n). Paleoceanography, 18 (4) (2003), p. 1097,
CrossRef Google scholar
S. D’haenens, A. Bornemann, P. Stassen, R.P. Speijer. Multiple early Eocene benthic foraminiferal assemblage and δ13C fluctuations at DSDP site 401 (Bay of Biscay – NE Atlantic). Mar. Micropaleontol., 88 (2012), pp. 15-35
R. D’Onofrio, V. Luciani, E. Fornaciari, L. Giusberti, F.B. Galazzo, E. Dallanave, T. Westerhold, M. Sprovieri, S. Telch. Environmental perturbations at the early Eocene ETM2, H2, and I1 events as inferred by Tethyan calcareous plankton (Terche section, northeastern Italy). Paleoceanography, 31 (2016), pp. 1225-1247
C.-M. Feng, S.R. Manchester, Q.-Y. Xiang (Jenny). Phylogeny and biogeography of Alangiaceae (Cornales) inferred from sequences, morphology, and fossils. Mol. Phylogenet. Evol., 51 (2009), pp. 201-214
R. Garg, V. Prasad, B. Thakur, I.B. Singh, K. Ateequzzaman. Dinoflagellate cysts from Naredi Formation, Southwestern Kutch, India: implication on age and palaeoenvironment. J. Palaeontol. Soc. India, 56 (2011), pp. 201-218
Ø. Hammer, D.A.T. Harper, P.D. Ryan. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4 (2001), pp. 1-9
L. Handley, A. O’Halloran, P.N. Pearson, E. Hawkins, C.J. Nicholas, S. Schouten, I.K. McMillan, R.D. Pancost. Changes in the hydrological cycle in tropical East Africa during the Paleocene-Eocene Thermal Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol., 329 (2012), pp. 10-21
D.T. Harper, B. Hönisch, R.E. Zeebe, G. Shaffer, L.L. Haynes, E. Thomas, J.C. Zachos. The magnitude of surface ocean acidification and carbon release during Eocene Thermal Maximum 2 (ETM-2) and the Paleocene-Eocene Thermal Maximum (PETM). Paleoceanogr. Paleoclimatol., 35 (2) (2020), Article e2019PA003699,
CrossRef Google scholar
I.M. Held, B.J. Soden. Robust responses of the hydrological cycle to global warming. J. Clim., 19 (2006), pp. 5686-5699
R.J. Hijmans, S.E. Cameron, J.L. Parra, P.G. Jones, A. Jarvis. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25 (2005), pp. 1965-1978
C. Jaramillo, D. Ochoa, L. Contreras, M. Pagani, H.C. Ortiz, L.M. Pratt, S. Krishnan, A. Cardona, M. Romero, L. Quiroz, G. Rodriguez. Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science, 330 (2010), pp. 957-961
T.D. Jones, D.J. Lunt, D.N. Schmidt, A. Ridgwell, A. Sluijs, P.J. Valdes, M. Maslin. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth Sci. Rev., 125 (2013), pp. 123-145
G. Keller, H. Khozyem, N. Saravanan, T. Adatte, S. Bajpai, J. Spangenberg. Biostratigraphy and foraminiferal paleoecology of the early Eocene Naredi Formation, SW Kutch, India. Journal of Geological Society of India Special Publication, 1 (2013), pp. 183-196
H. Kreft, W. Jetz, J. Mutke, W. Barthlott. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography, 33 (2010), pp. 408-419
S. Krishnan, M. Pagani, M. Huber, A. Sluijs. High latitude hydrological changes during the Eocene Thermal Maximum 2. Earth Planet. Sci. Lett., 404 (2014), pp. 167-177
G. Lewis, B. Schrire, B. Mackider, M. Lock. . Legumes of the World, Royal Botanic Gardens, Kew, Richmond, U.K (2005), pp. 577-pp
Y. Li, P. Sun, H.J. Falcon-Lang, Z. Liu, B. Zhang, Q. Zhang, J. Wang, Y. Xu. Eocene hyperthermal events drove episodes of vegetation turnover in the Fushun Basin, Northeast China: Evidence from a palaeoclimate analysis of palynological assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol., 610 (2023), Article 111317,
CrossRef Google scholar
A. Licht, M. Van Cappelle, H.A. Abels, J.B. Ladant, J. Trabucho-Alexandre, C. France-Lanord, Y. Donnadieu, J. Vandenberghe, T. Rigaudier, C. Lecuyer, D. Terry, R. Adriaens, A. Boura, Z. Guo, A.N. Soe, J. Quade, G. Dupont-Nivet, J.J. Jaeger. Asian monsoons in a late Eocene greenhouse world. Nature, 513 (2014), pp. 501-506
L.J. Lourens, A. Sluijs, D. Kroon, J.C. Zachos, E. Thomas, U. Rohl, J. Bowles, I. Raffi. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 435 (2005), pp. 1083-1087
F.A. McInerney, S.L. Wing. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci., 39 (2011), pp. 489-516
S. Mishra, S.P. Singh, M. Arif, A.K. Singh, G. Srivastava, B.R. Ramesh, V. Prasad. Late Maastrichtian vegetation and palaeoclimate: Palynological inferences from the Deccan Volcanic Province of India. Cretac. Res., 133 (2022), Article 105126,
CrossRef Google scholar
V. Mosbrugger, T. Utescher, D.L. Dilcher. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102 (2005), pp. 14964-14969
V. Mosbrugger, T. Utescher. The Coexistence Approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol., 134 (1997), pp. 61-86
J. Muller. Fossil pollen records of extant angiosperms. Bot. Rev., 47 (1981), pp. 1-140
M.J. Müller, D. Hennings. The Global Climate Data Atlas on CD Rom. University Flensburg, Institute für Geografie, Flensburg (2000)
M. New, D. Lister, M. Hulme, I. Makin. A high-resolution data set of surface climate over global land areas. Climate Res., 21 (2002), pp. 1-25
M.J. Nicolo, G.R. Dickens, C.J. Hollis, J.C. Zachos. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 35 (2007), pp. 699-702
I.O. Norton, J.G. Sclater. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J. Geophys. Res. Solid Earth, 84 (1979), pp. 6803-6830
M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature, 442 (2006), pp. 671-675
R.T. Pierrehumbert. The hydrologic cycle in deep-time climate problems. Nature, 419 (2002), pp. 191-198
Powo. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew (2022)
J. Pross, L. Contreras, P.K. Bijl, D.R. Greenwood, S.M. Bohaty, S. Schouten, J.A. Bendle, U. Röhl, L. Tauxe, J. Raine, C.E. Huck. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488 (2012), pp. 73-77
P.K. Saraswati, U. Sarkar, S. Banerjee. Nummulites solitarius- Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi Formation. J. Geol. Soc. India, 79 (2012), pp. 476-482
R. Secord, J.I. Bloch, S.G. Chester, D.M. Boyer, A.R. Wood, S.L. Wing, M.J. Kraus, F.A. McInerney, J. Krigbaum. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum. Science, 335 (2012), pp. 959-962
A. Shukla, R.C. Mehrotra. Early Eocene plant megafossil assemblage of western India: paleoclimatic and paleobiogeographic implications. Rev. Palaeobot. Palynol., 258 (2018), pp. 123-132
B.S. Slotnick, G.R. Dickens, M.J. Nicolo, C.J. Hollis, J.S. Crampton, J.C. Zachos, A. Sluijs. Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: the record at Mead Stream, New Zealand. J. Geol., 120 (2012), pp. 487-505
A. Sluijs, S. Schouten, T.H. Donders, P.L. Schoon, U. Röhl, G.J. Reichart, F. Sangiorgi, J.H. Kim, J.S.S. Damsté, H. Brinkhuis. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci., 2 (2009), pp. 777-780
G. Srivastava, K.N. Paudayal, T. Utescher, R.C. Mehrotra. Miocene vegetation shift and climate change: evidence from the Siwalik of Nepal. Global Planet. Change, 161 (2018), pp. 108-120
G. Srivastava, H. Bhatia, P. Verma, Y.P. Singh, T. Utescher, R.C. Mehrotra. High rainfall afforded resilience to tropical rainforests during Early Eocene Climate Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol., 628 (2023), Article 111762,
CrossRef Google scholar
J. Srivastava, V. Prasad. Evolution and paleobiogeography of mangroves. Mar. Ecol., 40 (2019), p. e12571
L. Stap, L.J. Lourens, E. Thomas, A. Sluijs, S. Bohaty, J.C. Zachos. High resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology, 38 (2010), pp. 607-610
T. Utescher, A.A. Bruch, B. Erdei, L. François, D. Ivanov, F.M.B. Jacques, A.K. Kern, Y.S.C. Liu, V. Mosbrugger, R.A. Spicer. The Coexistence Approach– Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol., 410 (2014), pp. 58-73
P. Verma, R. Garg, M.R. Rao, S. Bajpai. Palynofloral diversity and palaeoenvironments of early Eocene Akri lignite succession, Kutch Basin, western India. Palaeobiodivers. Palaeoenviron., 100 (2020), pp. 605-627
D.A. Willard, T.H. Donders, T. Reichgelt, D.R. Greenwood, F. Sangiorgi, F. Peterse, K.G. Nierop, J. Frieling, S. Schouten, A. Sluijs. Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Global Planet. Change, 178 (2019), pp. 139-152
S.L. Wing, G.J. Harrington, F.A. Smith, J.I. Bloch, D.M. Boyer, K.H. Freeman. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310 (2005), pp. 993-996
J.C. Zachos, G.R. Dickens, R.E. Zeebe. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451 (2008), pp. 279-283
J.C. Zachos, H. McCarren, B. Murphy, U. Röhl, T. Westerhold. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet. Sci. Lett., 299 (2010), pp. 242-249
J. Zachos, M. Pagani, L. Sloan, E. Thomas, K. Billups. Trends, rhythms and aberrations in global climate 65 Ma to present. Science, 292 (2001), pp. 686-693
J.C. Zachos, U. Röhl, S.A. Schellenberg, A. Sluijs, D.A. Hodell, D.C. Kelly, E. Thomas, M. Nicolo, I. Raffi, L.J. Lourens, H. McCarren. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308 (2005), pp. 1611-1615
R.E. Zeebe, A. Ridgwell, J.C. Zachos. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci., 9 (2016), pp. 325-329

Accesses

Citations

18

Altmetric

Detail

Sections
Recommended

/