Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds

Stefan Steger, Mateo Moreno, Alice Crespi, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Lotte de Vugt, Thomas Zieher, Martin Rutzinger, Volkmar Mair, Massimiliano Pittore

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101822.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101822. DOI: 10.1016/j.gsf.2024.101822

Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds

Author information +
History +

Abstract

Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors. While data-driven methods for assessing landslide susceptibility or for establishing rainfall-triggering thresholds are prevalent, integrating spatio-temporal information for dynamic large-area landslide prediction remains a challenge. The main aim of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale and explicitly counteracts potential errors in the available landslide data. Unlike previous studies focusing on space–time landslide modelling, it places a strong emphasis on reducing the propagation of landslide data errors into the modelling results, while ensuring interpretable outcomes. It introduces also other noteworthy innovations, such as visualizing the final predictions as dynamic spatial thresholds linked to true positive rates and false alarm rates and by using animations for highlighting its application potential for hindcasting and scenario-building.

Keywords

Early warning / Space-time model / Rainfall thresholds / Landslide susceptibility, Generalized Additive Mixed Model / Forecasting

Cite this article

Download citation ▾
Stefan Steger, Mateo Moreno, Alice Crespi, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Lotte de Vugt, Thomas Zieher, Martin Rutzinger, Volkmar Mair, Massimiliano Pittore. Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds. Geoscience Frontiers, 2024, 15(5): 101822 https://doi.org/10.1016/j.gsf.2024.101822

CRediT authorship contribution statement

Stefan Steger: Conceptualization, Methodology, Modelling, Validation, Visualization, Writing – original draft. Mateo Moreno: Conceptualization, Methodology, Data collection, Visualization, Writing – review & editing. Alice Crespi: Conceptualization, Methodology, Data collection, Visualization, Writing – review & editing. Stefano Luigi Gariano: Methodology, Writing – review & editing. Maria Teresa Brunetti: Methodology, Writing – review & editing. Massimo Melillo: Methodology, Writing – review & editing. Silvia Peruccacci: Methodology, Writing – review & editing. Francesco Marra: Methodology, Writing – review & editing. Lotte de Vugt: Conceptualization, Data collection, Writing – review & editing. Thomas Zieher: Conceptualization, Data collection, Writing – review & editing. Martin Rutzinger: Conceptualization, Data collection, Writing – review & editing. Volkmar Mair: Conceptualization, Writing – review & editing. Massimiliano Pittore: Conceptualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The research leading to these results is related to the PROSLIDE project that received funding from the research program Research Südtirol/Alto Adige 2019 of the Autonomous Province of Bozen/Bolzano – Südtirol/Alto Adige. We also thank the four reviewers for their valuable comments that helped to increase the quality of the manuscript.

References

M. Ahmed, H. Tanyas, R. Huser, A. Dahal, G. Titti, L. Borgatti, M. Francioni, L. Lombardo. Dynamic rainfall-induced landslide susceptibility: a step towards a unified forecasting system. Int. J. Appl. Earth Obs. Geoinf., 125 (2023), Article 103593,
CrossRef Google scholar
P. Aleotti. A warning system for rainfall-induced shallow failures. Eng. Geol., 73 (2004), pp. 247-265,
CrossRef Google scholar
G. Bajni, C.A.S. Camera, T. Apuani. A novel dynamic rockfall susceptibility model including precipitation, temperature and snowmelt predictors: a case study in Aosta Valley (northern Italy). Landslides, 20 (2023), pp. 2131-2154,
CrossRef Google scholar
Bell, T. Glade, K. Granica, G. Heiss, P. Leopold, H. Petschko, G. Pomaroli, H. Proske, J. Schweigl. Landslide susceptibility maps for spatial planning in Lower Austria. C. Margottini, P. Canuti, K. Sassa (Eds.), Landslide Science and Practice, Springer, Berlin Heidelberg (2013), pp. 467-472,
CrossRef Google scholar
T.A. Bogaard, R. Greco. Landslide hydrology: from hydrology to pore pressure. Wiley Interdiscip. Rev. Water, 3 (2016), pp. 439-459,
CrossRef Google scholar
M. Bordoni, V. Vivaldi, L. Lucchelli, L. Ciabatta, L. Brocca, J.P. Galve, C. Meisina. Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale. Landslides, 18 (2021), pp. 1209-1229,
CrossRef Google scholar
T. Bornaetxea, M. Rossi, I. Marchesini, M. Alvioli. Effective surveyed area and its role in statistical landslide susceptibility assessments. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 2455-2469,
CrossRef Google scholar
A. Brenning. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. 2012 IEEE international geoscience and remote sensing symposium, Munich, Germany (2012), pp. 5372-5375
J. Broeckx, M. Rossi, K. Lijnen, B. Campforts, J. Poesen, M. Vanmaercke. Landslide mobilization rates: a global analysis and model. Earth-Sci. Rev., 201 (2020), Article 102972,
CrossRef Google scholar
M.T. Brunetti, S. Peruccacci, M. Rossi, S. Luciani, D. Valigi, F. Guzzetti. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci., 10 (2010), pp. 447-458
M.T. Brunetti, S. Peruccacci, L. Antronico, D. Bartolini, A.M. Deganutti, S.L. Gariano, G. Iovine, S. Luciani, F. Luino, M. Melillo, M.R. Palladino, M. Parise, M. Rossi, L. Turconi, C. Vennari, G. Vessia, A. Viero, F. Guzzetti. Catalogue of rainfall events with shallow landslides and new rainfall thresholds in Italy. G. Lollino, D. Giordan, G.B. Crosta, J. Corominas, R. Azzam, J. Wasowski, N. Sciarra (Eds.), Engineering Geology for Society and Territory –Volume 2: Landslide processes, Springer International Publishing, Cham (2015), pp. 1575-1579,
CrossRef Google scholar
A.F. Chleborad, R.L. Baum, J.W. Godt, P.S. Powers. A prototype system for forecasting landslides in the Seattle, Washington, area. Rev. Eng. Geol., 20 (2008), pp. 103-120,
CrossRef Google scholar
Chleborad, A.F., 2000. Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle. US Department of the Interior, US Geological Survey, Washington.
D. Coghlan, M. Brydon-Miller. The SAGE Encyclopedia of action Research. SAGE Publications Ltd (2014),
CrossRef Google scholar
E. Collini, L.A.I. Palesi, P. Nesi, G. Pantaleo, N. Nocentini, A. Rosi. Predicting and understanding landslide events with explainable AI. IEEE Access, 10 (2022), pp. 31175-31189,
CrossRef Google scholar
C. Conoscenti, E. Rotigliano, M. Cama, N.A. Caraballo-Arias, L. Lombardo, V. Agnesi. Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology, 261 (2016), pp. 222-235,
CrossRef Google scholar
O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, J. Böhner. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8 (2015), pp. 1991-2007,
CrossRef Google scholar
A. Crespi, M. Matiu, G. Bertoldi, M. Petitta, M. Zebisch. A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for trentino-South Tyrol (north-eastern italian Alps). Earth Syst. Sci. Data, 13 (2021), pp. 2801-2818,
CrossRef Google scholar
M.J. Crozier. Landslides: causes, Consequences & Environment. Routledge, New York, London (1989)
M.J. Crozier. Deciphering the effect of climate change on landslide activity: a review. Geomorphology, 124 (2010), pp. 260-267,
CrossRef Google scholar
D.M. Cruden, D.J. Varnes. Landslide types and processes. Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247 (1996), pp. 36-75
A. Dahal, L. Lombardo. Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling. Comput. Geosci., 176 (2023), Article 105364,
CrossRef Google scholar
J.V. De Graff, H.C. Romesburg, R. Ahmad, J.P. McCalpin. Producing landslide-susceptibility maps for regional planning in data-scarce regions. Nat. Hazards, 64 (2012), pp. 729-749,
CrossRef Google scholar
L. de Vugt, T. Zieher, B. Schneider-Muntau, M. Moreno, S. Steger, M. Rutzinger. Spatial transferability of the physically-based model TRIGRS using parameter ensembles. Earth Surf. Proc. Land. (2024),
CrossRef Google scholar
A. Felsberg, J. Poesen, M. Bechtold, M. Vanmaercke, G.J.M. De Lannoy. Estimating global landslide susceptibility and its uncertainty through ensemble modeling. Nat. Hazards Earth Syst. Sci., 22 (2022), pp. 3063-3082,
CrossRef Google scholar
M. Fressard, Y. Thiery, O. Maquaire. Which data for quantitative landslide susceptibility mapping at operational scale? case study of the pays d’auge plateau hillslopes (Normandy, France). Nat. Hazards Earth Syst. Sci., 14 (2014), pp. 569-588,
CrossRef Google scholar
M.J. Froude, D.N. Petley. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 2161-2181,
CrossRef Google scholar
I. Fustos-Toribio, N. Manque-Roa, D. Vásquez Antipan, M. Hermosilla Sotomayor, V. Letelier Gonzalez. Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes. Nat. Hazards Earth Syst. Sci., 22 (2022), pp. 2169-2183,
CrossRef Google scholar
R. Giannecchini. Relationship between rainfall and shallow landslides in the southern apuan Alps (Italy). Nat. Hazards Earth Syst. Sci., 6 (2006), pp. 357-364,
CrossRef Google scholar
R. Giannecchini, Y. Galanti, G. D’Amato Avanzi, M. Barsanti. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology, 257 (2016), pp. 94-107,
CrossRef Google scholar
. . T. Glade, M. Anderson, M.J. Crozier (Eds.), Landslide Hazard and Risk, John Wiley, Chichester (2005), p. 836
J.N. Goetz, A. Brenning, H. Petschko, P. Leopold. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci., 81 (2015), pp. 1-11,
CrossRef Google scholar
J.N. Goetz, A. Brenning, M. Marcer, X. Bodin. Modeling the precision of structure-from-motion multi-view stereo digital elevation models from repeated close-range aerial surveys. Remote Sens. Environ., 210 (2018), pp. 208-216,
CrossRef Google scholar
. . A. Goudie (Ed.), Encyclopedia of Geomorphology, International Association of Geomorphologists, London, New York, Routledge (2004), p. 2
G. Guidicini, O.Y. Iwasa. Tentative correlation between rainfall and landslides in a humid tropical environment. Bull. Int. Assoc. Eng. Geol., 16 (1977), pp. 13-20,
CrossRef Google scholar
C. Guillard, J. Zêzere. Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures municipality. Environ. Manage., 50 (2012), pp. 721-735,
CrossRef Google scholar
F. Guzzetti, M. Galli, P. Reichenbach, F. Ardizzone, M. Cardinali. Landslide hazard assessment in the collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci., 6 (2006), pp. 115-131
F. Guzzetti, S. Peruccacci, M. Rossi, C.P. Stark. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys., 98 (2007), pp. 239-267,
CrossRef Google scholar
F. Guzzetti, A.C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, K.-T. Chang. Landslide inventory maps: new tools for an old problem: Earth-sci. Rev., 112 (2012), pp. 42-66,
CrossRef Google scholar
F. Guzzetti, S.L. Gariano, S. Peruccacci, M.T. Brunetti, I. Marchesini, M. Rossi, M. Melillo. Geographical landslide early warning systems. Earth-Sci. Rev., 200 (2020), Article 102973,
CrossRef Google scholar
D.W. Hosmer, S. Lemeshow. Applied logistic regression. John Wiley & Sons, New York (2000), p. 397
H.Y. Hussin, V. Zumpano, P. Reichenbach, S. Sterlacchini, M. Micu, C. van Westen, D. Bălteanu. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253 (2016), pp. 508-523,
CrossRef Google scholar
C. Iadanza, A. Trigila, P. Starace, A. Dragoni, T. Biondo, M. Roccisano. IdroGEO: a collaborative web mapping application based on REST API services and open data on landslides and floods in Italy. ISPRS Int. J. Geo Inf., 10 (2021), p. 89,
CrossRef Google scholar
L. Jacobs, M. Kervyn, P. Reichenbach, M. Rossi, I. Marchesini, M. Alvioli, O. Dewitte. Regional susceptibility assessments with heterogeneous landslide information: slope unit- vs. pixel-based approach. Geomorphology, 356 (2020), Article 107084,
CrossRef Google scholar
D.K. Keefer. Investigating landslides caused by earthquakes – a historical review. Surv. Geophys., 23 (2002), pp. 473-510,
CrossRef Google scholar
D. Kirschbaum, T. Stanley. Satellite-based assessment of rainfall-triggered landslide Hazard for situational Awareness. Earth’s Future, 6 (2018), pp. 505-523,
CrossRef Google scholar
R. Knevels, H. Petschko, H. Proske, P. Leopold, D. Maraun, A. Brenning. Event-based landslide modeling in the Styrian Basin, Austria: accounting for time-varying rainfall and land cover. Geosciences, 10 (2020), p. 217,
CrossRef Google scholar
I.K. Krøgli, G. Devoli, H. Colleuille, S. Boje, M. Sund, I.K. Engen. The norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 1427-1450,
CrossRef Google scholar
E. Leonarduzzi, P. Molnar. Deriving rainfall thresholds for landsliding at the regional scale: daily and hourly resolutions, normalisation, and antecedent rainfall. Nat. Hazards Earth Syst. Sci., 20 (2020), pp. 2905-2919,
CrossRef Google scholar
B. Li, K. Liu, M. Wang, Q. He, Z. Jiang, W. Zhu, N. Qiao. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. Remote Sens., 14 (2022), p. 5795,
CrossRef Google scholar
P. Lima, S. Steger, T. Glade. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides, 18 (2021), pp. 3531-3546,
CrossRef Google scholar
P. Lima, S. Steger, T. Glade, F.G. Murillo-García. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. Mt. Sci., 19 (2022), pp. 1670-1698,
CrossRef Google scholar
Q. Lin, P. Lima, S. Steger, T. Glade, T. Jiang, J. Zhang, T. Liu, Y. Wang. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front., 12 (2021), Article 101248,
CrossRef Google scholar
Q. Lin, S. Steger, M. Pittore, J. Zhang, L. Wang, T. Jiang, Y. Wang. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ., 850 (2022), Article 158049,
CrossRef Google scholar
L. Lombardo, T. Opitz, F. Ardizzone, F. Guzzetti, R. Huser. . Space-time landslide predictive modelling. Earth-Sci. Rev., 209 (2020), Article 103318,
CrossRef Google scholar
L. Lombardo, H. Tanyas. From scenario-based seismic hazard to scenario-based landslide hazard: fast-forwarding to the future via statistical simulations. Stoch. Environ. Res. Risk Assess., 36 (2022), pp. 2229-2242
L.V. Luna, O. Korup. Seasonal landslide activity lags annual precipitation pattern in the Pacific northwest. Geophys. Res. Lett., 49 (2022), p. e2022,
CrossRef Google scholar
D. Maraun, R. Knevels, A.N. Mishra, H. Truhetz, E. Bevacqua, H. Proske, G. Zappa, A. Brenning, H. Petschko, A. Schaffer, P. Leopold, B.L. Puxley. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Commun. Earth Environ., 3 (2022), pp. 1-11,
CrossRef Google scholar
F. Marra, E.I. Nikolopoulos, J.D. Creutin, M. Borga. Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J. Hydrol., 541 (2016), pp. 246-255,
CrossRef Google scholar
G. Marra, S.N. Wood. Practical variable selection for generalized additive models. Comput. Stat. Data an., 55 (2011), pp. 2372-2387,
CrossRef Google scholar
C.E. Metz. Basic principles of ROC analysis. Semin. Nucl. Med., 8 (1978), pp. 283-298,
CrossRef Google scholar
M. Moreno, L. Lombardo, A. Crespi, P.J. Zellner, V. Mair, M. Pittore, C. van Westen, S. Steger. Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol. Italy. Sci. Total Environ., 912 (2024), Article 169166,
CrossRef Google scholar
N. Nocentini, A. Rosi, S. Segoni, R. Fanti. Towards landslide space-time forecasting through machine learning: the influence of rainfall parameters and model setting. Front. Earth Sci., 11, 1152130 (2023)
T. Opitz, H. Bakka, R. Huser, L. Lombardo. High-resolution bayesian mapping of landslide hazard with unobserved trigger event. Ann. Appl. Stat., 16 (2022), pp. 1653-1675
U. Ozturk. Geohazards explained 10: time-dependent landslide susceptibility. Geol. Today, 38 (2022), pp. 117-120,
CrossRef Google scholar
E.J. Pedersen, D.L. Miller, G.L. Simpson, N. Ross. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ, 7 (2019), p. e6876
S. Peruccacci, M.T. Brunetti, S. Luciani, C. Vennari, F. Guzzetti. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology, 139–140 (2012), pp. 79-90,
CrossRef Google scholar
S. Peruccacci, S.L. Gariano, M. Melillo, M. Solimano, F. Guzzetti, M.T. Brunetti. The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. Data, 15 (2023), pp. 2863-2877,
CrossRef Google scholar
D. Petley. Landslide hazards. I. Alcantara, A. Goudie (Eds.), Geomorphological Hazards and Disaster Prevention, Cambridge University Press (2010), pp. 63-74
H. Petschko, A. Brenning, R. Bell, J. Goetz, T. Glade. Assessing the quality of landslide susceptibility maps – case study Lower Austria. Nat. Hazards Earth Syst. Sci., 14 (2014), pp. 95-118,
CrossRef Google scholar
D. Piacentini, F. Troiani, M. Soldati, C. Notarnicola, D. Savelli, S. Schneiderbauer, C. Strada. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151–152 (2012), pp. 196-206,
CrossRef Google scholar
L. Piciullo, M. Calvello, J.M. Cepeda. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev., 179 (2018), pp. 228-247,
CrossRef Google scholar
B. Postance, J. Hillier, T. Dijkstra, N. Dixon. Comparing threshold definition techniques for rainfall-induced landslides: a national assessment using radar rainfall. Earth Surf. Proc. Land., 43 (2018), pp. 553-560,
CrossRef Google scholar
N.R. Regmi, J.R. Giardino, E.V. McDonald, J.D. Vitek. A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11 (2014), pp. 247-262,
CrossRef Google scholar
P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., 180 (2018), pp. 60-91,
CrossRef Google scholar
W.H. Renwick. Equilibrium, disequilibrium, and nonequilibrium landforms in the landscape. Geomorphology, 5 (1992), pp. 265-276,
CrossRef Google scholar
E. Rotigliano, V. Agnesi, C. Cappadonia, C. Conoscenti. The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain. Nat. Hazards, 58 (2011), pp. 981-999,
CrossRef Google scholar
E.F. Schisterman, N.J. Perkins, A. Liu, H. Bondell. Optimal cut-point and its corresponding youden index to discriminate individuals using pooled blood samples. Epidemiology, 16 (2005), pp. 73-81,
CrossRef Google scholar
R. Schlögel, C. Kofler, S.L. Gariano, J. Van Campenhout, S. Plummer. Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps). Sci. Rep., 10 (2020), p. 5022,
CrossRef Google scholar
E.M. Schmaltz, S. Steger, T. Glade. The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology, 290 (2017), pp. 250-264,
CrossRef Google scholar
P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, A. Brenning. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Model., 406 (2019), pp. 109-120,
CrossRef Google scholar
M. Schwarz, D. Cohen, D. Or. Spatial characterization of root reinforcement at stand scale: theory and case study. Geomorphology, 171–172 (2012), pp. 190-200,
CrossRef Google scholar
S. Segoni, D. Lagomarsino, R. Fanti, S. Moretti, N. Casagli. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides, 12 (2015), pp. 773-785,
CrossRef Google scholar
S. Segoni, V. Tofani, A. Rosi, F. Catani, N. Casagli. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front. Earth Sci., 6, 85 (2018),
CrossRef Google scholar
R. Singh, N.S. Mangat. Elements of survey sampling. Springer Science & Business Media (1996), p. 412
Soeters, R., van Westen, C.J., 1996. Slope instability recognition, analysis and zonation. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, Washington, D.C., Transportation Research Board National Research Council, Special Report 247, 129–177.
T.A. Stanley, D.B. Kirschbaum, G. Benz, R.A. Emberson, P.M. Amatya, W. Medwedeff, M.K. Clark. Data-driven landslide nowcasting at the global scale. Front. Earth Sci., 9, 640043 (2021),
CrossRef Google scholar
S. Steger, A. Brenning, R. Bell, T. Glade. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides, 14 (2017), pp. 1767-1781,
CrossRef Google scholar
S. Steger, T. Glade. The challenge of “trivial areas” in statistical landslide susceptibility modelling. M. Mikos, B. Tiwari, Y. Yin, K. Sassa (Eds.), Advancing Culture of Living with Landslides, Springer International Publishing, Cham (2017), pp. 803-808,
CrossRef Google scholar
S. Steger, V. Mair, C. Kofler, M. Pittore, M. Zebisch, S. Schneiderbauer. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – benefits of exploring landslide data collection effects. Sci. Total Environ., 776 (2021), Article 145935,
CrossRef Google scholar
S. Steger, M. Moreno, A. Crespi, P.J. Zellner, S.L. Gariano, M.T. Brunetti, M. Melillo, S. Peruccacci, F. Marra, R. Kohrs, J. Goetz, V. Mair, M. Pittore. Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Nat. Hazards Earth Syst. Sci., 23 (2023), pp. 1483-1506,
CrossRef Google scholar
V. Stingl, V. Mair. Einführung in die geologie südtirols: [aus anlass des 32. internationalen geologischen kongresses im Sommer 2004 in Florenz].: autonome provinz bozen-südtirol, amt f. Geologie U. Baustoffprüfung (in German) (2005)
E. Tasser, M. Mader, U. Tappeiner. Effects of land use in alpine grasslands on the probability of landslides. Basic Appl. Ecol., 4 (2003), pp. 271-280,
CrossRef Google scholar
C.J. van Westen, E. Castellanos, S.L. Kuriakose. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng. Geol., 102 (2008), pp. 112-131,
CrossRef Google scholar
H. Yang, R.F. Adler. Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int. J. Sediment Res., 23 (2008), pp. 249-257,
CrossRef Google scholar
Zimmermann, M., 1997. Murganggefahr und Klimaänderung - ein GIS-basierter Ansatz. vdf Hochschulverlag AG, 180 p, ISBN: 978-3-7281-2488-3 (in German).
A. Zuur, E.N. Ieno, N. Walker, A.A. Saveliev, G.M. Smith. Mixed effects models and extensions in ecology with R. Springer, New York, NY (2009), p. 574

19

Accesses

0

Citations

Detail

Sections
Recommended

/