Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds
Stefan Steger , Mateo Moreno , Alice Crespi , Stefano Luigi Gariano , Maria Teresa Brunetti , Massimo Melillo , Silvia Peruccacci , Francesco Marra , Lotte de Vugt , Thomas Zieher , Martin Rutzinger , Volkmar Mair , Massimiliano Pittore
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101822
Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds
Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory conditions along with static predisposition factors. While data-driven methods for assessing landslide susceptibility or for establishing rainfall-triggering thresholds are prevalent, integrating spatio-temporal information for dynamic large-area landslide prediction remains a challenge. The main aim of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale and explicitly counteracts potential errors in the available landslide data. Unlike previous studies focusing on space–time landslide modelling, it places a strong emphasis on reducing the propagation of landslide data errors into the modelling results, while ensuring interpretable outcomes. It introduces also other noteworthy innovations, such as visualizing the final predictions as dynamic spatial thresholds linked to true positive rates and false alarm rates and by using animations for highlighting its application potential for hindcasting and scenario-building.
Early warning / Space-time model / Rainfall thresholds / Landslide susceptibility, Generalized Additive Mixed Model / Forecasting
| [1] |
M. Ahmed, H. Tanyas, R. Huser, A. Dahal, G. Titti, L. Borgatti, M. Francioni, L. Lombardo. Dynamic rainfall-induced landslide susceptibility: a step towards a unified forecasting system. Int. J. Appl. Earth Obs. Geoinf., 125 (2023), Article 103593, |
| [2] |
P. Aleotti. A warning system for rainfall-induced shallow failures. Eng. Geol., 73 (2004), pp. 247-265, |
| [3] |
G. Bajni, C.A.S. Camera, T. Apuani. A novel dynamic rockfall susceptibility model including precipitation, temperature and snowmelt predictors: a case study in Aosta Valley (northern Italy). Landslides, 20 (2023), pp. 2131-2154, |
| [4] |
Bell, T. Glade, K. Granica, G. Heiss, P. Leopold, H. Petschko, G. Pomaroli, H. Proske, J. Schweigl. Landslide susceptibility maps for spatial planning in Lower Austria. C. Margottini, P. Canuti, K. Sassa (Eds.), Landslide Science and Practice, Springer, Berlin Heidelberg (2013), pp. 467-472, |
| [5] |
T.A. Bogaard, R. Greco. Landslide hydrology: from hydrology to pore pressure. Wiley Interdiscip. Rev. Water, 3 (2016), pp. 439-459, |
| [6] |
M. Bordoni, V. Vivaldi, L. Lucchelli, L. Ciabatta, L. Brocca, J.P. Galve, C. Meisina. Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale. Landslides, 18 (2021), pp. 1209-1229, |
| [7] |
T. Bornaetxea, M. Rossi, I. Marchesini, M. Alvioli. Effective surveyed area and its role in statistical landslide susceptibility assessments. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 2455-2469, |
| [8] |
A. Brenning. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. 2012 IEEE international geoscience and remote sensing symposium, Munich, Germany (2012), pp. 5372-5375 |
| [9] |
J. Broeckx, M. Rossi, K. Lijnen, B. Campforts, J. Poesen, M. Vanmaercke. Landslide mobilization rates: a global analysis and model. Earth-Sci. Rev., 201 (2020), Article 102972, |
| [10] |
M.T. Brunetti, S. Peruccacci, M. Rossi, S. Luciani, D. Valigi, F. Guzzetti. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci., 10 (2010), pp. 447-458 |
| [11] |
M.T. Brunetti, S. Peruccacci, L. Antronico, D. Bartolini, A.M. Deganutti, S.L. Gariano, G. Iovine, S. Luciani, F. Luino, M. Melillo, M.R. Palladino, M. Parise, M. Rossi, L. Turconi, C. Vennari, G. Vessia, A. Viero, F. Guzzetti. Catalogue of rainfall events with shallow landslides and new rainfall thresholds in Italy. G. Lollino, D. Giordan, G.B. Crosta, J. Corominas, R. Azzam, J. Wasowski, N. Sciarra (Eds.), Engineering Geology for Society and Territory –Volume 2: Landslide processes, Springer International Publishing, Cham (2015), pp. 1575-1579, |
| [12] |
A.F. Chleborad, R.L. Baum, J.W. Godt, P.S. Powers. A prototype system for forecasting landslides in the Seattle, Washington, area. Rev. Eng. Geol., 20 (2008), pp. 103-120, |
| [13] |
Chleborad, A.F., 2000. Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle. US Department of the Interior, US Geological Survey, Washington. |
| [14] |
D. Coghlan, M. Brydon-Miller. The SAGE Encyclopedia of action Research. SAGE Publications Ltd (2014), |
| [15] |
E. Collini, L.A.I. Palesi, P. Nesi, G. Pantaleo, N. Nocentini, A. Rosi. Predicting and understanding landslide events with explainable AI. IEEE Access, 10 (2022), pp. 31175-31189, |
| [16] |
C. Conoscenti, E. Rotigliano, M. Cama, N.A. Caraballo-Arias, L. Lombardo, V. Agnesi. Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy. Geomorphology, 261 (2016), pp. 222-235, |
| [17] |
O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, J. Böhner. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev., 8 (2015), pp. 1991-2007, |
| [18] |
A. Crespi, M. Matiu, G. Bertoldi, M. Petitta, M. Zebisch. A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for trentino-South Tyrol (north-eastern italian Alps). Earth Syst. Sci. Data, 13 (2021), pp. 2801-2818, |
| [19] |
M.J. Crozier. Landslides: causes, Consequences & Environment. Routledge, New York, London (1989) |
| [20] |
M.J. Crozier. Deciphering the effect of climate change on landslide activity: a review. Geomorphology, 124 (2010), pp. 260-267, |
| [21] |
D.M. Cruden, D.J. Varnes. Landslide types and processes. Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247 (1996), pp. 36-75 |
| [22] |
A. Dahal, L. Lombardo. Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling. Comput. Geosci., 176 (2023), Article 105364, |
| [23] |
J.V. De Graff, H.C. Romesburg, R. Ahmad, J.P. McCalpin. Producing landslide-susceptibility maps for regional planning in data-scarce regions. Nat. Hazards, 64 (2012), pp. 729-749, |
| [24] |
L. de Vugt, T. Zieher, B. Schneider-Muntau, M. Moreno, S. Steger, M. Rutzinger. Spatial transferability of the physically-based model TRIGRS using parameter ensembles. Earth Surf. Proc. Land. (2024), |
| [25] |
A. Felsberg, J. Poesen, M. Bechtold, M. Vanmaercke, G.J.M. De Lannoy. Estimating global landslide susceptibility and its uncertainty through ensemble modeling. Nat. Hazards Earth Syst. Sci., 22 (2022), pp. 3063-3082, |
| [26] |
M. Fressard, Y. Thiery, O. Maquaire. Which data for quantitative landslide susceptibility mapping at operational scale? case study of the pays d’auge plateau hillslopes (Normandy, France). Nat. Hazards Earth Syst. Sci., 14 (2014), pp. 569-588, |
| [27] |
M.J. Froude, D.N. Petley. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 2161-2181, |
| [28] |
I. Fustos-Toribio, N. Manque-Roa, D. Vásquez Antipan, M. Hermosilla Sotomayor, V. Letelier Gonzalez. Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes. Nat. Hazards Earth Syst. Sci., 22 (2022), pp. 2169-2183, |
| [29] |
R. Giannecchini. Relationship between rainfall and shallow landslides in the southern apuan Alps (Italy). Nat. Hazards Earth Syst. Sci., 6 (2006), pp. 357-364, |
| [30] |
R. Giannecchini, Y. Galanti, G. D’Amato Avanzi, M. Barsanti. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology, 257 (2016), pp. 94-107, |
| [31] |
. . T. Glade, M. Anderson, M.J. Crozier (Eds.), Landslide Hazard and Risk, John Wiley, Chichester (2005), p. 836 |
| [32] |
J.N. Goetz, A. Brenning, H. Petschko, P. Leopold. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci., 81 (2015), pp. 1-11, |
| [33] |
J.N. Goetz, A. Brenning, M. Marcer, X. Bodin. Modeling the precision of structure-from-motion multi-view stereo digital elevation models from repeated close-range aerial surveys. Remote Sens. Environ., 210 (2018), pp. 208-216, |
| [34] |
. . A. Goudie (Ed.), Encyclopedia of Geomorphology, International Association of Geomorphologists, London, New York, Routledge (2004), p. 2 |
| [35] |
G. Guidicini, O.Y. Iwasa. Tentative correlation between rainfall and landslides in a humid tropical environment. Bull. Int. Assoc. Eng. Geol., 16 (1977), pp. 13-20, |
| [36] |
C. Guillard, J. Zêzere. Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures municipality. Environ. Manage., 50 (2012), pp. 721-735, |
| [37] |
F. Guzzetti, M. Galli, P. Reichenbach, F. Ardizzone, M. Cardinali. Landslide hazard assessment in the collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci., 6 (2006), pp. 115-131 |
| [38] |
F. Guzzetti, S. Peruccacci, M. Rossi, C.P. Stark. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys., 98 (2007), pp. 239-267, |
| [39] |
F. Guzzetti, A.C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, K.-T. Chang. Landslide inventory maps: new tools for an old problem: Earth-sci. Rev., 112 (2012), pp. 42-66, |
| [40] |
F. Guzzetti, S.L. Gariano, S. Peruccacci, M.T. Brunetti, I. Marchesini, M. Rossi, M. Melillo. Geographical landslide early warning systems. Earth-Sci. Rev., 200 (2020), Article 102973, |
| [41] |
D.W. Hosmer, S. Lemeshow. Applied logistic regression. John Wiley & Sons, New York (2000), p. 397 |
| [42] |
H.Y. Hussin, V. Zumpano, P. Reichenbach, S. Sterlacchini, M. Micu, C. van Westen, D. Bălteanu. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253 (2016), pp. 508-523, |
| [43] |
C. Iadanza, A. Trigila, P. Starace, A. Dragoni, T. Biondo, M. Roccisano. IdroGEO: a collaborative web mapping application based on REST API services and open data on landslides and floods in Italy. ISPRS Int. J. Geo Inf., 10 (2021), p. 89, |
| [44] |
L. Jacobs, M. Kervyn, P. Reichenbach, M. Rossi, I. Marchesini, M. Alvioli, O. Dewitte. Regional susceptibility assessments with heterogeneous landslide information: slope unit- vs. pixel-based approach. Geomorphology, 356 (2020), Article 107084, |
| [45] |
D.K. Keefer. Investigating landslides caused by earthquakes – a historical review. Surv. Geophys., 23 (2002), pp. 473-510, |
| [46] |
D. Kirschbaum, T. Stanley. Satellite-based assessment of rainfall-triggered landslide Hazard for situational Awareness. Earth’s Future, 6 (2018), pp. 505-523, |
| [47] |
R. Knevels, H. Petschko, H. Proske, P. Leopold, D. Maraun, A. Brenning. Event-based landslide modeling in the Styrian Basin, Austria: accounting for time-varying rainfall and land cover. Geosciences, 10 (2020), p. 217, |
| [48] |
I.K. Krøgli, G. Devoli, H. Colleuille, S. Boje, M. Sund, I.K. Engen. The norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat. Hazards Earth Syst. Sci., 18 (2018), pp. 1427-1450, |
| [49] |
E. Leonarduzzi, P. Molnar. Deriving rainfall thresholds for landsliding at the regional scale: daily and hourly resolutions, normalisation, and antecedent rainfall. Nat. Hazards Earth Syst. Sci., 20 (2020), pp. 2905-2919, |
| [50] |
B. Li, K. Liu, M. Wang, Q. He, Z. Jiang, W. Zhu, N. Qiao. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. Remote Sens., 14 (2022), p. 5795, |
| [51] |
P. Lima, S. Steger, T. Glade. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides, 18 (2021), pp. 3531-3546, |
| [52] |
P. Lima, S. Steger, T. Glade, F.G. Murillo-García. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. Mt. Sci., 19 (2022), pp. 1670-1698, |
| [53] |
Q. Lin, P. Lima, S. Steger, T. Glade, T. Jiang, J. Zhang, T. Liu, Y. Wang. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front., 12 (2021), Article 101248, |
| [54] |
Q. Lin, S. Steger, M. Pittore, J. Zhang, L. Wang, T. Jiang, Y. Wang. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ., 850 (2022), Article 158049, |
| [55] |
L. Lombardo, T. Opitz, F. Ardizzone, F. Guzzetti, R. Huser. . Space-time landslide predictive modelling. Earth-Sci. Rev., 209 (2020), Article 103318, |
| [56] |
L. Lombardo, H. Tanyas. From scenario-based seismic hazard to scenario-based landslide hazard: fast-forwarding to the future via statistical simulations. Stoch. Environ. Res. Risk Assess., 36 (2022), pp. 2229-2242 |
| [57] |
L.V. Luna, O. Korup. Seasonal landslide activity lags annual precipitation pattern in the Pacific northwest. Geophys. Res. Lett., 49 (2022), p. e2022, |
| [58] |
D. Maraun, R. Knevels, A.N. Mishra, H. Truhetz, E. Bevacqua, H. Proske, G. Zappa, A. Brenning, H. Petschko, A. Schaffer, P. Leopold, B.L. Puxley. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Commun. Earth Environ., 3 (2022), pp. 1-11, |
| [59] |
F. Marra, E.I. Nikolopoulos, J.D. Creutin, M. Borga. Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J. Hydrol., 541 (2016), pp. 246-255, |
| [60] |
G. Marra, S.N. Wood. Practical variable selection for generalized additive models. Comput. Stat. Data an., 55 (2011), pp. 2372-2387, |
| [61] |
C.E. Metz. Basic principles of ROC analysis. Semin. Nucl. Med., 8 (1978), pp. 283-298, |
| [62] |
M. Moreno, L. Lombardo, A. Crespi, P.J. Zellner, V. Mair, M. Pittore, C. van Westen, S. Steger. Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol. Italy. Sci. Total Environ., 912 (2024), Article 169166, |
| [63] |
N. Nocentini, A. Rosi, S. Segoni, R. Fanti. Towards landslide space-time forecasting through machine learning: the influence of rainfall parameters and model setting. Front. Earth Sci., 11, 1152130 (2023) |
| [64] |
T. Opitz, H. Bakka, R. Huser, L. Lombardo. High-resolution bayesian mapping of landslide hazard with unobserved trigger event. Ann. Appl. Stat., 16 (2022), pp. 1653-1675 |
| [65] |
U. Ozturk. Geohazards explained 10: time-dependent landslide susceptibility. Geol. Today, 38 (2022), pp. 117-120, |
| [66] |
E.J. Pedersen, D.L. Miller, G.L. Simpson, N. Ross. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ, 7 (2019), p. e6876 |
| [67] |
S. Peruccacci, M.T. Brunetti, S. Luciani, C. Vennari, F. Guzzetti. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology, 139–140 (2012), pp. 79-90, |
| [68] |
S. Peruccacci, S.L. Gariano, M. Melillo, M. Solimano, F. Guzzetti, M.T. Brunetti. The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. Data, 15 (2023), pp. 2863-2877, |
| [69] |
D. Petley. Landslide hazards. I. Alcantara, A. Goudie (Eds.), Geomorphological Hazards and Disaster Prevention, Cambridge University Press (2010), pp. 63-74 |
| [70] |
H. Petschko, A. Brenning, R. Bell, J. Goetz, T. Glade. Assessing the quality of landslide susceptibility maps – case study Lower Austria. Nat. Hazards Earth Syst. Sci., 14 (2014), pp. 95-118, |
| [71] |
D. Piacentini, F. Troiani, M. Soldati, C. Notarnicola, D. Savelli, S. Schneiderbauer, C. Strada. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151–152 (2012), pp. 196-206, |
| [72] |
L. Piciullo, M. Calvello, J.M. Cepeda. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev., 179 (2018), pp. 228-247, |
| [73] |
B. Postance, J. Hillier, T. Dijkstra, N. Dixon. Comparing threshold definition techniques for rainfall-induced landslides: a national assessment using radar rainfall. Earth Surf. Proc. Land., 43 (2018), pp. 553-560, |
| [74] |
N.R. Regmi, J.R. Giardino, E.V. McDonald, J.D. Vitek. A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11 (2014), pp. 247-262, |
| [75] |
P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev., 180 (2018), pp. 60-91, |
| [76] |
W.H. Renwick. Equilibrium, disequilibrium, and nonequilibrium landforms in the landscape. Geomorphology, 5 (1992), pp. 265-276, |
| [77] |
E. Rotigliano, V. Agnesi, C. Cappadonia, C. Conoscenti. The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain. Nat. Hazards, 58 (2011), pp. 981-999, |
| [78] |
E.F. Schisterman, N.J. Perkins, A. Liu, H. Bondell. Optimal cut-point and its corresponding youden index to discriminate individuals using pooled blood samples. Epidemiology, 16 (2005), pp. 73-81, |
| [79] |
R. Schlögel, C. Kofler, S.L. Gariano, J. Van Campenhout, S. Plummer. Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps). Sci. Rep., 10 (2020), p. 5022, |
| [80] |
E.M. Schmaltz, S. Steger, T. Glade. The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology, 290 (2017), pp. 250-264, |
| [81] |
P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, A. Brenning. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Model., 406 (2019), pp. 109-120, |
| [82] |
M. Schwarz, D. Cohen, D. Or. Spatial characterization of root reinforcement at stand scale: theory and case study. Geomorphology, 171–172 (2012), pp. 190-200, |
| [83] |
S. Segoni, D. Lagomarsino, R. Fanti, S. Moretti, N. Casagli. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides, 12 (2015), pp. 773-785, |
| [84] |
S. Segoni, V. Tofani, A. Rosi, F. Catani, N. Casagli. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front. Earth Sci., 6, 85 (2018), |
| [85] |
R. Singh, N.S. Mangat. Elements of survey sampling. Springer Science & Business Media (1996), p. 412 |
| [86] |
Soeters, R., van Westen, C.J., 1996. Slope instability recognition, analysis and zonation. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, Washington, D.C., Transportation Research Board National Research Council, Special Report 247, 129–177. |
| [87] |
T.A. Stanley, D.B. Kirschbaum, G. Benz, R.A. Emberson, P.M. Amatya, W. Medwedeff, M.K. Clark. Data-driven landslide nowcasting at the global scale. Front. Earth Sci., 9, 640043 (2021), |
| [88] |
S. Steger, A. Brenning, R. Bell, T. Glade. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides, 14 (2017), pp. 1767-1781, |
| [89] |
S. Steger, T. Glade. The challenge of “trivial areas” in statistical landslide susceptibility modelling. M. Mikos, B. Tiwari, Y. Yin, K. Sassa (Eds.), Advancing Culture of Living with Landslides, Springer International Publishing, Cham (2017), pp. 803-808, |
| [90] |
S. Steger, V. Mair, C. Kofler, M. Pittore, M. Zebisch, S. Schneiderbauer. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – benefits of exploring landslide data collection effects. Sci. Total Environ., 776 (2021), Article 145935, |
| [91] |
S. Steger, M. Moreno, A. Crespi, P.J. Zellner, S.L. Gariano, M.T. Brunetti, M. Melillo, S. Peruccacci, F. Marra, R. Kohrs, J. Goetz, V. Mair, M. Pittore. Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Nat. Hazards Earth Syst. Sci., 23 (2023), pp. 1483-1506, |
| [92] |
V. Stingl, V. Mair. Einführung in die geologie südtirols: [aus anlass des 32. internationalen geologischen kongresses im Sommer 2004 in Florenz].: autonome provinz bozen-südtirol, amt f. Geologie U. Baustoffprüfung (in German) (2005) |
| [93] |
E. Tasser, M. Mader, U. Tappeiner. Effects of land use in alpine grasslands on the probability of landslides. Basic Appl. Ecol., 4 (2003), pp. 271-280, |
| [94] |
C.J. van Westen, E. Castellanos, S.L. Kuriakose. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng. Geol., 102 (2008), pp. 112-131, |
| [95] |
H. Yang, R.F. Adler. Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int. J. Sediment Res., 23 (2008), pp. 249-257, |
| [96] |
Zimmermann, M., 1997. Murganggefahr und Klimaänderung - ein GIS-basierter Ansatz. vdf Hochschulverlag AG, 180 p, ISBN: 978-3-7281-2488-3 (in German). |
| [97] |
A. Zuur, E.N. Ieno, N. Walker, A.A. Saveliev, G.M. Smith. Mixed effects models and extensions in ecology with R. Springer, New York, NY (2009), p. 574 |
/
| 〈 |
|
〉 |