Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China

Jieqi Xing, Yuhang Jiang, Haiyang Xian, Wubin Yang, Yiping Yang, Hecai Niu, Hongping He, Jianxi Zhu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101766.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101766. DOI: 10.1016/j.gsf.2023.101766

Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China

Author information +
History +

Abstract

Numerous sedimentary phosphorites in Southwest China were formed around the Precambrian–Cambrian transition (PC–C), including the upper Ediacaran Doushantuo Formation and lower Cambrian Gezhongwu Formation. The Gezhongwu phosphorites in Zhijin exhibit marked rare earth element (REE) enrichment (>1000 ppm), and may represent new REE resources. Although the main characteristics of the Gezhongwu phosphorites have been well constrained, the REE enrichment mechanisms remain unclear. We undertook a comparative study of three typical sedimentary phosphorites with variable REE contents formed at the PC–C transition in central Guizhou Province, Southwest China. These include sections A and B of the Doushantuo phosphorites (560 ± 8 Ma) from the Weng’an area (i.e., WA-A and WA-B), and the Gezhongwu phosphorites (527 ± 24 Ma) from the Zhijin area (ZJ). The phosphorites were investigated with state-of-the-art macroscale to nanoscale analytical techniques. In contrast to the extraordinary REE enrichment in the ZJ phosphorites (average ΣREE = 1157 ppm), the phosphorites in WA-A (average ΣREE = 234 ppm) and WA-B (average ΣREE = 114 ppm) are REE-poor. Elemental mapping by laser ablation–inductively coupled plasma–mass spectrometry, along with transmission electron microscopy analyses, showed the REEs in the studied phosphorites are hosted in nanoscale francolites. The 87Sr/86Sr and Y/Ho ratios of the francolite grains indicate that greater terrigenous input may have led to more REE enrichment in the WA-A than WA-B phosphorites, but this cannot explain the extraordinary REE enrichment in the ZJ phosphorites. The F/P2O5 values of the francolite grains in the ZJ phosphorites (∼0.097) are higher than those in the WA-A (∼0.084) and WA-B (∼0.084) phosphorites, and the grain size of the francolite in the ZJ phosphorites (∼89.9 nm) is larger than those in the WA-A (∼56.6 nm) and WA-B (∼57.4 nm) phosphorites, indicative of more intense reworking of the ZJ than WA phosphorites during early diagenesis. A plot of Nd concentration versus Ce/Ce* reveals that lower sedimentation rates characterized the ZJ phosphorites. Therefore, intense sedimentary reworking during early diagenesis resulted in more REEs being sequestered by the marine phosphates from seawater and pore waters at a lower sedimentation rate, which resulted in the extraordinary REE enrichment in the ZJ phosphorites. Our findings highlight the multiple factors that controlled formation of sedimentary phosphorites around the PC–C transition (especially the intense reworking and redox conditions of the overlying seawater), and provide further insights into REE enrichment in sedimentary phosphorites worldwide.

Keywords

REE enrichment / Francolite, phosphorites / Sedimentary reworking / Rate of sedimentary

Cite this article

Download citation ▾
Jieqi Xing, Yuhang Jiang, Haiyang Xian, Wubin Yang, Yiping Yang, Hecai Niu, Hongping He, Jianxi Zhu. Rare earth element enrichment in sedimentary phosphorites formed during the Precambrian–Cambrian transition, Southwest China. Geoscience Frontiers, 2024, 15(2): 101766 https://doi.org/10.1016/j.gsf.2023.101766

CRediT authorship contribution statement

Jieqi Xing: Conceptualization, Data curation, Investigation, Writing – original draft. Yuhang Jiang: Writing – review & editing. Haiyang Xian: Writing – review & editing. Wubin Yang: Writing – review & editing. Yiping Yang: Methodology, Investigation. Hecai Niu: Funding acquisition, Supervision. Hongping He: Funding acquisition, Supervision. Jianxi Zhu: Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank Zeyang Zhang, Wei Tan, and Ningbo Li for their detailed discussions in improving this paper. The authors are grateful to Yonghua Cao, Pan Qu, Xiangyang Yin for their assistance with EPMA and LA-ICP-MS analysis. Editorial handling by Editorial Advisor M. Santosh and Associate Editor C. Manikyamba as well as comments from two anonymous reviewers helped improve the manuscript significantly. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 41825003, 41921003), Key Research Program of the Institute of Geology & Geophysics, CAS (Grant No. IGGCAS-201901), Guangdong Special Support Program (Grant No. 2019TX05L169), Science and Technology Planning Project of Guangdong Province, China (Grant No. 2023B1212060048), the Youth Innovation Promotion Association CAS (Grant No. 2021353).

References

K. Al-Bassam, T. Magna. Distribution and significance of rare earth elements in Cenomanian-Turonian phosphate components and mudstones from the Bohemian Cretaceous Basin, Czech Republic. Bull. Geosci., 93 (2018), pp. 347-368
M. Bau. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123 (3) (1996), pp. 323-333
M. Bau. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta, 63 (1) (1999), pp. 67-77
M. Bau, P. Dulski. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res., 79 (1–2) (1996), pp. 37-55
B. Bingen, W.L. Griffin, T.H. Torsvik, A. Saeed. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova, 17 (3) (2005), pp. 250-258
F.W. Chandler, R.R. Parrish. Age of the Richmond Gulf Group and implications for rifting in the Trans-Hudson Orogen, Canada. Precambrian Res., 44 (3) (1989), pp. 277-288
J. Chen, T.J. Algeo, L. Zhao, Z.Q. Chen, L. Cao, L. Zhang, Y. Li. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Sci. Rev., 149 (2015), pp. 181-202
D.F. Chen, W.Q. Dong, L. Qi, G.Q. Chen, X.P. Chen. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chem. Geol., 201 (1) (2003), pp. 103-118
J. Chen, R. Yang, H. Wei, J. Gao. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. J. Rare Earths, 31 (1) (2013), pp. 101-112
L. Chen, Y. Liu, Z. Hu, S. Gao, K. Zong, H. Chen. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chem. Geol., 284 (3–4) (2011), pp. 283-295
J. Chen, I.P. Montañez, Y. Qi, S. Shen, X. Wang. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46 (5) (2018), pp. 395-398
A.A. Cherepanov, N.V. Berdnikov, A.V. Shtareva. Rare-Earth Elements and Noble Metals in Phosphorites of the Gremuchy Occurrence, Lesser Khingan, Far East of Russia. Russ. J. Pacific Geol., 13 (6) (2019), pp. 585-593
D.M. Chew, J.A. Petrus, B.S. Kamber. U-Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol., 363 (2014), pp. 185-199
C.-H. Chung, C.-F. You, J.W. Schopf, N. Takahata, Y. Sano. NanoSIMS U-Pb dating of fossil-associated apatite crystals from Ediacaran (∼570 Ma) Doushantuo Formation. Precambrian Res., 349 (2020), Article 105564
D. Condon, M. Zhu, S. Bowring, W. Wang, A. Yang, Y. Jin. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308 (5718) (2005), pp. 95-98
P.J. Cook. Phosphogenesis around the Proterozoic-Phanerozoic transition. J. Geol. Soc., 149 (4) (1992), pp. 615-620
P.J. Cook, J.H. Shergold. Phosphorus, phosphorites and skeletal evolution at the Precambrian Cambrian boundary. Nature, 308 (5956) (1984), pp. 231-236
Y. Deng, Q. Guo, C. Liu, G. He, J. Cao, J. Liao, C. Liu, H. Wang, J. Zhou, Y. Liu, F. Wang, B. Zhao, R. Wei, J. Zhu, H. Qiu. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments. Sci. Adv., 8 (25) (2022), p. eabn5466
H.G. Dill. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Sci. Rev., 53 (1) (2001), pp. 35-93
P. Emsbo, P.I. McLaughlin, G.N. Breit, E.A. du Bray, A.E. Koenig. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?. Gondwana Res., 27 (2) (2015), pp. 776-785
A.A. Fakhry, K.A. Eid, A.A. Mahdy. Distribution of REE in shales overlying the Abu Tartur phosphorite deposit, western desert, Egypt. J. Alloy. Compd., 275 (1998), pp. 929-933
M.E. Fleet, Y. Pan. Site preference of rare earth elements in fluorapatite: Binary (LREE+ HREE)-substituted crystals. Am. Mineral., 82 (9–10) (1997), pp. 870-877
I. Francovschi, et al.. Rare earth element (REE) enrichment of the late Ediacaran Kalyus Beds (East European Platform) through diagenetic uptake. Geochemistry, 80 (2) (2020), Article 125612
M.G. Gadd, D. Layton-Matthews, J.M. Peter. Non-hydrothermal origin of apatite in SEDEX mineralization and host rocks of the Howard’s Pass district, Yukon, Canada. Am. Mineral., 101 (5–6) (2016), pp. 1061-1071
H. Garnit, S. Bouhlel, I. Jarvis. Geochemistry and depositional environments of Paleocene Eocene phosphorites: Metlaoui Group, Tunisia. J. Afr. Earth. Sci., 134 (2017), pp. 704-736
K. Gnandi, H.J. Tobschall. Distribution patterns of rare-earth elements and uranium in tertiary sedimentary phosphorites of Hahotoé-Kpogamé, Togo. J. Afr. Earth. Sci., 37 (1) (2003), pp. 1-10
S.J. Goldstein, S.B. Jacobsen. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol.: Isotope Geoscience Section, 66 (3) (1987), pp. 245-272
L.E. Gómez-Peral, A.J. Kaufman, D.G. Poiré. Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambrian Res., 252 (2014), pp. 88-106
B.A. Haley, G.P. Klinkhammer, J. McManus. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta, 68 (6) (2004), pp. 1265-1279
G.P. Hatch. Dynamics in the global market for rare earths. Elements, 8 (5) (2012), pp. 341-346
H. He, W. Yang. REE mineral resources in China: Review and perspective. Geotectonica Et Metallogenia, 46 (5) (2022), pp. 829-841
J.M. Hughes, M. Cameron, A.N. Mariano. Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. Am. Mineral., 76 (7–8) (1991), pp. 1165-1173
A.V. Ilyin. Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chem. Geol., 144 (3) (1998), pp. 243-256
G. Jiang, L.E. Sohl, N. Christie-Blick. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications. Geology, 31 (10) (2003), pp. 917-920
K.P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D.E. Jacob, A. Stracke, K. Birbaum, D.A. Frick, D. Guenther, J. Enzweiler. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res., 35 (4) (2011), pp. 397-429
Y. Kato, K. Fujinaga, K. Nakamura, Y. Takaya, K. Kitamura, J. Ohta, R. Toda, T. Nakashima, H. Iwamori. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci., 4 (8) (2011), pp. 535-539
S.A. Khan, K.F. Khan, S.A. Dar. REE geochemistry of Early Cambrian phosphorites of Masrana and Kimoi blocks, Uttarakhand, India. Arabian J. Geosci., 9 (6) (2016), pp. 1-10
A. Koschinsky, A. Stascheit, M. Bau, P. Halbach. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim. Cosmochim. Acta, 61 (19) (1997), pp. 4079-4094
J. Kynicky, M.P. Smith, C. Xu. Diversity of Rare Earth Deposits: The Key Example of China. Elements, 8 (5) (2012), pp. 361-367
T.A. Laakso, E.A. Sperling, D.T. Johnston, A.H. Knoll. Ediacaran reorganization of the marine phosphorus cycle. Proc. Natl. Acad. Sci., 117 (22) (2020), pp. 11961-11967
M.G. Lawrence, A. Greig, K.D. Collerson, B.S. Kamber. Rare earth element and yttrium variability in South East Queensland waterways. Aquat. Geochem., 12 (1) (2006), pp. 39-72
Z.X. Li, S.V. Bogdanova, A.S. Collins, A. Davidson, B. De Waele, R.E. Ernst, I.C.W. Fitzsimons, R.A. Fuck, D.P. Gladkochub, J. Jacobs, K.E. Karlstrom, S. Lu, L.M. Natapov, V. Pease, S.A. Pisarevsky, K. Thrane, V. Vernikovsky. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res., 160 (1) (2008), pp. 179-210
C.-W. Li, J.-Y. Chen, T.-E. Hua. Precambrian Sponges with Cellular Structures. Science, 279 (5352) (1998), pp. 879-882
X.-H. Li, W.-X. Li, Z.-X. Li, C.-H. Lo, J. Wang, M.-F. Ye, Y.-H. Yang. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res., 174 (1) (2009), pp. 117-128
D. Li, G.A. Shields-Zhou, H.-F. Ling, M. Thirlwall. Dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks. Chem. Geol., 290 (3) (2011), pp. 133-144
J. Liao, X. Sun, D. Li, R. Sa, Y. Lu, Z. Lin, L. Xu, R. Zhan, Y. Pan, H. Xu. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies. Chem. Geol., 512 (2019), pp. 58-68
H.-F. Ling, X. Chen, D. Li, D. Wang, G.A. Shields-Zhou, M. Zhu. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res., 225 (2013), pp. 110-127
Z.-R.-R. Liu, M.-F. Zhou. Meishucun phosphorite succession (SW China) records redox changes of the early Cambrian ocean. Geol. Soc. Am. Bull., 129 (11–12) (2017), pp. 1554-1567
T. Mao, R. Yang. Micro-structural characteristics and composition of the small shelly fossils in Cambrian phosphorite. Acta Micropalaeontologica Sinica, 30 (02) (2013), pp. 199-207
Y. Okada, Y. Sawaki, T. Komiya, T. Hirata, N. Takahata, Y. Sano, J. Han, S. Maruyama. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, South China. Gondwana Res., 25 (3) (2014), pp. 1027-1044
M.R. Palmer, J.M. Edmond. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92 (1) (1989), pp. 11-26
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom., 26 (12) (2011), pp. 2508-2518
P.K. Pufahl, L.A. Groat. Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper. Econ. Geol., 112 (3) (2017), pp. 483-516
P. Qu, W. Yang, H. Niu, N. Li, D. Wu. Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. Geol. Soc. Am. Bull., 134 (7–8) (2021), pp. 1863-1876
B. Reynard, C. Lecuyer, P. Grandjean. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol., 155 (3–4) (1999), pp. 233-241
J.G. RØnsbo. Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. Am. Mineral., 74 (7–8) (1989), pp. 896-901
B. Schoene, S.A. Bowring. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contrib. Mineral. Petrol., 151 (5) (2006), p. 615
Z. She, P. Strother, G. McMahon, L.R. Nittler, J. Wang, J. Zhang, L. Sang, C. Ma, D. Papineau. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition. Precambrian Res., 235 (2013), pp. 20-35
Y. Shen, M. Schidlowski, X. Chu. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol., 158 (1) (2000), pp. 99-108
G. Shields. Working towards a new stratigraphic calibration scheme for the Neoproterozoic-Cambrian. Eclogae Geol. Helv., 92 (2) (1999), pp. 221-233
G.A. Shields, G.E. Webb. Has the REE composition of seawater changed over geological time?. Chem. Geol., 204 (1–2) (2004), pp. 103-107
D. Soudry, Y. Nathan, S. Ehrlich. Geochemical diagenetic trends during phosphorite formation - economic implications: The case of the Negev Campanian phosphorites, Southern Israel. Sedimentology, 60 (3) (2013), pp. 800-819
S. Sun, L.S. Chan, Y.-L. Li. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. Am. Mineral., 99 (10) (2014), pp. 2116-2125
S.R. Taylor, S.M. McLennan. The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Scientific Publications, Oxford, Blackwell (1985), pp. 1-312
J.A. Trotter, C.R. Barnes, A.D. McCracken. Rare earth elements in conodont apatite: Seawater or pore-water signatures?. Palaeogeogr. Palaeoclimatol. Palaeoecol., 462 (2016), pp. 92-100
J. Veizer, F.T. Mackenzie. 9.15 - Evolution of Sedimentary Rocks. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (second Edition), Elsevier, Oxford (2014), pp. 399-435
P. Vermeesch. Statistical models for point-counting data. Earth Planet. Sci. Lett., 501 (2018), pp. 112-118
J. Wang, Z.-X. Li. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res., 122 (1) (2003), pp. 141-158
G. Wang, J. Xu, L. Ran, R. Zhu, B. Ling, X. Liang, S. Kang, Y. Wang, J. Wei, L. Ma, Y. Zhuang, J. Zhu, H. He. A green and efficient technology to recover rare earth elements from weathering crusts. Nature Sustainability, 6 (2022), pp. 81-92
W. Wang, M.-F. Zhou. Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents. Sediment. Geol., 265–266 (2012), pp. 126-142
Z. Wang, Z. Zhu. Matrix-pattern-oriented classifier with boundary projection discrimination. Knowl-based Syst, 149 (2018), pp. 1-17
G.-Y. Wei, H.-F. Ling, G.A. Shields, T. Chen, M. Lechte, X. Chen, C. Qiu, H. Lei, M. Zhu. Long-term evolution of terrestrial inputs from the Ediacaran to early Cambrian: Clues from Nd isotopes in shallow-marine carbonates, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 535 (2019), Article 109367
H. Wen, H. Fan, Y. Zhang, C. Cloquet, J. Carignan. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim. Cosmochim. Acta, 164 (2015), pp. 1-16
J. Wright, H. Schrader, W.T. Holser. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta, 51 (3) (1987), pp. 631-644
S. Wu, H. Fan, Y. Xia, Q. Meng, X. Gong, S. He, X. Liu, H. Yang, H. Wen. Sources of rare earth elements and yttrium in the early Cambrian phosphorites in Zhijin, southwest China. Ore Geol. Rev., 150 (2022), Article 105146
S. Xiao, Y. Zhang, A.H. Knoll. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391 (6667) (1998), pp. 553-558
S. Xiao, X. Yuan, A.H. Knoll. Eumetazoan fossils in terminal Proterozoic phosphorites?. Proc. Natl. Acad. Sci., 97 (25) (2000), pp. 13684-13689
C. Xiao, Z. Zhang, C. He, H. Weng, H. Fan. The depositional environment of Ediacaran phosphorite deposits, South China. Bulletin of Mineralogy, Petrology and Geochemistry, 37 (01) (2018), pp. 121-138
J. Xing, Y. Jiang, H. Xian, Z. Zhang, Y. Yang, W. Tan, X. Liang, H. Niu, H. He, J. Zhu. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: A micro- and nano-scale mineralogical study. Ore Geol. Rev., 136 (2021)
J. Xing, Y. Jiang, H. Xian, W. Yang, Y. Yang, W. Tan, H. Niu, H. He, J. Zhu. Hydrothermal alteration and the remobilization of rare earth elements during reprecipitation of nano-scale apatite in phosphorites. Lithos, 444–445 (2023), Article 107113
J. Xu, J. Xiao, H. Yang, Y. Xia, S. Wu, Z. Xie. The REE enrichment characteristics and constraints of the phophorite in Zhijin, Guizhou: A case study of No.2204 drilling cores in the Motianchong ore block. Acta Mineralogica Sinica, 39 (4) (2019), pp. 371-379
D.-P. Yan, M.-F. Zhou, H.-L. Song, X.-W. Wang, J. Malpas. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics, 361 (3) (2003), pp. 239-254
Y. Yang, F. Wu, L. Xie, J. Yang, Y. Zhang. In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS. Acta Petrologica Sinica, 25 (12) (2009), pp. 3431-3441
H. Yang, J. Xiao, Y. Xia, Z. Xie, Q. Tan, J. Xu, H. Guo, S. He, S. Wu. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J. Asian. Earth. Sci., 182 (2019), Article 103931
H. Yang, J. Xiao, Y. Xia, Z. Zhao, Z. Xie, S. He, S. Wu. Diagenesis of Ediacaran − early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geol. Rev., 144 (2022), Article 104813
H. Zhang, H. Fan, H. Wen, T. Han, T. Zhou, Y. Xia. Controls of REY enrichment in the early Cambrian phosphorites. Geochim. Cosmochim. Acta, 324 (2022), pp. 117-139
Z. Zhang, Y. Jiang, H. Niu, J. Xing, S. Yan, A. Li, Q. Weng, X. Zhao. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geol. Rev., 138 (2021), Article 104342
Y.G. Zhang, P.K. Pufahl, Y. Du, G. Chen, J. Liu, Q. Chen, Z. Wang, W. Yu. Economic phosphorite from the Ediacaran Doushantuo Formation, South China, and the Neoproterozoic-Cambrian Phosphogenic Event. Sediment. Geol., 388 (2019), pp. 1-19
J. Zhang, Q. Zhang, D. Chen. REE geochemistry of the ore-bearing REE in Xinhua phosphorite, Zhijin, Guizhou. J. Mineral. Petrol., 23 (3) (2003), pp. 35-38
J.-H. Zhao, M.-F. Zhou, D.-P. Yan, J.-P. Zheng, J.-W. Li. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39 (4) (2011), pp. 299-302
K. Zhou, Y. Fu, Y. Ye, K. Long, W. Zhou. Characteristics of the Rare Earth Elements’ Accumulation of phosphorus rock series during the Early Cambrian. Guizhou Province. Acta Mineralogica Sinica, 39 (4) (2019), pp. 420-431
C.M. Zhou, G.W. Xie, K. McFadden, S.H. Xiao, X.L. Yuan. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance. Geol. J., 42 (3–4) (2007), pp. 229-262
R.X. Zhu, X. Li, X. Hou, Y. Pan, F. Wang, C. Deng, H. He. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary. Sci. China Ser. D-Earth Sci., 39 (8) (2009), pp. 1105-1111

28

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/