From spatio-temporal landslide susceptibility to landslide risk forecast

Tengfei Wang, Ashok Dahal, Zhice Fang, Cees van Westen, Kunlong Yin, Luigi Lombardo

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101765.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101765. DOI: 10.1016/j.gsf.2023.101765

From spatio-temporal landslide susceptibility to landslide risk forecast

Author information +
History +

Abstract

The literature on landslide susceptibility is rich with examples that span a wide range of topics. However, the component that pertains to the extension of the susceptibility framework toward space–time modeling is largely unexplored. This statement holds true, particularly in the context of landslide risk, where few scientific contributions investigate risk dynamics in space and time. This manuscript proposes a modeling protocol where a dynamic landslide susceptibility is obtained via a binomial Generalized Additive Model whose inventories span nine years (from 2013 to 2021). For the analyses, the data cube is organized with a mapping unit consisting of 26,333 slope units repeated over an annual temporal unit, resulting in a total of 236,997 units. This phase already includes several interesting modeling experiments that have rarely appeared in the landslide literature (e.g., variable interaction plots). However, the main innovative effort is in the subsequent phase of the protocol we propose, as we used climate projections of the main trigger (rainfall) to obtain future estimates of yearly susceptibility patterns. These estimates are then combined with projections of urban settlements and associated populations to create a dynamic risk model, assuming vulnerability = 1. Overall, this manuscript presents a unique example of such a modeling routine and offers a potential standard for administrations to make informed decisions regarding future urban development.

Keywords

Space-time statistics / Dynamic landslide susceptibility / Landslide risk / Future projections

Cite this article

Download citation ▾
Tengfei Wang, Ashok Dahal, Zhice Fang, Cees van Westen, Kunlong Yin, Luigi Lombardo. From spatio-temporal landslide susceptibility to landslide risk forecast. Geoscience Frontiers, 2024, 15(2): 101765 https://doi.org/10.1016/j.gsf.2023.101765

CRediT authorship contribution statement

Tengfei Wang: Data curation, Investigation, Methodology, Writing. Ashok Dahal: Software, Writing – original draft. Zhice Fang: Software. Cees van Westen: Investigation, Visualization, Writing – review & editing. Kunlong Yin: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft. Luigi Lombardo: Experiment, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research was supported by the National Natural Science Foundation of China – Young Scientist Funds (No.42207174). The first author wishes to thank the China Scholarship Council (CSC) for funding his research period at the University of Twente.

References

[]
E.C. Abella, C. Van Westen. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4 (4) (2007), pp. 311-325
[]
C. Agostinelli. Robust stepwise regression. J. Appl. Stat., 29 (6) (2002), pp. 825-840
[]
B. Ahmed. The root causes of landslide vulnerability in Bangladesh. Landslides, 18 (5) (2021), pp. 1707-1720
[]
M. Alvioli, I. Marchesini, P. Reichenbach, M. Rossi, F. Ardizzone, F. Fiorucci, F. Guzzetti. Automatic delineation of geomorphological slope units with r. slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev., 9 (11) (2016), pp. 3975-3991
[]
G. Amato, C. Eisank, D. Castro-Camilo, L. Lombardo. Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment. Eng. Geol., 260 (2019), Article 105237
[]
O. Babak, C.V. Deutsch. Statistical approach to inverse distance interpolation. Stoch. Env. Res. Risk a., 23 (2009), pp. 543-553
[]
N. Beck, J.N. Katz, R. Tucker. Taking time seriously: Time-series-cross-section analysis with a binary dependent variable. Am. J. Polit. Sci., 42 (4) (1998), pp. 1260-1288
[]
A. Brenning. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. Hamburger Beiträge Zur Physischen Geographie Und Landschaftsökologie, 19 (23–32) (2008), p. 410
[]
A. Brenning. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The r package sperrorest. 2012 IEEE International Geoscience and Remote Sensing Symposium (2012), pp. 5372-5375
[]
A. Brenning, M. Schwinn, A. Ruiz-Ṕaez, J. Muenchow. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Sys. Sci., 15 (1) (2015), pp. 45-57
[]
M. Budimir, P. Atkinson, H. Lewis. A systematic review of landslide probability mapping using logistic regression. Landslides, 12 (3) (2015), pp. 419-436
[]
D. Calcaterra, D. Di Martire, B. Palma, M. Parise. Assessing landslide risk through unique condition units. Geologically Active, CRC Press/Balkema (2010), pp. 991-998
[]
A. Carrara. Drainage and divide networks derived from high-fidelity digital terrain models. Quantitative Analysis of Mineral and Energy Resources, Springer, Netherlands, Dordrecht (1988), pp. 581-597
[]
A. Carrara, M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, P. Reichenbach. Gis techniques and statistical models in evaluating landslide hazard. Earth Surf. Proc. Land., 16 (5) (1991), pp. 427-445
[]
S. Chen, Y. Yan, G. Liu, D. Fang, Z. Wu, J. He, J. Tang. Spatiotemporal characteristics of precipitation diurnal variations in Chongqing with complex terrain. Theor. Appl. Climatol., 137 (2019), pp. 1217-1231
[]
C. Conoscenti, E. Rotigliano, M. Cama, N.A. Caraballo-Arias, L. Lombardo, V. Agnesi. Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 261 (2016), pp. 222-235
[]
J. Corominas, C. van Westen, P. Frattini, L. Cascini, J.-P. Malet, S. Fotopoulou, F. Catani, M. Van Den Eeckhaut, O. Mavrouli, F. Agliardi. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ., 73 (2014), pp. 209-263
[]
N. Cressie. Spatial prediction and ordinary kriging. Math. Geol., 20 (1988), pp. 405-421
[]
F. Dai, C.F. Lee, Y.Y. Ngai. Landslide risk assessment and management: an overview. Eng. Geol., 64 (1) (2002), pp. 65-87
[]
R. Emberson, D. Kirschbaum, T. Stanley. New global characterisation of landslide exposure. Nat. Hazards Earth Sys. Sci., 20 (12) (2020), pp. 3413-3424
[]
Z. Fang, Y. Wang, L. Peng, H. Hong. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci., 139 (2020), Article 104470
[]
Z. Fang, H. Tanyas, T. Gorum, A. Dahal, Y. Wang, L. Lombardo. Speech-recognition in landslide predictive modelling: A case for a next generation early warning system. Environ. Modell, Softw (2023), p. 105833
[]
R. Fluss, D. Faraggi, B. Reiser. Estimation of the Youden Index and its associated cutoff point. Biometrical J., 47 (4) (2005), pp. 458-472
[]
M. Galli, F. Guzzetti. Landslide vulnerability criteria: a case study from Umbria. Central Italy. Environ. Manag., 40 (4) (2007), pp. 649-665
[]
T. Glade, M.G. Anderson, M.J. Crozier. Landslide hazard and risk. (807.), Wiley Online Library (2005)
[]
J. Goetz, R. Guthrie, A. Brenning. Forest harvesting is associated with increased landslide activity during an extreme rainstorm on Vancouver Island. Canada. Nat. Hazards Earth Sys. Sci., 15 (6) (2015), pp. 1311-1330
[]
P. Gong, B. Chen, X. Li, H. Liu, J. Wang, Y. Bai, J. Chen, X. Chen, L. Fang, S. Feng. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull., 65 (3) (2020), pp. 182-187
[]
Z. Guo, K. Yin, L. Gui, Q. Liu, F. Huang, T. Wang. Regional rainfall warning system for landslides with creep deformation in three gorges using a statistical black box model. Sci. Reports, 9 (1) (2019), p. 8962
[]
Z. Guo, L. Chen, K. Yin, D.P. Shrestha, L. Zhang. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol., 273 (2020), Article 105667
[]
Z. Guo, J.V. Ferrer, M. Hürlimann, V. Medina, C. Puig-Polo, K. Yin, D. Huang. Shallow landslide susceptibility assessment under future climate and land cover changes: A case study from southwest China. Geosci. Front., 14 (4) (2023), Article 101542
[]
F. Guzzetti. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol., 58 (2) (2000), pp. 89-107
[]
K. Hajian-Tilaki. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Internal Med., 4 (2013), p. 627
[]
T.J. Hastie. Generalized additive models. Statistical Models in S. Routledge (2017), pp. 249-307
[]
T. Hastie, R. Tibshirani. Generalized additive models: some applications. J. Am. Stat. Asso., 82 (1987), pp. 371-386
[]
D.W. Hosmer, S. Lemeshow. Applied Logistic Regression. (second ed.), Wiley, New York (2000)
[]
R. Ihaka, R. Gentleman. R: a language for data analysis and graphics. J. Comput. Graph. Stat., 5 (1996), pp. 299-314
[]
J. Jasiewicz, T.F. Stepinski. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182 (2013), pp. 147-156
[]
S.K. Jenson, J.O. Domingue. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. REM. Sens., 54 (11) (1988), pp. 1593-1600
[]
E.C. Johnston, F.V. Davenport, L. Wang, J.K. Caers, S. Muthukrishnan, M. Burke, N.S. Diffenbaugh. Quantifying the effect of precipitation on landslide hazard in urbanized and non-urbanized areas. Geophys. Res. Lett., 48 (16) (2021)
[]
A. Kaynia, M. Papathoma-K¨ohle, B. Neuh¨auser, K. Ratzinger, H. Wenzel, Z. Medina-Cetina. Probabilistic assessment of vulnerability to landslide: application to the village of Lichtenstein, Baden-Wu¨rttemberg. Germany. Eng. Geol., 101 (1–2) (2008), pp. 33-48
[]
R. Knevels, H. Petschko, H. Proske, P. Leopold, A.N. Mishra, D. Maraun, A. Brenning. Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria). Nat. Hazards Earth Sys. Sci., 23 (1) (2023), pp. 205-229
[]
O. Lateltin, C. Haemmig, H. Raetzo, C. Bonnard. Landslide risk management in Switzerland. Landslides, 2 (4) (2005), pp. 313-320
[]
Q. Lepetit, V. Viguíe, C. Liotta. A gridded dataset on densities, real estate prices, transport, and land use inside 192 worldwide urban areas. Data in Brief, 47 (2023), Article 108962
[]
Y. Li, C. Liu, X. Yuan. Spatiotemporal features of soil and water loss in Three Gorges Reservoir Area of Chongqing. J. Geograph. Sci., 19 (1) (2009), pp. 81-94
[]
M. Liao, H. Wen, L. Yang. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. Catena, 217 (2022), Article 106428
[]
P. Lima, S. Steger, T. Glade. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria. Landslides, 18 (11) (2021), pp. 3531-3546
[]
P. Lima, S. Steger, T. Glade, F.G. Murillo-Garćıa. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. MT. Sci., 19 (6) (2022), pp. 1670-1698
[]
S. Liu, L. Wang, W. Zhang, Y. He, S. Pijush. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J., 58 (6) (2023), pp. 2283-2301
[]
L. Lombardo, H. Tanyas. Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations. Eng. Geol., 278 (2020), Article 105818
[]
L. Lombardo, S. Saia, C. Schillaci, P.M. Mai, R. Huser. Modeling soil organic carbon with Quantile Regression: Dissecting predictors’ effects on carbon stocks. Geoderma, 318 (2018), pp. 148-159
[]
L. Lombardo, H. Bakka, H. Tanyas, C. van Westen, P.M. Mai, R. Huser. Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J. Geophys. Res. Earth Sur., 124 (7) (2019), pp. 1958-1980
[]
L. Lombardo, T. Opitz, F. Ardizzone, F. Guzzetti, R. Huser. Space-time landslide predictive modelling. Earth Sci. Rev., 209 (2020), Article 103318
[]
L. Luo, L. Lombardo, C. van Westen, X. Pei, R. Huang. From scenario-based seismic hazard to scenario-based landslide hazard: rewinding to the past via statistical simulations. Stochast. Environ. Res. Risk Assess. (2021), pp. 1-22
[]
H. Luo, L. Zhang, L. Zhang, J. He, K. Yin. Vulnerability of buildings to landslides: The state of the art and future needs. Earth Sci Rev. (2023), p. 104329
[]
Zˇ. Malek, L. Boerboom, T. Glade. Future forest cover change scenarios with implications for landslide risk: an example from Buzau Subcarpathians. Romania. Environ. Manage., 56 (2015), pp. 1228-1243
[]
G.C. McDonald. Ridge regression. Wiley Interdisciplinary Reviews: Computational Statistics, 1 (1) (2009), pp. 93-100
[]
A. Meijerink. Data acquisition and data capture through terrain mapping unit. ITC J., 1 (1988), pp. 23-24
[]
A.C. Mondini, F. Guzzetti, M. Melillo. Deep learning forecast of rainfall-induced shallow landslides. Nat. Commun., 14 (1) (2023), p. 2466
[]
N. Nocentini, A. Rosi, S. Segoni, R. Fanti. Towards landslide space-time forecasting through machine learning: the influence of rainfall parameters and model setting. Front. Earth Sci., 11 (2023), pp. 1-20
[]
M.A. North. A method for implementing a statistically significant number of data classes in the Jenks algorithm. 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (2009), pp. 35-38
[]
T. Opitz, H. Bakka, R. Huser, L. Lombardo. High-resolution Bayesian mapping of landslide hazard with unobserved trigger event. Ann. Appl. Stat., 16 (3) (2022), pp. 1653-1675
[]
U. Ozturk, M. Pittore, R. Behling, S. Roessner, L. Andreani, O. Korup. How robust are landslide susceptibility estimates?. Landslides, 18 (2021), pp. 681-695
[]
M. Papathoma-K¨ohle, A. Zischg, S. Fuchs, T. Glade, M. Keiler. Loss estimation for landslides in mountain areas–An integrated toolbox for vulnerability assessment and damage documentation. Environ. Modell. Softw., 63 (2015), pp. 156-169
[]
S. Pascale, F. Sdao, A. Sole. A model for assessing the systemic vulnerability in landslide prone areas. Nat. Hazards Earth Syst. Sci., 10 (7) (2010), pp. 1575-1590
[]
D. Peduto, S. Ferlisi, G. Nicodemo, D. Reale, G. Pisciotta, G. Gull‘a. Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides, 14 (2017), pp. 1993-2007
[]
R. Pellicani, C.J. Van Westen, G. Spilotro. Assessing landslide exposure in areas with limited landslide information. Landslides, 11 (2014), pp. 463-480
[]
D. Petley. Global patterns of loss of life from landslides. Geology, 40 (10) (2012), pp. 927-930
[]
H. Petschko, A. Brenning, R. Bell, J. Goetz, T. Glade. Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat. Hazards Earth Syst. Sci., 14 (1) (2014), pp. 95-118
[]
B. Quan Luna, J. Blahut, C. Van Westen, S. Sterlacchini, T.W. van Asch, S. Akbas. The application of numerical debris flow modelling for the generation of physical vulnerability curves. Nat. Hazards Earth Syst. Sci., 11 (7) (2011), pp. 2047-2060
[]
P. Reichenbach, M. Rossi, B.D. Malamud, M. Mihir, F. Guzzetti. A review of statistically-based landslide susceptibility models. Earth Sci. Rev., 180 (2018), pp. 60-91
[]
J. Remondo, J. Bonachea, A. Cendrero. Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology, 94 (3–4) (2008), pp. 496-507
[]
D.R. Roberts, V. Bahn, S. Ciuti, M.S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J.J. Lahoz-Monfort, B. Schr¨oder, W. Thuiller. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40 (8) (2017), pp. 913-929
[]
M. Rossi, F. Guzzetti, P. Reichenbach, A.C. Mondini, S. Peruccacci. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114 (3) (2010), pp. 129-142
[]
M. Rossi, S. Peruccacci, M. Brunetti, I. Marchesini, S. Luciani, F. Ardizzone, V. Balducci, C. Bianchi, M. Cardinali, F. Fiorucci. SANF: National warning system for rainfall-induced landslides in Italy. Landslides and Engineered Slopes: Protecting Society through Improved Understanding (2012), pp. 1895-1899
[]
M. Rossi, F. Guzzetti, P. Salvati, M. Donnini, E. Napolitano, C. Bianchi. A predictive model of societal landslide risk in Italy. Earth Sci. Rev., 196 (2019), Article 102849
[]
Y. Sakamoto, M. Ishiguro, G. Kitagawa. Akaike information criterion statistics. D. Reidel, Dordrecht, The Netherlands (1986), p. 81
[]
J. Samia, A.J. Temme, A. Bregt, J. Wallinga, F. Guzzetti, F. Ardizzone, M. Rossi. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides, 14 (2017), pp. 547-558
[]
R. Schl¨ogel, I. Marchesini, M. Alvioli, P. Reichenbach, M. Rossi, J.-P. Malet. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 301 (2018), pp. 10-20
[]
S. Segoni, L. Piciullo, S.L. Gariano. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15 (8) (2018), pp. 1483-1501
[]
A. Seijmonsbergen. The modern geomorphological map. Methods in Geomorphology, Elsevier, Amsterdam (2013), pp. 35-52
[]
S. Steger, A. Brenning, R. Bell, T. Glade. The propagation of inventory-based positional errors into statistical landslide susceptibility models. Nat. Hazards Earth Sys. Sci., 16 (12) (2016), pp. 2729-2745
[]
S. Steger, M. Moreno, A. Crespi, P.J. Zellner, S.L. Gariano, M.T. Brunetti, M. Pittore. Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Nat. Hazards  Earth Sys. Sci. Discussions, 2022 (2022), pp. 1-38
[]
S. Steger, M. Moreno, A. Crespi, P.J. Zellner, S.L. Gariano, M.T. Brunetti, M. Melillo, S. Peruccacci, F. Marra, R. Kohrs. Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Nat. Hazards Earth Sys. Sci., 23 (4) (2023), pp. 1483-1506
[]
D. Sun, D. Chen, J. Zhang, C. Mi, Q. Gu, H. Wen. Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation. Land, 12 (5) (2023), p. 1018
[]
K.E. Taylor, R.J. Stouffer, G.A. Meehl. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93 (4) (2012), pp. 485-498
[]
B. Thrasher, E.P. Maurer, C. McKellar, P.B. Duffy. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16 (9) (2012), pp. 3309-3314
[]
G. Titti, C. van Westen, L. Borgatti, A. Pasuto, L. Lombardo. When enough is really enough? On the minimum number of landslides to build reliable susceptibility models. Geosciences, 11 (11) (2021), p. 469
[]
A. Tyagi, R.K. Tiwari, N. James. A review on spatial, temporal and magnitude prediction of landslide hazard. J. Asian Earth Sci. X, 7 (2022), Article 100099
[]
M. Uzielli, F. Catani, V. Tofani, N. Casagli. Risk analysis for the Ancona landslide—II: estimation of risk to buildings. Landslides, 12 (2015), pp. 83-100
[]
M. Van Den Eeckhaut, P. Reichenbach, F. Guzzetti, M. Rossi, J. Poesen. Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes. Belgium. Nat. Hazards Earth Sys. Sci., 9 (2) (2009), pp. 507-521
[]
C. Van Westen, T.W. Van Asch, R. Soeters. Landslide hazard and risk zonation—why is it still so difficult?. Bull. Eng. Geol. Environ., 65 (2) (2006), pp. 167-184
[]
A.-M.-C. Wadoux, G.B. Heuvelink, S. De Bruin, D.J. Brus. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Model., 457 (2021), Article 109692
[]
L. Wang, Y. Yin, Z. Zhang, B. Huang, Y. Wei, P. Zhao, M. Hu. Stability analysis of the Xinlu Village landslide (Chongqing, China) and the influence of rainfall. Landslides, 16 (2019), pp. 1993-2004
[]
X. Wei, L. Zhang, P. Gardoni, Y. Chen, L. Tan, D. Liu, C. Du, H. Li. Comparison of hybrid data-driven and physical models for landslide susceptibility mapping at regional scales. Acta Geotech., 18 (2023), pp. 4453-4476
[]
S. Wood, M.S. Wood. Package ‘mgcv’. R Package Version, 1 (29) (2015), p. 729
[]
T. Xiao, S. Segoni, L.X. Chen, K.L. Yin, N. Casagli. A step beyond landslide susceptibility maps: a simple method to investigate and explain the different outcomes obtained by different approaches. Landslides, 17 (2020), pp. 627-640
[]
I. Yilmaz. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ. Earth Sci., 60 (2010), pp. 505-519
[]
W. Zhang, Y. He, L. Wang, S. Liu, X. Meng. Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie. Chongqing. Geol. J., 58 (6) (2023), pp. 2372-2387
[]
L. Zhao, S. Zuo, D. Deng, Z. Han, B. Zhao. Development mechanism for the landslide at Xinlu Village, Chongqing, China. Landslides, 15 (2018), pp. 2075-2081

18

Accesses

9

Citations

Detail

Sections
Recommended

/