Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering
Jie Liu, Tao Zhang, Shuyu Sun
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (2) : 101735.
Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering
In the last few decades, deep learning (DL) has afforded solutions to macroscopic problems in petroleum engineering, but mechanistic problems at the microscale have not benefited from it. Mechanism studies have been the strong demands for the emerging projects, such as the gas storage and hydrate production, and for some problems encountered in the storage process, which are common found as the chemical interaction between injected gas and mineral, and the formation of hydrate. Emerging advances in DL technology enable solving molecular dynamics (MD) with quantum accuracy. The conventional quantum chemical method is computational expensive, whereas the classical MD method cannot guarantee high accuracy because of its empirical force field parameters. With the help of the DL force field, precision at the quantum chemistry level can be achieved in MD. Moreover, the DL force field promotes the computational speed compared with first-principles calculations. In this review, the basic knowledge of the molecular force field and deep neural network (DNN) is first introduced. Then, three representative open-source packages relevant to the DL force field are introduced. As the most common components in the development of oil and gas reservoirs, water and methane are studied from the aspects of computational efficiency and chemical reaction respectively, providing the foundation of oil and gas researches. However, in the oil and gas problems, the complex molecular topo structures and various element types set a high challenge for the DL techniques in MD. Regarding the computational efficiency, it needs improvement via GPU and parallel accelerations to compete with classical MD. Even with such difficulties, the booming of this technique in the area of petroleum engineering can be predictable.
Deep neural network / Molecular dynamics / Force field / Petroleum engineering
Q. Bai, S. Liu, Y. Tian, T. Xu, A.J. Banegas‐Luna, H. Pérez‐Sánchez, J. Huang, H. Liu, X. Yao. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci., 12 (2022), p. e1581
|
I. Balyakin, A. Rempel. . Machine learning interatomic potential for molten TiZrHfNb, AIP Conference Proceedings. AIP Publishing LLC (2020), p. 030037
|
I. Balyakin, A. Rempel. . Atomistic Calculation of the Melting Point of the High-Entropy Cantor Alloy CoCrFeMnNi, Doklady Physical Chemistry, Springer (2022), pp. 11-17
|
I. Balyakin, S. Rempel, R. Ryltsev, A. Rempel. Deep machine learning interatomic potential for liquid silica. Phys. Rev. E, 102 (2020), Article 052125
|
I. Balyakin, S. Sadovnikov. Deep learning potential for superionic phase of Ag2S. Comput. Mater. Sci., 202 (2022), p. 110963
|
L. Bartell. Molecular geometry: bonded versus nonbonded interactions. J. Chem. Educ., 45 (1968), p. 754
|
G.W. Bemis, M.A. Murcko. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem., 39 (1996), pp. 2887-2893
|
H.J. Berendsen, D. van der Spoel, R. van Drunen. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 91 (1995), pp. 43-56
|
L. Bonati, M. Parrinello. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics. Phys. Rev. Lett., 121 (2018), p. 265701
|
Y.D. Boon, S.C. Joshi, S.K. Bhudolia, G. Gohel. Recent advances on the design automation for performance-optimized fiber reinforced polymer composite components. J. Compos. Sci., 4 (2020), p. 61
|
C.I. Branden, J. Tooze. Introduction to Protein Structure. Garland Science (2012)
|
K.R. Brorsen. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks. J. Chem. Phys., 150 (2019), Article 204104
|
Y. Cao, M. Tang, Q. Zhang, J. Tang, S. Lu. Dynamic capillary pressure analysis of tight sandstone based on digital rock model. Capillarity, 3 (2020), pp. 28-35
|
Cava, J.K., Vant, J., Ho, N., Shulka, A., Turaga, P., Maciejewski, R., Singharoy, A., 2021. Towards conditional generation of minimal action potential pathways for molecular dynamics. arXiv preprint arXiv:2111.14053.
|
D. Ceperley, B. Alder. Quantum monte carlo. Science, 231 (1986), pp. 555-560
|
G. Chen, X. Luo, J.J. Jiao, X. Xue. Data-driven evolutionary algorithm for oil reservoir well-placement and control optimization. Fuel, 326 (2022), Article 125125
|
J. Chen, T. Yang, D. Zhang, H. Huang, Y. Tian. Deep learning based classification of rock structure of tunnel face. Geosci. Front., 12 (2021), pp. 395-404
|
K. Chowdhary. Natural Language Processing. Fundamentals of Artificial Intelligence, Springer, New Delhi (2020), pp. 603-649
|
J.-M. Combes, P. Duclos, R. Seiler. The Born-Oppenheimer Approximation, Rigorous Atomic and Molecular Physics. Springer (1981), pp. 185-213
|
G. Daccord, E. Touboul, R. Lenormand. Carbonate acidizing: toward a quantitative model of the wormholing phenomenon. SPE Prod. Eng., 4 (1989), pp. 63-68
|
O. Dinariev, N. Evseev. Multiphase flow modeling with density functional method. Comput. Geosci., 20 (2016), pp. 835-856
|
U. Dinur, A.T. Hagler. New approaches to empirical force fields. Rev. Comput. Chem., 2 (1991), pp. 99-164
|
P.A.M. Dirac. Quantum mechanics of many-electron systems. Proc. R Soc. Lond. A Math. Phys. Char., 123 (1929), pp. 714-733
|
S. Doerr, M. Majewski, A. Pérez, A. Kramer, C. Clementi, F. Noe, T. Giorgino, G. De Fabritiis. Torchmd: a deep learning framework for molecular simulations. J. Chem. Theory Comput., 17 (2021), pp. 2355-2363
|
Dong, J., Luo, Y., Wang, Y., Sun, J., 2019. Correlations in the chain melting of host-guest calcium. arXiv preprint arXiv:1911.02742.
|
Y. Du, Z. Meng, Q. Yan, C. Wang, Y. Tian, W. Duan, S. Zhang, P. Lin. Deep potential for a face-centered cubic Cu system at finite temperatures. Phys. Chem. Chem. Phys., 24 (2022), pp. 18361-18369
|
S. Du, J. Wang, M. Wang, J. Yang, C. Zhang, Y. Zhao, H. Song. A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns. Energy, 263 (2023), Article 126121
|
K. Elbaz, S.-L. Shen, A. Zhou, Z.-Y. Yin, H.-M. Lyu. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering, 7 (2021), pp. 238-251
|
K. Elbaz, T. Yan, A. Zhou, S.-L. Shen. Deep learning analysis for energy consumption of shield tunneling machine drive system. Tunn. Undergr. Space Technol., 123 (2022), Article 104405
|
K. Fang, H. Tang, C. Li, X. Su, P. An, S. Sun. Centrifuge modelling of landslides and landslide hazard mitigation: a review. Geosci. Front., 14 (2022), Article 101493
|
E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Physik, 48 (1928), pp. 73-79
|
C. Fonseca Guerra, J. Snijders, G.t. Te Velde, E.J. Baerends. Towards an order-N DFT method. Theor. Chem. Acc., 99 (1998), pp. 391-403
|
T. Fröhlking, M. Bernetti, N. Calonaci, G. Bussi. Toward empirical force fields that match experimental observables. J. Chem. Phys., 152 (2020), Article 230902
|
M. Fronzi, R.D. Amos, R. Kobayashi, N. Matsumura, K. Watanabe, R.K. Morizawa. Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles. Nanomaterials, 12 (2022), p. 3891
|
P. Gao, J. Zhang, Y. Sun, J. Yu. Accurate predictions of aqueous solubility of drug molecules via the multilevel graph convolutional network (MGCN) and SchNet architectures. Phys. Chem. Chem. Phys., 22 (2020), pp. 23766-23772
|
Galvelis, R., Varela-Rial, A., Doerr, S., Fino, R., Eastman, P., Markland, T.E., Chodera, J.D., De Fabritiis, G., 2022. NNP/MM: Fast molecular dynamics simulations with machine learning potentials and molecular mechanics. arXiv preprint arXiv:2201.08110.
|
Ge, P., Zhang, L., Lei, H., 2022. Machine learning assisted coarse-grained molecular dynamics modeling of meso-scale interfacial fluids. arXiv preprint arXiv:2210.12482.
|
T.L. Gilbert. Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B, 12 (1975), p. 2111
|
B. Gong. Shale Energy Revolution. Springer Singapore (2020)
|
W. Guan, C. Xi, Y. Chen, X. Zhang, J. Liang, J. Huang, J. Wu. Fire-flooding technologies in post-steam-injected heavy oil reservoirs. Petrol. Explor. Develop., 38 (2011), pp. 452-463
|
M.J. Harvey, G. Giupponi, G.D. Fabritiis. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput., 5 (2009), pp. 1632-1639
|
X. He, Y. Gui, J. Xie, X. Liu, Q. Wang, C. Tang. A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Appl. Surf. Sci., 500 (2020), Article 144030
|
X. Huang, X. Guo, X. Zhou, C. Shen, X. Lu, Z. Qi, Q. Xiao, W. Yan. Effects of water invasion law on gas wells in high temperature and high pressure gas reservoir with a large accumulation of water-soluble gas. Gas Sci. Eng., 62 (2019), pp. 68-78
|
J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 4 (2014), pp. 15-25
|
K. Jiang, P. Ashworth, S. Zhang, X. Liang, Y. Sun, D. Angus. China's carbon capture, utilization and storage (CCUS) policy: a critical review. Renew. Sust. Energ. Rev., 119 (2020), Article 109601
|
T. Kobayashi, D.-J. Liu, F.A. Perras. Spatial Arrangement of Dynamic Surface Species from Solid-State NMR and Machine Learning-Accelerated MD Simulations. Chem. Comm. 58(100), 13939-13942 (2022)
|
W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140 (1965), p. A1133
|
G. Kresse, J. Furthmüller. Software VASP, vienna (1999). Phys. Rev. B, 54 (1996), p. 169
|
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (2015), pp. 436-444
|
R.B. Leighton, M. Sands. The Feynman Lectures on Physics. Addison-Wesley Boston, MA, USA (1965)
|
I.N. Levine, D.H. Busch, H. Shull. Quantum Chemistry. Pearson Prentice Hall Upper Saddle River, NJ (2009)
|
Li, F.-F., Karpathy, A., Johnson, J., 2017. Stanford CS class CS231n: convolutional neural networks for visual recognition. https://cs231n.github.io/ (accessed on 25. 03. 2019).
|
T. Li, J. Li, H. Zhang, K. Sun, J. Xiao. DFT study on the dibenzothiophene pyrolysis mechanism in petroleum. Energy Fuel, 33 (2019), pp. 8876-8895
|
H.-X. Li, X.-Y. Zhou, Y.-C. Wang, H. Jiang. Theoretical study of Na+ transport in the solid-state electrolyte Na3OBr based on deep potential molecular dynamics. Inorg. Chem. Front., 8 (2021), pp. 425-432
|
W. Liang, G. Lu, J. Yu. Molecular dynamics simulations of molten magnesium chloride using machine‐learning‐based deep potential. Adv. Theory Simul., 3 (2020), p. 2000180
|
S.-S. Lin, A. Zhou, S.-L. Shen. Safety assessment of excavation system via TOPSIS-based MCDM modelling in fuzzy environment. Appl. Soft Comput., 138 (2023), Article 110206
|
Y. Ling, K. Li, M. Wang, J. Lu, C. Wang, Y. Wang, H. He. Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field. J. Power Sources, 555 (2023), Article 232350
|
D. Lockner, J. Byerlee. Hydrofracture in Weber sandstone at high confining pressure and differential stress. J. Geophys. Res., 82 (1977), pp. 2018-2026
|
C. Lu, Q. Liu, Q. Sun, C.-Y. Hsieh, S. Zhang, L. Shi, C.-K. Lee. Deep learning for optoelectronic properties of organic semiconductors. J. Phys. Chem. C, 124 (2020), pp. 7048-7060
|
A.D. MacKerell Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem., 25 (2004), pp. 1584-1604
|
A.D. MacKerell Jr, N. Banavali, N. Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56 (2000), pp. 257-265
|
A. Marcolongo, T. Binninger, F. Zipoli, T. Laino. Simulating diffusion properties of solid‐state electrolytes via a neural network potential: performance and training scheme. ChemSystemsChem, 2 (2020), Article e1900031
|
R.M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2020)
|
D. Marx, J. Hutter. Ab initio molecular dynamics: theory and implementation. Modern Methods and Algorithms of Quantum Chemistry, 1 (2000), p. 141
|
Q. Meng, H. Liu, J. Wang. A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Adv. Geo-Energy Res., 1 (2017), pp. 1-17
|
R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer, O. Engkvist, H. Chen, E.J. Bjerrum. Graph networks for molecular design. Mach. Learn. Sci. Technol., 2 (2021), Article 025023
|
R. Modee, S. Laghuvarapu, U.D. Priyakumar. Benchmark study on deep neural network potentials for small organic molecules. J. Comput. Chem., 43 (2022), pp. 308-318
|
G. Montavon, W. Samek, K.-R. Müller. Methods for interpreting and understanding deep neural networks. Digital Signal Process., 73 (2018), pp. 1-15
|
E. Nelson. Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev., 150 (1966), p. 1079
|
Nguyen, T.T.K., Abou-Hatab, S., Chakraborty, P., Matsika, S., 2021. Graph convolution neural network for predicting photo-excited state properties of indole C8H7N absorption spectra. Honors Scholar Projects.
|
Nicoli, K.A., Kessel, P., Gastegger, M., Schütt, K.T., 2018. Analysis of atomistic representations using weighted skip-connections. arXiv preprint arXiv:1810.09751.
|
T. Ono, Y. Fujimoto, S. Tsukamoto. First-principles calculation methods for obtaining scattering waves to investigate transport properties of nanostructures. Quantum Matter, 1 (2012), pp. 4-19
|
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst., 32 (2019)
|
L. Pauling. The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc., 53 (1931), pp. 3225-3237
|
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77 (1996), p. 3865
|
A. Perini, G. Jacucci, G. Martin. Cluster free energy in the simple-cubic Ising model. Phys. Rev. B, 29 (1984), p. 2689
|
W. Qiu, T. Ma, Y. Wang, J. Cheng, C. Su, J. Li. Review on status of groundwater database and application prospect in deep-time digital earth plan. Geosci. Front., 13 (2022), Article 101383
|
X. Rao, Y. Xu, D. Liu, Y. Liu, Y. Hu. A general physics-based data-driven framework for numerical simulation and history matching of reservoirs. Adv. Geo-Energy Res., 5 (2021), pp. 422-436
|
A.L. Samuel. Some studies in machine learning using the game of checkers. II—recent progress. Computer Games, I (1988), pp. 366-400
|
F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural network model. IEEE Trans. Neural Netw., 20 (2008), pp. 61-80
|
K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller. Schnet–a deep learning architecture for molecules and materials. J. Chem. Phys., 148 (2018), Article 241722
|
Y. Shi, C.C. Doyle, T.L. Beck. Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data. J. Phys. Chem. Lett., 12 (2021), pp. 10310-10317
|
H. Sidiq, R. Amin, T. Kennaird. The study of relative permeability and residual gas saturation at high pressures and high temperatures. Adv. Geo-Energy Res., 1 (2017), pp. 64-68
|
J. Soler, E. Artacho, J. Gale, A. Garcıa, J. Junquera. P. Ordejó n, D. Sánchez-Portal.. J. Phys.: Condens. Matter, 14 (2002), pp. 2745-2779
|
N.K. Soon, S.B. Abdullah. Density functional theory on ionic liquid as carbonate scale dissolver in petroleum pipelines. Comput. Theor. Chem., 1208 (2022), Article 113576
|
J. Speight. Petroleum Asphaltenes-Part 1: asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol., 59 (2004), pp. 467-477
|
S.G. Srinivasan, I. Ashok, H. Jônsson, G. Kalonji, J. Zahorjan. Parallel short-range molecular dynamics using the Ādhāra runtime system. Comput. Phys. Commun., 102 (1997), pp. 28-43
|
S. Srinivasan, D. O’Malley, M.K. Mudunuru, M.R. Sweeney, J.D. Hyman, S. Karra, L. Frash, J.W. Carey, M.R. Gross, G.D. Guthrie. A machine learning framework for rapid forecasting and history matching in unconventional reservoirs. Sci. Rep., 11 (2021), pp. 1-15
|
A. Szabo, N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Courier Corporation (2012)
|
V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer. Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE, 105 (2017), pp. 2295-2329
|
P. Thölke, G. De Fabritiis. Equivariant transformers for neural network based molecular potentials. International Conference on Learning Representations (2021)
|
Thölke, P., De Fabritiis, G., 2022. TorchMD-NET: Equivariant transformers for neural network based molecular potentials. arXiv preprint arXiv:2202.02541.
|
J.J. Thomson. The Structure of the Atom. Academie Royale de Belgique (1913)
|
I.G. Tironi, R. Sperb, P.E. Smith, W.F. van Gunsteren. A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys., 102 (1995), pp. 5451-5459
|
H. Toulhoat, M. Digne, C. Arrouvel, P. Raybaud. DFT studies of fluid-minerals interactions at the molecular level: examples and perspectives. Oil Gas Sci. Technol., 60 (2005), pp. 417-433
|
Y. Tsutsumi. Schrodinger equation. Funkcialaj Ekvacioj, 30 (1987), pp. 115-125
|
P. Ungerer, J. Collell, M. Yiannourakou. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity. Energy Fuel, 29 (2015), pp. 91-105
|
O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, A. Tkatchenko, K.-R. Müller. Machine learning force fields. Chem. Rev., 121 (2021), pp. 10142-10186
|
A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. ReaxFF: a reactive force field for hydrocarbons. Chem. A Eur. J., 105 (2001), pp. 9396-9409
|
X. Wang, S. Ramírez-Hinestrosa, J. Dobnikar, D. Frenkel. The Lennard-Jones potential: when (not) to use it. PCCP, 22 (2020), pp. 10624-10633
|
J. Wang, H. Shen, R. Yang, K. Xie, C. Zhang, L. Chen, K.-M. Ho, C.-Z. Wang, S. Wang. A deep learning interatomic potential developed for atomistic simulation of carbon materials. Carbon, 186 (2022), pp. 1-8
|
Y. Wang, S. Sun. Image-based rock typing using grain geometry features. Comput. Geosci., 149 (2021), Article 104703
|
H. Wang, L. Zhang, J. Han, E. Weinan. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun., 228 (2018), pp. 178-184
|
J. Westermayr, M. Gastegger, P. Marquetand. Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics. J. Phys. Chem. Lett., 11 (2020), pp. 3828-3834
|
J. Wu, L. Bai, J. Huang, L. Ma, J. Liu, S. Liu. Accurate force field of two-dimensional ferroelectrics from deep learning. Phys. Rev. B, 104 (2021), Article 174107
|
G. Xie, D. Huang, Y. Xiao, M. Deng, P. Luo. Intercalation inhibits the surface hydration of sodium montmorillonite: experiments and density functional theory simulation. ACS Sustain. Chem. Eng., 8 (2020), pp. 10303-10312
|
P. Xu, X. Mou, Q. Guo, T. Fu, H. Ren, G. Wang, Y. Li, G. Li. Coarse-grained molecular dynamics study based on TorchMD. Chin. J. Chem. Phys., 34 (2021), pp. 957-969
|
Y. Yang, J. Liu, J. Yao, J. Kou, Z. Li, T. Wu, K. Zhang, L. Zhang, H. Sun. Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem. Eng. J., 387 (2020), Article 124054
|
Z.-R. Ye, S.-H. Hung, B. Chen, M.-K. Tsai. Assessment of Predicting Frontier Orbital Energies for Small Organic Molecules Using Knowledge-Based and Structural Information. ACS Engineering Au (2022)
|
I.-C. Yeh, M.L. Berkowitz. Ewald summation for systems with slab geometry. J. Chem. Phys., 111 (1999), pp. 3155-3162
|
K. You, P.B. Flemings, A. Malinverno, T. Collett, K. Darnell. Mechanisms of methane hydrate formation in geological systems. Rev. Geophys., 57 (2019), pp. 1146-1196
|
Zaidi, S., Schaarschmidt, M., Martens, J., Kim, H., Teh, Y.W., Sanchez-Gonzalez, A., Battaglia, P., Pascanu, R., Godwin, J., 2022. Pre-training via denoising for molecular property prediction. arXiv preprint arXiv:2206.00133.
|
X. Zhang, R. Bridson. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. (TOG), 33 (2014), pp. 1-11
|
Y. Zhai, A. Caruso, S.L. Bore, F. Paesani. A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing properties or learning the underlying physics?. J. Chem. Phys., 158 (2022), Article 084111
|
T. Zhang, Y. Li, Y. Chen, X. Feng, X. Zhu, Z. Chen, J. Yao, Y. Zheng, J. Cai, H. Song. Review on space energy. Appl. Energy, 292 (2021), Article 116896
|
T. Zhang, Y. Zhang, K. Katterbauer, et al.. Phase equilibrium in the hydrogen energy chain. Fuel, 328 (2022), Article 125324
|
T. Zhang, Y. Zhang, K. Katterbauer, A. Al Shehri, S. Sun, I. Hoteit. Deep learning–assisted phase equilibrium analysis for producing natural hydrogen. Int. J. Hydrog. Energy (2023),
CrossRef
Google scholar
|
S. Zheng, Y.-X. Zhu, D.-Q. Li, Z.-J. Cao, Q.-X. Deng, K.-K. Phoon. Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning. Geosci. Front., 12 (2021), pp. 425-439
|
J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun. Graph neural networks: a review of methods and applications. AI open, 1 (2020), pp. 57-81
|
A. Züttel. Hydrogen storage methods. Naturwissenschaften, 91 (2004), pp. 157-172
|
/
〈 |
|
〉 |