From source to emplacement: The origin of leucogranites from the Sikkim-Darjeeling Himalayas, India

Tanya Srivastava, Nigel Harris, Catherine Mottram, Kumar Batuk Joshi, Nishchal Wanjari

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101733.

PDF(7673 KB)
Geoscience Frontiers All Journals
PDF(7673 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101733. DOI: 10.1016/j.gsf.2023.101733
Research Paper

From source to emplacement: The origin of leucogranites from the Sikkim-Darjeeling Himalayas, India

Author information +
History +

Abstract

Himalayan leucogranites are important for understanding the tectonic evolution of collision zones in general and the causes of crustal melting in the Himalayan orogen in particular. This paper aims to understand the melt source and emplacement age of the leucogranites from Sikkim in order to decipher the deep geodynamic processes of the eastern Himalayas. Zircon U-Pb analysis of the Higher Himalayan Sequence (HHS) metamorphic core reveals a prolonged period of crustal melting between > 33 Ma and ca. 14 Ma. Major and trace element abundances are presented for 27 leucogranites from North Sikkim that are classified into two-mica and tourmaline leucogranite types. They are peraluminous in composition, characterized by high SiO2 (70.91-74.9 wt.%), Al2O3 (13.69-15.82 wt.%), and low MgO (0.13-0.74 wt.%). Elemental abundances suggest that Sikkim Himalayan leucogranites are derived from crustal melts. The two-mica leucogranites are derived from a metagreywacke source, whereas the tourmaline leucogranites are sourced from metapelitic sources, with inherited zircons indicating an HHS origin for both types. U-Pb zircon geochronology of the two mica leucogranites indicates ages of ca. 19-15 Ma, consistent with crustal melting recorded in HHS gneisses from Darjeeling. Monazites from both the two-mica and tourmaline leucogranites yield a crystallization age of ca. 15-14 Ma, coeval with movement on the Main Central Thrust and South Tibetan Detachment System which further provides constraints on the timing and mechanism of petrogenesis of leucogranites in the Sikkim Himalayas.

Keywords

Leucogranites / Gneiss / U-Pb geochronology / Zircon / Monazite / Sikkim-Darjeeling Himalayas

Cite this article

Download citation ▾
Tanya Srivastava, Nigel Harris, Catherine Mottram, Kumar Batuk Joshi, Nishchal Wanjari. From source to emplacement: The origin of leucogranites from the Sikkim-Darjeeling Himalayas, India. Geoscience Frontiers, 2024, 15(1): 101733 https://doi.org/10.1016/j.gsf.2023.101733

References

[1]
Ahmad I., Khan S., Lapen T., B, K., Jehan N., 2013. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications. j.Asian Earth Sci. 62, 414-424. 10.1016/j.jseaes.2012.10.025.
[2]
Anczkiewicz R., Chakraborty S., Dasgupta S., Mukhopadhyay D., Kołtonik K., 2014. Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu-Hf garnet dating: A case study from the Sikkim Himalaya, NE India. Earth Planet. Sci. Lett. 407, 70-81. 10.1016/j.epsl.2014.09.035.
[3]
Argles T.W., Prince C.I., Foster G.L., Vance D., 1999. New garnets for old? Cautionary tales from young mountain belts. Earth Planet. Sci. Lett. 172, 301-309. 10.1016/S0012-821X(99)00209-5.
[4]
Auden J.B., 1935. Traverses in the Himalaya. Rec. G.S.I, LXIX, pt. 1, PP. 123-167
[5]
Belousova E.A., Griffin W.L., O’Reilly S.Y., 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for oetrogenetic modelling: Examples from Eastern Australian granitoids. j.Petrol. 47, 329-353. 10.1093/petrology/egi077.
[6]
Bhattacharyya K., Mitra G., Kwon S., 2015. Geometry and kinematics of the Darjeeling-Sikkim Himalaya, India: Implications for the evolution of the Himalayan fold-thrust belt. j.Asian Earth Sci. 113, 778-796. 10.1016/j.jseaes.2015.09.008.
[7]
Bollinger L., Henry P., Avouac J.-P., 2006. Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58-71. 10.1016/j.epsl.2006.01.045.
[8]
Cao H.-W., Pei Q., Santosh M., Li G.-M., Zhang L.-K., Zhang X.-F., Zhang Y.-H., Zou H., Dai Z., Bin L., Tang L., Yu X., 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Science Rev. 234, 104229. 10.1016/j.earscirev.2022.104229.
[9]
Catlos E.J., Dubey C.S., Harrison T.M., Edwards M.A., 2004. Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. j.Metamorph. Geol. 22, 207-226. 10.1111/j.1525-1314.2004.00509.x.
[10]
Cawood P.A., Johnson M.R.W., Nemchin A.A., 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 255, 70-84. 10.1016/j.epsl.2006.12.006.
[11]
Chakraborty S., Mukul M., Mathew G., Pande K., 2019. Major shear zone within the Greater Himalayan Sequence and sequential evolution of the metamorphic core in Sikkim, India. Tectonophysics 770, 228183. 10.1016/j.tecto.2019.228183.
[12]
Cheng L., Zhang C., Liu X., Yang X., Zhou Y., Horn I., Weyer S., Holtz F., 2021. Significant boron isotopic fractionation in the magmatic evolution of Himalayan leucogranite recorded in multiple generations of tourmaline. Chem. Geol. 571. 10.1016/j.chemgeo.2021.120194.
[13]
Cherniak D.J. and Watson E.B., 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2), pp.5-24. 10.1016/S0009-2541(00)00233-3.
[14]
Claiborne L.L., Miller C.F., Wooden J.L., 2010. Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib. to Mineral. Petrol. 160, 511-531. 10.1007/s00410-010-0491-5.
[15]
Corfu F., 2003. Atlas of Zircon Textures. Rev. Mineral. Geochemistry - 53, 469-500. 10.2113/0530469.
[16]
Cottle J.M., Searle M.P., Horstwood M.S.A., Waters D.J., 2009. Timing of midcrustal metamorphism, melting, and deformation in the mount everest region of southern Tibet revealed by U(-Th)-Pb geochronology. j.Geol. 117, 643-664. 10.1086/605994.
[17]
Cottle J.M., Searle M.P., Jessup M.J., Crowley J.L., Law R.D., 2015. Rongbuk re-visited: Geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos 227, 94-106. 10.1016/j.lithos.2015.03.019.
[18]
Dipietro, Isachsen, 2001. U-Pb zircon ages from the Indian Northwest Paksitan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics 20. 10.1029/2000TC001193.
[19]
Dyck B., Waters D., St-Onge M., Searle M., 2020. Muscovite dehydration melting: Reaction mechanisms, microstructures, and implications for anatexis. j.Metamorph. Geol. 38. 10.1111/jmg.12511.
[20]
England P., Le Fort P., Molnar P., Pecher A., 1992. Heat sources for tertiary metamorphism and anatexis in the Annapurna- Manaslu region central Nepal. j.Geophys. Res. 97, 2107-2128. 10.1029/91JB02272.
[21]
Gansser A., 1964. The Geology of the Himalayas. Intersci. Publ., John Wiley Sons, New York 289.
[22]
Gao L.E., Zeng L., 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochim. Cosmochim. Acta 130, 136-155. 10.1016/j.gca.2014.01.003.
[23]
Gao L.E., Zeng L., Asimow P.D., 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology 45, 39-42. 10.1130/G38336.1.
[24]
Gao P., Zheng Y.F., Mayne M.J., Zhao Z.F., 2021a. Miocene high-temperature leucogranite magmatism in the Himalayan orogen. Bull. Geol. Soc. Am. 133, 679-690. 10.1130/B35691.1.
[25]
Gao P., Zheng Y.F., Zhao Z.F., Sun G.C., 2021b. Source diversity in controlling the compositional diversity of Cenozoic granites in the Tethyan Himalaya. Lithos 388-389, 106072. 10.1016/j.lithos.2021.106072.
[26]
Gehrels G.E., DeCelles P.G., Martin A., Ojha T.P., Pinhassi G., Upreti B.N., 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt. GSA Today 13, 4-9. 10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2.
[27]
Gehrels G.E., DeCelles P.G., Ojha T.P., Upreti B.N., 2006. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Bull. Geol. Soc. Am. 118, 185-198. 10.1130/B25753.1.
[28]
Ghosh, 1952. A new coal field in Sikkim Himalayas. Curr. Sci. pp 179-180.
[29]
Godin L., Parrish R.R., Brown R.L., Hodges K. V., 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of Central Nepal: Insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20, 729-747. 10.1029/2000TC001204.
[30]
Gonçalves G., Lana C., Scholz R., Buick I., Gerdes A., Kamo S., Corfu F., Marinho M., de Oliveira Chaves A., Valeriano C., Nalini Jr H., 2016. An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the “Moacyr” monazite. Chem. Geol. 424. 10.1016/j.chemgeo.2015.12.019.
[31]
Gou Z., Zhang Z., Dong X., Xiang H., Ding H., Tian Z., Lei H., 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos 256-257, 300-310. 10.1016/j.lithos.2016.04.009.
[32]
Gou Z., Dong X., Wang B., 2019. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. j.Earth Sci. 30, 525-534. 10.1007/s12583-019-1219-8.
[33]
Green O., Searle M., Corfield R., Corfield R., 2008. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). j.Geol. 116. 10.1086/588831.
[34]
Greenwood L. V, Argles T.W., Parrish R.R., Harris N.B.W., Warren C., Hall W., Mk M.K., 2016. The geology and tectonics of central Bhutan. 10.1144/jgs2015-031.
[35]
Guillot S., Le Fort P., 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos 35, 221-234. 10.1016/0024-4937(94)00052-4.
[36]
Guo Z., Wilson M., 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res. 22, 360-376. 10.1016/j.gr.2011.07.027.
[37]
Harris N., Ayres M., Massey J., 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. j.Geophys. Res. 100. 10.1029/94jb02623.
[38]
Harris N.B.W., Caddick M., Kosler J., Goswami S., Vance D., Tindle A.G., 2004. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. j.Metamorph. Geol. 22, 249-264. 10.1111/j.1525-1314.2004.00511.x.
[39]
Harris N.B.W., Inger S., 1992. Trace element modelling of pelite-derived granites. Contrib. to Mineral. Petrol. 110, 46-56. 10.1007/BF00310881.
[40]
Harris N., Massey J., 1994. Decompression and anatexis of Himalayan metapelites. Tectonics 13, 1537-1546. 10.1029/94TC01611.
[41]
Harris N., Massey J., Inger S., 1993. The role of fluids in the formation of High Himalayan leucogranites. Geol. Soc. Spec. Publ. 74, 391-400. 10.1144/GSL.SP.1993.074.01.26.
[42]
Harrison T., Lovera O., Grove M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology 25. 10.1130/0091-7613(1997)025<0899:NIITOO>2.3.CO;2.
[43]
Harrison T.M., McKeegan K.D., LeFort P., 1995. Detection of inherited monazite in the Manaslu leucogranite by 208Pb232Th ion microprobe dating: Crystallization age and tectonic implications. Earth Planet. Sci. Lett. 133, 271-282. 10.1016/0012-821X(95)00091-P.
[44]
He Liu, X.C., Yang L., Wang J.M., Hu F.Y., Wu F.Y., 2021. Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen. Lithos 398-399. 10.1016/j.lithos.2021.106222.
[45]
Heim A. and G., 1939. Central Himalayas. Mem. Soc. Helu. Sci. Nat., V. 78, Mem. I.
[46]
Holder R.M., Yakymchuk C., Viete D.R., 2020. Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar. Geochemistry, Geophys. Geosystems 21. 10.1029/2020GC009052.
[47]
Hopkinson T.N., Harris N.B.W., Warren C.J., Spencer C.J., Roberts N.M.W., Horstwood M.S.A., Parrish R.R.,EIMF, 2017. The identification and significance of pure sediment-derived granites. Earth Planet. Sci. Lett. 467, 57-63. 10.1016/j.epsl.2017.03.018.
[48]
Hopkinson T., Harris N., Roberts N.M.W., Warren C.J., Hammond S., Spencer C.J., Parrish R.R., 2020. Evolution of the melt source during protracted crustal anatexis: An example from the Bhutan Himalaya. Geology 48, 87-91. 10.1130/G47078.1.
[49]
Hopkinson T.N., 2016. Geochemical Insights into Crustal Melting in the Geochemical insights into crustal melting in the Bhutan Himalaya. 10.21954/ou.ro.0000bd2e.
[50]
Hoskin P., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochemistry - REV Miner. GEOCHEM 53, 27-62. 10.2113/0530027.
[51]
Imayama T., Suzuki K., 2013. Carboniferous inherited grain and age zoning of monazite and xenotime from leucogranites in far-eastern Nepal: Constraints from electron probe microanalysis. Am. Mineral. 98, 1393-1406. 10.2138/am.2013.4267.
[52]
Inger S., Harris N., 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. j.Petrol. 34, 345-368. 10.1093/petrology/34.2.345.
[53]
Jochum K., Weis U., Stoll B., Kuzmin D., Jacob D., Stracke A., Birbaum K., Frick D., Günther D., Enzweiler J., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO Guidelines. Geostand. Geoanalytical Res. 35, 397- 429. 10.1111/j.1751-908 X.2011.00120.x.
[54]
Kellett D., Grujic D., Warren C., Cottle J., Tenzin T., 2010. Metamorphic history of a syn-convergent orogen-parallel detachment: The South Tibetan detachment system, Bhutan Himalaya. Tectonics 28, 785-808. 10.1111/j.1525-1314.2010.00893.x.
[55]
Kellett D.A., Grujic D., Coutand I., Cottle J., Mukul M., 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 32, 252-270. 10.1002/tect.20014.
[56]
Kellett D., Grujic D., Mottram C., Mukul M., 2014. Virtual field guide for the darjeeling-sikkim himalaya, India. j.Virtual Explor. 47. 10.3809/jvirtex.2014.00344.
[57]
King J., Harris N., Argles T., Parrish R., Zhang H., 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath Southern Tibet. Bull. Geol. Soc. Am. 123, 218-239. 10.1130/B30085.1.
[58]
Kohn M.J., 2014. Himalayan metamorphism and its tectonic implications, Annual Review of Earth and Planetary Sciences. 10.1146/annurev-earth-060313-055005.
[59]
Kohn M., Corrie S., Markley C., 2015. The fall and rise of metamorphic zircon. Am. Mineral. 100, 897-908. 10.2138/am-2015-5064.
[60]
Kohn M.J., Paul S.K., Corrie S.L., 2010. The lower lesser himalayan sequence: A paleoproterozoic arc on the northern margin of the Indian plate. Bull. Geol. Soc. Am. 122, 323-335. 10.1130/B26587.1.
[61]
Le Fort P., Cuney M., Deniel C., France-Lanord C., Sheppard S.M.F., Upreti B.N., Vidal P., 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics 134, 39-57. 10.1016/0040-1951(87)90248-4.
[62]
Lederer G.W., Cottle J.M., Jessup M.J., Langille J.M., Ahmad T., 2013. Timescales of partial melting in the Himalayan middle crust: Insight from the Leo Pargil dome, northwest India. Contrib. to Mineral. Petrol. 166, 1415-1441. 10.1007/s00410-013-0935-9.
[63]
Li Z.X., Bogdanova S. V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160, 179-210. 10.1016/j.precamres.2007.04.021.
[64]
Lin C., Zhang J., Wang X., Putthapiban P., Zhang B., Huang T., 2020. Oligocene initiation of the South Tibetan Detachment System: Constraints from syn-tectonic leucogranites in the Kampa Dome, Northern Himalaya. Lithos 354-355, 105332. 10.1016/j.lithos.2019.105332.
[65]
Liu Z.C., Wu F.Y., Ji W.Q., Wang J.G., Liu C.Z., 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 208, 118-136. 10.1016/j.lithos.2014.08.022.
[66]
Liu Z.C., Wu F.Y., Liu X.C., Wang J.G., Yin R., Qiu Z.L., Ji W.Q., Yang L., 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos 340-341, 71-86. 10.1016/j.lithos.2019.05.004.
[67]
Mallet F.R., 1875. On the geology of Darjeeling district and Western Duars. Mem. G.S.I, V.11, pt. 1, pp. 1-50
[68]
McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253. 10.1016/0009-2541(94)00140-4.
[69]
Montel J.M., 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem. Geol. 110, 127-146. 10.1016/0009-2541(93)90250-M.
[70]
Mottram C.M., Argles T.W., Harris N.B.W., Parrish R.R., Horstwood M.S.A., Warren C.J., Gupta S., 2014a. Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. j.Geol. Soc. London. 171, 255-268. 10.1144/jgs2013-064.
[71]
Mottram C.M., Warren C.J., Regis D., Roberts N.M.W., Harris N.B.W., Argles T.W., Parrish R.R., 2014b. Developing an inverted barrovian sequence; insights from monazite petrochronology. Earth Planet. Sci. Lett. 403, 418-431. 10.1016/j.epsl.2014.07.006.
[72]
Mottram C.M., Parrish R.R., Regis D., Warren C.J., Argles T.W., Harris N.B.W., Roberts N.M.W., 2015a. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics 34, 1355-1374. 10.1002/2014TC003743.
[73]
Mottram C.M., Cottle J.M., Kylander-Clark A.R.C., 2019. Campaign-style U-Pb titanite petrochronology: Along-strike variations in timing of metamorphism in the Himalayan metamorphic core. Geosci. Front. 10, 827-847. 10.1016/j.gsf.2018.09.007.
[74]
Mottram C., Warren C., Halton A., Kelley S., Harris N., 2015b. Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: The consequences of temperature and timescale on 40Ar/39Ar mica geochronology. Lithos 238. 10.1016/j.lithos.2015.08.018.
[75]
Myrow P.M., Thompson K.R., Hughes N.C., Paulsen T.S., Sell B.K., Parcha S.K., 2006. Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India. Bull. Geol. Soc. Am. 118, 491-510. 10.1130/B25828.1.
[76]
Myrow P.M., Hughes N.C., Ryan McKenzie N., Pelgay P., Thomson T.J., Haddad E.E., Mark Fanning C., 2016. Cambrian-Ordovician orogenesis in Himalayan equatorial Gondwana. Bull. Geol. Soc. Am. 128, 1679-1695. 10.1130/B31507.1.
[77]
Nabelek P., 2019. Petrogenesis of leucogranites in collisional orogens. Geol. Soc. London, Spec. Publ. 491, SP491-2018. 10.1144/SP491-2018-181.
[78]
Nabelek P., Whittington A., Hofmeister A., 2010. Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: Implications of temperature-dependent thermal diffusivity and rheology. j.Geophys. Res. 115. 10.1029/2010JB007727.
[79]
Najman Y., Appel E., Boudagher-Fadel M., Bown P., Carter A., Garzanti E., Godin L., Han J., Liebke U., Oliver G., Parrish R., Vezzoli G., 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. j.Geophys. Res. Solid Earth 115. 10.1029/2010JB007673.
[80]
Najman Y., Jenks D., Godin L., BouDagher-Fadel M., Millar I., Garzanti E., Horstwood M., Bracciali L., 2016. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459. 10.1016/j.epsl.2016.11.036.
[81]
Nelson K.D., Zhao W., Brown L.D., Kuo J., Che J., Liu X., Klemperer S.L., Makovsky Y., Meissner R., Mechie J., Kind R., Wenzel F., Ni J., Nabelek J., Chen L., Tan H., Wei W., Jones A.G., Booker J., Unsworth M., Kidd W.S.F., Hauck M., Alsdorf D., Ross A., Cogan M., Wu C., Sandvol E., Edwards M., 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science (80-.). 274, 1684-1685. 10.1126/science.274.5293.1684.
[82]
Palin R.M., Treloar P.J., Searle M.P., Wald T., White R.W., Mertz-Kraus R., 2018. U-Pb monazite ages from the Pakistan Himalaya record pre-Himalayan Ordovician orogeny and Permian continental breakup. Bull. Geol. Soc. Am. 130, 2047-2061. 10.1130/B31943.1.
[83]
Patiño Douce A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Spec. Publ. 168, 55-75. 10.1144/GSL.SP.1999.168.01.05.
[84]
Pettke T., Audétat A., Schaltegger U., Heinrich C.A., 2005. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 220, 191-213. 10.1016/j.chemgeo.2005.02.017.
[85]
Pupin J.P., 1980. Zircon and granite petrology. Contrib. to Mineral. Petrol. 73, 207-220. 10.1007/BF00381441.
[86]
Richards A., Argles T., Harris N., Parrish R., Ahmad T., Darbyshire F., Draganits E., 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773-796. 10.1016/j.epsl.2005.05.034.
[87]
Richards A., Parrish R., Harris N.B.W., Argles T., Zhang L., 2006. Correlation of lithotectonic units across the eastern Himalay, Bhutan. Geology 34, 341-344. 10.1130/G22169.1.
[88]
Rubatto D., Williams I., Buick I., 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, Central Australia. Contrib. to Mineral. Petrol. 140, 458-468. 10.1007/PL00007673.
[89]
Rubatto D., Chakraborty S., Dasgupta S., 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. to Mineral. Petrol. 165, 349-372. 10.1007/s00410-012-0812-y.
[90]
Scaillet B., France-Lanord C., Le Fort P., 1990. Badrinath-Gangotri plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. j.Volcanol. Geotherm. Res. 44, 163-188. 10.1016/0377-0273(90)90017-A.
[91]
Schärer U., Xu R.H., Allègre C.J., 1986. U(Th)Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet. Sci. Lett. 77, 35-48. 10.1016/0012-821X(86)90130-5.
[92]
Schelling D., Arita K., 1991. Thrust Tectonics, Crustal Shortening, and the Structure Schelling 1 and Kazunori Arita the last 20 years the techniques of restoring and balancing structural sections has led to an increased understanding of the structural geometry of compreszional terr. Tectonics 10, 851-862.
[93]
Searle M.P., Godin L., 2003. The South Tibetan detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. j.Geol. 111, 505-523. 10.1086/376763.
[94]
Searle M.P., Parrish R.R., Hodges K. V., Hurford A., Ayres M.W., Whitehouse M.J., 1997. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. j.Geol. 105, 295-317. 10.1086/515924.
[95]
Searle M.P., Szulc A.G., 2005. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. J. Asian Earth Sci. 25, 173-185. 10.1016/j.jseaes.2004.03.004.
[96]
Sharma K., 2005. Malani magmatism: An extensional lithospheric tectonic origin. Geol. Soc. Am. Bull. 388, 463-476. 10.1130/0-8137-2388-4.463.
[97]
Shi Q., He Y., Zhao Z., Liu D., Harris N., Zhu D.C., 2021. Petrogenesis of Himalayan Leucogranites: Perspective From a Combined Elemental and Fe-Sr-Nd Isotope Study. j.Geophys. Res. Solid Earth 126, 0-2. 10.1029/2021JB021839.
[98]
Singh S., 2019. Protracted zircon growth in migmatites and In situ melt of Higher Himalayan Crystallines: U-Pb ages from Bhagirathi valley, NW Himalaya, India. Geosci. Front. 10, 793-809. 10.1016/j.gsf.2017.12.014.
[99]
Singh S., Barley M.E., Brown S.J., Jain A.K., Manickavasagam R.M., 2002. SHRIMP U-Pb in zircon geochronology of the Chor granitoid: Evidence for neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res. 118, 285-292. 10.1016/S0301-9268(02)00107-9.
[100]
Singh S., Claesson S., Jain A., Sjoberg H., Gee D., Manickavasagam R.M., Andreasson P.-G., 1994. Geochemistry of the Proterozoic peraluminous granitoids from the Higher Himalayan Crystalline. India. Abstr. Vol. Jour. Geol. Soc. Nepal 10. 10.1080/00144940.1994.11484119.
[101]
Singh P., Singhal S., Das A.N., 2020. U-Pb (zircon) geochronologic constraint on tectono-magmatic evolution of Chaur granitoid complex (CGC) of Himachal Himalaya, NW India: implications for the Neoproterozoic magmatism related to Grenvillian orogeny and assembly of the Rodinia supercontinent. Int. j.Earth Sci. 109, 373-390. 10.1007/s00531-019-01808-5.
[102]
Sorcar N., Hoppe U., Dasgupta S., Chakraborty S., 2014. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: Rapid cooling unrelated to exhumation? Contrib. to Mineral. Petrol. 167, 1-34. 10.1007/s00410-013-0957-3.
[103]
Spencer C.J., Harris R.A., Dorais M.J., 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U-Pb and Hf isotopes in zircons. Gondwana Res. 22, 26-35. 10.1016/j.gr.2011.10.004.
[104]
Spencer C.J., Dyck B., Mottram C.M., Roberts N.M.W., Yao W.H., Martin E.L., 2019. Deconvolving the pre-Himalayan Indian margin - Tales of crustal growth and destruction. Geosci. Front. 10, 863-872. 10.1016/j.gsf.2018.02.007.
[105]
Srikantia S. V, 1981. The lithostratigraphy, sedimentation and structure of the Proterozoic and Phanerozoic formations of Spiti basin in the Higher Himalaya of H.P. Misc. Publ. Geol. Surv. India 41, 218-228.
[106]
Srivastava T., Joshi K.B., Wanjari N., 2022. Boron Isotopic compositionof Pegmatitic Tourmaline from Yumthang Valley, North Sikkim, India BT - Geochemical Treasures and Petrogenetic Processes, in: Armstrong-Altrin,J.S., PandarinathK., VermaS.K. (Eds.),. Springer Nature Singapore, Singapore, pp. 187-206. 10.1007/978-981-19-4782-7_8.
[107]
Sun S.S., McDonough W.F, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in: Geological Society, London, Special Publications. 10.1144/GSL.SP.1989.042.01.19.
[108]
Sylvester P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45, 29-44. 10.1016/S0024-4937(98)00024-3.
[109]
Tartèse R., Boulvais P., 2010. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos 114, 353-368. 10.1016/j.lithos.2009.09.011.
[110]
Taylor D.J., McKeegan K.D., Harrison T.M., 2009. Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157-164. 10.1016/j.epsl.2008.12.030.
[111]
Thompson J.M., Meffre S., Danyushevsky L., 2018. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS. j.Anal. At. Spectrom. 33, 221-230. 10.1039/c7ja00357a.
[112]
Trail D., Bruce Watson E., Tailby N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97, 70-87. 10.1016/j.gca.2012.08.032.
[113]
Visonà D., Lombardo B., 2002. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal - Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos 62, 125-150. 10.1016/S0024-4937(02)00112-3.
[114]
Wager L.R., 1939. The Lachi series of North Sikkim and the age of the rocks forming Mount Everest. Rec. Geol. Surv. India 74, 171-188.
[115]
Wang X., Kienast J.R., 1999. Morphology and geochemistry of zircon: A case study on zircon from the microgranitoid enclaves. Sci. China, Ser. D Earth Sci. 42, 544-552. 10.1007/BF02875249.
[116]
Wang Wu, F.Y., Xie L., Liu X.C., Wang J.M., Yang L., Lai W., Liu C., 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Sci. China Earth Sci. 60, 1655-1663. 10.1007/s11430-017-9075-8.
[117]
Watson E., Harrison T., Watson E.B., Harrison T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295-304. https://doi.org/10.1016/0012-821X(83)90211-X.
[118]
Weinberg R.F., 2016. Himalayan leucogranites and migmatites: nature, timing and duration of anatexis. j.Metamorph. Geol. 34, 821-843. 10.1111/jmg.12204.
[119]
Whitney D.L., Evans B.W., 2010. Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185-187. 10.2138/am.2010.3371.
[120]
Wu F.Y., Liu X.C., Ji W.Q., Wang J.M., Yang L., 2017. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 60, 1201-1219. 10.1007/s11430-016-5139-1.
[121]
Wu F.Y., Liu X.C., Liu Z.C., Wang R.C., Xie L., Wang J.M., Ji W.Q., Yang L., Liu C., Khanal G.P., He S.X., 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 352-353, 105319. 10.1016/j.lithos.2019.105319.
[122]
Xie J., Qiu H., Bai X., Zhang W., Wang Q., Xia X., 2018. Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himalaya. Acta Geochim. 37, 347-359. 10.1007/s11631-018-0273-8.
[123]
Yang P., Shi M., Tan F., Rajaure S., Tripathi G., He L., Li Z., Zhan W., 2021. Zircon U-Pb geochronology and Hf isotopic compositions of Palaeoproterozoic meta‐granitoids in the Lesser Himalaya, Nepal: Tectonostratigraphic implications. Geol. J. 10.1002/gj.4275.
[124]
Yang S.Y., Jiang S.Y., Palmer M.R., 2015. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids. Chem. Geol. 419, 102-113. 10.1016/j.chemgeo.2015.10.026.
[125]
Yin A., 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Rev. 76, 1-131. 10.1016/j.earscirev.2005.05.004.
[126]
Yin A., Dubey C., Kelty T., Webb A.A., Harrison T., Chou C., Celerier J., 2010a. Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geol. Soc. Am. Bull. - 122, 360-395. 10.1130/B26461.1.
[127]
Yin A., Dubey C.S., Webb A.A.G., Kelty T.K., Grove M., Gehrels G.E., Burgess W.P., 2010b. Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Bulletin 122, 336-359.
[128]
Zeng L., Gao L.E., Xie K., Liu-Zeng J., 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet. Sci. Lett. 303, 251-266. 10.1016/j.epsl.2011.01.005.
[129]
Zhang H., Harris N., Parrish R., Kelley S., Zhang L., Rogers N., Argles T., King J., 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Lett. 228, 195-212. 10.1016/j.epsl.2004.09.031.
[130]
Zhang Z., Xiang H., Dong X., Li W., Ding H., Gou Z., Tian Z., 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Res. 41, 173-187. 10.1016/j.gr.2015.03.002.
[131]
Zhang Z., Ding H., Palin R.M., Dong X., Tian Z., Kong D., Jiang Y., Qin S., Li W., 2021. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Res. 10.1016/j.gr.2021.05.011.
[132]
Zheng Y. chuan Hou, Z. qian Fu, Q., Zhu D.C., Liang W., Xu P., 2016. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos 264, 125-140. 10.1016/j.lithos.2016.08.019.
PDF(7673 KB)

293

Accesses

0

Citations

Detail

Sections
Recommended

/