Munabulake ophiolitic mélange: Implication for the evolution history of the north branch of the Proto-Tethys ocean

Changfeng Liu, Wencan Liu, Baoying Ye, Zixian Zhao, He Su, Xin Xu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101731.

PDF(16608 KB)
Geoscience Frontiers All Journals
PDF(16608 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101731. DOI: 10.1016/j.gsf.2023.101731
Research Paper

Munabulake ophiolitic mélange: Implication for the evolution history of the north branch of the Proto-Tethys ocean

Author information +
History +

Abstract

One of the ophiolites that record the Proto-Tethys Ocean’s episodic closure is the Munabulake ophiolitic mélange, which is situated in the middle of the Kunlun-Qaidam and Altun-Qilian blocks. Detailed field mapping revealed that the Munabulake ophiolitic mélange comprises local (ultramafic rocks, basalts, andesites, gabbros, diorites, and plagiogranites) and exotic (marble, gneiss, schist, and amphibolite) blocks, many of which are in the schist matrix (Qimantage Group). Based on geochronological, geochemical, and petrological observations, the mafic rocks in the Munabulake ophiolitic mélange can be categorized into three categories: 498-Ma OIB-like gabbros, 468-Ma Hawaiian alkaline basalt-like dolerite and pillow basaltic slices, and 428 Ma massive SSZ-like ultramafic rocks. The 501-452 Ma I-type granites exhibit arc affinities due to the oceanic crust subduction. These findings, along with spatial relationships, suggest that the Early Paleozoic ophiolite complex, island arc rocks, and accretionary complex generated as an intra-oceanic arc system as a result of obduction of the south Altun Ocean’s onto the Central Altun block within a north-directed subduction event. A dextral strike-slip was evident throughout the Early Paleozoic oceanic crust subduction based on the whole set of planar and linear structural data, and the subduction polarity was likely to the north. According to the ophiolitic mélange’s youngest rocks and the existence of 413 Ma granite dykes that are widely exposed in the Munabulake ophiolitic mélange, the Munabulake ophiolitic mélange was most likely emplaced during the Middle Silurian. This Munabulake ophiolitic mélange is similar in age and petrochemical characteristics to the other ophiolites in the South Altun subduction-collision belt, indicating that the Manabulak ophiolite mélange is a westward extension of the Apa-Mangya subduction-collision belt, which formed during the northward subduction of the South Altun Ocean slab during the Early Paleozoic. Thus, the final closing time of the South Altun Ocean is between 413 and 428 Ma.

Keywords

Altun orogenic belt / Munabulake / Ophiolitic mé / lange / Early Paleozoic / North-dipping subduction

Cite this article

Download citation ▾
Changfeng Liu, Wencan Liu, Baoying Ye, Zixian Zhao, He Su, Xin Xu. Munabulake ophiolitic mélange: Implication for the evolution history of the north branch of the Proto-Tethys ocean. Geoscience Frontiers, 2024, 15(1): 101731 https://doi.org/10.1016/j.gsf.2023.101731

References

[1]
Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. j.Volcanol. Geoth. Res. 102 (1-2), 67-95.
[2]
Boynton W.V., 1984. Geochemistry of the earth elements:Meteorite studies. In: HendersonR. (Ed.), Rare earth element geochemistry, Developments in Geochemistry 2, 89-92. Elsevier, Amsterdam.
[3]
Büchl A., Brügmann G.E., Batanova V.G., Hofmann A.W., 2004. Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the troodosophiolitic, Cyprus. Geochim. Cosmochim. Acta 68 (16), 3397-3408.
[4]
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, China, 1-941 (in Chinese with English abstract).
[5]
Chappell B.W., White A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt: Trans. Roy. Soc. Edinb., Earth Sci. 83, 1-26.
[6]
Coleman R.G., 1977. Ophiolites, Ancient Oceanic Lithosphere? In: WyllieP.J. (Ed.), Springer-Verlag, New York, 229.
[7]
Coleman R.G., Peterman Z.E., 1975. Oceanic plagiogranite. j.Geophys. Res. 80(8), 1099-1108.
[8]
Deng R.L., Ma T.Q., Bai D.Y., 2005. Geochemistry and tectonic setting of the Munabulake ophiolites in Xinjiang. Sedimentary Geology and Tethyan Geology 25, 94-100 (in Chinese with English abstract).
[9]
Deniel C. 1998. Geochemical and isotopic (Sr-Nd- Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chem. Geol. 144, 281-303.
[10]
Dewey J.F., Bird J.M., 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. j.Geophy. Res. 76, 3179-3206.
[11]
Dilek Y., Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123, 387-411.
[12]
Dong Z.C., Xiao P.X., Xi R.G., Guo L., Gao X.F., 2011. Geochemical characteristics and isotopic dating of bojites in the tectonic melange belt on south margin of Altun. Geol. Rev. 57, 207-216 (in Chinese with English abstract).
[13]
Dong H.K., Guo J.C., Chen H.Y., Ti Z.H., Liu G., Liu S.L., Xue P.Y., Xing W.W., 2014. Evolution characteristics of Ordovician intrusive rocks in Changshagou of Altun region. Northwest Geology 47, 73-87 (in Chinese with English abstract).
[14]
Dong Y., Sun S., Santosh M., Zhao J., Sun J., He D., Shi X., Hui B., Cheng C., Zhang G., 2021. Central China orogenic belt and amalgamation of East Asian continents. Gondwana Research 100, 131-194.
[15]
Flagler P.A., Spray J.G., 1991. Generation of plagiogranite by amphibolites anatexis in oceanic shear zones. Geology 19, 70-73.
[16]
Fu C.L., Yan Z., Wang Z.Q., Buckman S., Aitchison J.C., Niu M.L., Cao B., Guo X.Q., Li X.C., Li Y.S., Li J.L., 2018. Lajishankou ophiolite complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt. Tectonics 37, 1321-1346.
[17]
Furnes H., Safonova I., 2019. Ophiolites of the central Asian Orogenic Belt: geochemical and petrological characterization and tectonic settings. Geosci. Front. 10, 1255-1284.
[18]
Gai Y.S., Liu L., Kang L., Yang W.Q., Liao Y.Y., Wang Y.W., 2015 The origin and geologic signififi- cance of plagiogranite in ophiolite belt at North Altyn Tagh. Acta Petrologica Sinica 31, 2549-2565 (in Chinese with English abstract).
[19]
Gai Y.S., Liu L., Zhang G.W., Wang C., Liao X.Y., Kang L., Yang W.Q., Ma T. 2022. Tracking the multi-stage metamorphism and exhumation history of felsic gneisses in the South Altyn ultra-high pressure metamorphic belt, Western China. J. Asian Earth Sci. 236,105318.
[20]
Gao S., Rudnick R.L., Xu W.L., Yuan H.L., Liu Y.S., Walker R. J., Puchtel I.S., Liu X.M., Huang H., Wang X.R., Yang J., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41-53.
[21]
Gao Y.L., Wu X.N., Zuo G.C., 1988. The characters and tectonic significance of ophiolite first discovered in the east Kunlun area. Bull. Xian Inst. Geol. Min. Res., Chinese Acad. Geol. Sci. 21, 17-28 (in Chinese with English abstract).
[22]
Gao X., Xiao P., Guo L., Dong Z., Xi R., 2011. Opening of an early Paleozoic limited oceanic basin in the northern Altyn area: Constraints from plagiogranites in the Hongliugou-Lapeiquan ophiolitic mélange. Sci. China Earth Sci. 54, 12, 1871-1879. https://doi.org/10.1007/s11430-011-4332-9.
[23]
Grimes C.B., Ushikubo T., Kozdon R., Valley J.W., 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179, 48-66.
[24]
Guilmette C., Hébert R., Wang C., Villeneuve M., 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo suture zone, south Tibet. Lithos 112(1-2), 149-162, https://doi.org/10.1016/j.lithos.2009.05.027.
[25]
Guo J., Li Y.S., Richard M.P., Zhang J.X., Yu S.A. 2023. Evolution and modification of lithospheric mantle within deeply continental subduction zone: Insights from two contrasting orogenic garnet peridotites in South Altun-North Qaidam belt. Lithos 450-451, 107185.
[26]
Guo J.C., Xu X.M., Chen H.Y., Li X., Dong H.K., Ti Z.H., 2014. Zircon U-Pb age and geological implications of ultramafic rocks in Changshagou, Altun area, Xinjiang Province. Northwest geology 47, 170-177 (in Chinese with English abstract).
[27]
Hao J.B., Wang C., Zhang J.H., Liu l., Gai Y.S., Li H., Yu Z.P., Meert J.G., Long X.P, Sun X.K, Zhang S., 2022. Episodic Neoproterozoic extension-related magmatism in the Altyn Tagh, NW China: implications for extension and breakup processes of Rodinia supercontinent. Int. Geol. Rev. 64, 10, 1474-1489. DOI: 10.1080/00206814.2020.1836524.
[28]
Harris N.B.W., Pearce J.A., Tindle A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geol. Soc., Lond., Spec. Publ. 19 (1), 67-81.
[29]
Hawkesworth C.J., Lightfoot P.C., Fedorenko V.A., Blake S., Naldrett A.J., Doherty W., Gorbachev N.S., 1995. Magma differentiation and mineralization in the Siberian continental basalts. Lithos 34, 61-88.
[30]
Irvine T.N., Baragar W.P.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science 8, 523-548.
[31]
Irving A.J., Green D.H., 1976. Geochemistry and petrogenesis of the newer basalts of Victoria and South Australia. j.Geol. Soc. Aust. 23, 45-66.
[32]
Ishizaka K., Yanagi T., 1975. Occurrence of oceanic plagiogranites in the older tectonic zone, Southwest Japan. Earth Planet. Sci. Lett. 27(3), 371-377.
[33]
Kalsbeek F., Jepsen H.F., Nutman A.P., 2001. From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian Orogen. Lithos 57, 1-21.
[34]
Kai L., Xiao P.X., Gao X.F., Xi R.G., Yang Z.C. 2016. Early Paleozoic magmatism and collision Orogenic process of the south Altyn. Acta Geologica Sinica 90, 2527-2550 (in Chinese with English abstract).
[35]
Koschek G., 1993. Origin and significance of the SEM cathodoluminescence from zircon. j.Microsc. 3, 223-232.
[36]
Le Maitre R.W., 1984. A proposal by the IUGS Subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Aust. j.Earth Sci. 3, 243-255.
[37]
Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160, 179-210.
[38]
Li H.K., Geng J.Z., Hao S., Zhang Y.Q., Li H.M., 2009. The study of zircon U-Pb dating by means LA‐MC‐ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry 28, 77 (in Chinese).
[39]
Li W.X., Li X.H., 2003. Rock types and tectonic significance of the granitoids rocks within ophiolites. Advance in Earth Sciences 18(3), 392-397 (in Chinese with English abstract).
[40]
Li Y.G., Song S.G., Yang X.Y., Zhao Z.F., Dong J.L., Gao X.F., Wingate M.T.D., Wang C., Li M., Jin M.Q., 2023. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: Implications for Rodinia break-up. Int. Geol. Rev. 65, 1000-1016.
[41]
Liu L., Che Z.C, Wang Y., Luo J.H., Wang J.Q., Gao Z.J., 1998. The evidence of Sm-Nd isochron age for the early Paleozoic ophiolite in Mangya area, Altun Mountains. Chin. Sci. Bull. 43,754-756.
[42]
Liu L., Kang L., Cao Y.T., Yang W.Q., 2015. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China. Sci. China Earth Sci. 58, 1513-1522 (in Chinese with English abstract).
[43]
Liu Q., Tsunogae T., Zhao G.C., Li J.H., Yao J.L., Han Y.G., Wang P., 2021. Multiphase ophiolite formation in the Northern Altyn Tagh Orogen, southeastern Tarim. Am. j.Sci. 321, 788-821.
[44]
Liu H., Wang G.C., Cao S.Z., Luo Y.J., Gao S., Huang W.X., 2012. Discovery of Nabhuaian bimodal volcanics in northern Altyn Tagh and its tectonic significance. Earth Science-Journal of China University of Geosciences 37, 859-870 (in Chinese with English abstract).
[45]
Liu C.F., Zhou Z.G., Wang G.S., Wu C., Li H.Y., Ma S.W., 2021. Carboniferous ridge subduction in the Xingmeng Orogenic Belt: Constraints from geochronological, geochemical, and Sr-Nd-Hf isotopic analysis of strongly peraluminous granites and gabbro-diorites in the Xilinhot micro-continent. Geosci. Front. 12, 101103. https://doi.org/10.1016/j.gsf.2020.10.008.
[46]
Lu S., Li H., Zhang C., Niu G., 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 160 (1-2), 94-107.
[47]
Lu S.N., Yuan G.B., 2003. Geochronology of early Precambrian magmatic activities in Aketashitage, east Altyn Tagh. Acta Geol. Sin. 77, 63-70 (in Chinese with English abstract).
[48]
Ma Z.P., Li X. M., Sun J.M., Xu X.Y., Wang L.S., Duan X.X., 2009. Discovery of layered mafic-ultramafic intrusion in Changshagou, AltynTagh, and its geological implication: a pilot study on its petrological and geochemical characteristics. Acta Petrologica Sinica 25, 793-804 (in Chinese with English abstract).
[49]
Ma Z.P., Li X.M., Xu X.Y., Sun J.M., Tang Z., Du T., 2011. Zircon LA-ICP-MS U-Pb isotopic dating for Qingshuiquan layered mafic-ultramafic intrusion southern Altun orogeny, in northwestern China and its implication. Geology in China 38, 1071-1078 (in Chinese with English abstract).
[50]
Malpas J., 1979. Two contrasting trondhjemite associations from transported ophiolites in western Newfoundland:Initial report. In: BarkerF. (Ed.), Trondhjemites, Dacites, and Related Rocks. Elsevier, Amsterdam, 465-487.
[51]
Mattinson C.G., Wooden J.L., Liou J.G., Bird D.K., Wu C.L., 2006. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP Terrane, Western China. Am. j.Sci. 306, 683-711.
[52]
McKenzie D., O'nions R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. j.Petrol. 32, 1021-1091.
[53]
Meert J.G., Torsvik T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261-288.
[54]
Metcalf R.V., Shervais J.W., 2008. Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? Geological Society of America Special Paper 438, 191-222.
[55]
Middlemost E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 37, 215-224.
[56]
Miller C., Schuster R., Klötzli. U., Frank W., Purtscheller F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb- O isotopic constraints for mantle source characteristics and petrogenesis. j.Petrol. 40, 1399-1424.
[57]
Naylor M.A., 1982. The Casanova complex of the northern Apennines: a mélange formed on a distal passive continental margin. j.Struct. Geol. 4, 1-18.
[58]
Nicolas A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publishers, Dordrecht, 320.
[59]
Niu Y.L., 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. j.Petrol. 38, 1047-1074.
[60]
Niu H.P., Jiao X.Q., Xie Q.B., Zhang Y.S., Li X., Wu Z.X., Wang B., Yang X., Li Y.N., Gao Z.J., 2020. Origin and tectonic implications of granitoids from the eastern segment of the South Altyn Block, North-western China: Constraints from petrogeochemistry, zircon U-Pb dating, and Lu-Hf isotope geochemistry. Geol. j.55, 7613-7637.
[61]
Pearce J.A., 1996. Sources and settings of granitic rocks. Episodes, 19, 120-125.
[62]
Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1-4), 14-48.
[63]
Pearce j.A., Cann j.R., 1973. Tectonic setting of basic volcanic‐rocks determined using trace‐element analyses. Earth Planet. Sci. Lett. 19, 290-300.
[64]
Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. j.Petrol. 25 (4), 956-983.
[65]
Peccerillo A. Taylor S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petr. 58, 63-81.
[66]
Peng Y.B., Yu S., Li S., Zhang J., Liu Y., Li Y., Santosh M., 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Sci. Rev. 199, 102954, https://doi.org/10.1016/j.earscirev.2019.102954.
[67]
Prelević D., Foley S.F., 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet. Sci. Lett. 256, 120-135.
[68]
Pupin J.P., 1980. Zircon and granite petrology. Contrib. Mineral. Petrol. 3, 207-220.
[69]
Rapp R.P., Watson E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. j.Petrol. 36, 891-931.
[70]
Rickwood P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247-263.
[71]
Saunders A.D., Storey M., Kent R.W., Norry M.J., 1992. Consequences of plume‐lithosphere interactions, magmatism and the cause of continental breakup. In: StoreyB.C., AlabasterT., PankhurstR.J. (Eds.), Geol. Soc. London, Spec. Publ. 68, 41-60. https://doi.org/10.1144/GSL.SP.1992.068.01.04.
[72]
Shaw J.E., Baker J.A., Menzies M.A., Thirlwall M.F., Ibrahim K.M., 2003. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere- asthenosphere source activated by lithospheric extension. j.Petrol. 44 (9), 1657-1679.
[73]
Shi R.D., Yang J.S., Wu C.L., 2004. First SHRIMP dating for the formation of the Late Sinian Yushigou ophiolite North Qilian Mountains. Acta Geol. Sin. 78, 649-657 (in Chinese with English abstract).
[74]
Shi R.D., Yang J.S., Wu C.L., Iizukat H.T., 2006. Island arc volcanic rocks in the north Qaidam UHP belt, nortern Tibet plateau: evidence for ocean-continent subduction preceding continent-continent subduction. Journal of Asian Earth Science 28, 151-159.
[75]
Song T.Z., Liu J.D., Li J., Zhang X.Y., Liang K.X., Zheng Y., 2016. LA-ICP-MS zircon U-Pb age of gabbro and basalt in Baimuxia area of North Qilian and its geological significance. Northwest. Geol. 49, 32-42 (in Chinese with English abstract).
[76]
Song S.G., Niu Y.L., Su L., Xia X., 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Res. 23, 1378-1401.
[77]
Song S.G., Niu Y.L., Su L., Zhang C., Zhang L.F., 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth Sci. Rev. 129, 59-84.
[78]
Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In: SaundersA.D., NorryM.J. (Eds.), Geol. Soc. London, Spec. Publ. 42, 313-345.
[79]
Sun S.Q., Wang Y.L., Zhang C.J., 2003. Discrimination of tectonic setting of basalts by Th, Nb, and Zr. Geological Review 49(1), 40-47 (in Chinese with English abstract).
[80]
Tang Z., Ma Z.P., Li X.M., Sun J.M., 2011. Zircon LA-ICP-MS U-Pb dating of amphibolite in the southern margin of Altyn Tagh, China and its geological implication. Geological Bulletin of China 30(1), 51-57 (in Chinese with English abstract).
[81]
Tian Z.H., Xiao W.J., Windley B.F., Lin L.N., Han C.M., Zhang J.E., Wan B., Ao S.J., Song D.F., Feng J.Y., 2014. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Res. 25, 820-841.
[82]
Torsvik T.H., Smethurst M.A., Meert J.G., Van der Voo R., McKerrow W.S., Brasier M.D., Sturt B.A., Walderhaug H., 1996. Continental breakup and collision in the Neoproterozoic and Phanerozoic-A tale of Baltica and Laurentia. Earth-Sci. Rev. 40, 3-4, 229-258.
[83]
Tseng C.Y., Yang H.Y., Wan Y.S., Liu D.Y.L., Wen D.J., Lin T.C., Tung K.A., 2006. Finding of Neoproterozoic (-775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U-Pb dating. Chin. Sci. Bull. 51, 8, 963-970.
[84]
Turner S., Arnaud N., Liu J., Rogers N., Hawkesworth C., Harris N., Kelley S., Van Calsteren P., Deng W., 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. j.Petrol. 37, 45-71.
[85]
Turner S.P., Foden J.D., Morrison R.S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28, 151-179.
[86]
Tuo Y., 2019. Records of early Paleozoic ocean activities in the North Qaidam—contraints from Kaipinggou ophiolite. MS. thesis, Northwest University (in Chinese with English abstract).
[87]
Uysal I., Kaliwoda M., Karsli O., Tarkian M., Sadiklar M.B., Ottley C.J., 2007. Composotional variations as a result of partial melting and melt-periditite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can. Mineral. 45(6), 1471-1493.
[88]
Wakabayashi J., Dilek Y., 2003. What constitutes ‘emplacement’ of an ophiolitic?: mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geol. Soc. London Spec. Publ. 218, 427-447.
[89]
Wang C., 2011, Precambrian tectonic of south margin of Tarim Basin, NW China. Ph.D. thesis, Northwest University, China (in Chinese with English abstract).
[90]
Wang Q., Chen N., Li X., Hao S., Chen H., 2008. LA-ICPMS zircon U-Pb geochronological constraints on the tectonothermal evolution of the early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chin. Sci. Bull. 53, 2849-2858.
[91]
Wang X.D., Ding L., Zeng D., Yue Y.H., Yang L.P., Wang Z.J., Xiao L.A., Wang C. 2023. Protolith origin of eclogites from the North Qaidam UHP metamorphic Belt, NW China: Implications for the breakup of the Rodinia supercontinent. Precambrian Res. 384, 106942.
[92]
Wang B.Z., Fu C.L., Pan T., Li Q., Lu Y.Z., Jin T.T., 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution. Acta Petrologica Sinica 38, 2723-2742 (in Chinese with English abstract).
[93]
Wang L.S., Li Z.M., Yang P.F., Duan X.X., Zhang Y.X., Qiu Y.J., Qiao G.B., 2016a. Isotopic age and geochemical characteristics of Qingshuiquan amphibolite in South Altyn Tagh. Geotectonica et Metalligenia 40, 839-852 (in Chinese with English abstract).
[94]
Wang J.X., Lin M., Liu Z.Y., Wang L., Zhang G.B. 2020. Petrological study of the meta-ophiolite from the north Qaidam UHP Metamorphic belt and its geological implications. Northwestern Geology 53, 1-10 (in Chinese with English abstract).
[95]
Wang Y., Liu L., Che Z.C., Chen D.L., Luo J.H., 1999. Geochemical characteristics of early Paleozoic ophiolite in Mangnai area, Altun Mountains. Geological Review 45, 1010-1014 (in Chinese with English abstract).
[96]
Wang C., Liu L., Xiao P.X., Cao Y.T., Yu H.Y., Meert J.G., Liang W.T., 2014. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China. Lithos 202-203, 1-20.
[97]
Wang L.S., Yang P.F., Duan X.X., Long X.P., Sun J.M., 2016b. Isotopic age and genesis of plagiogranitefronQingshuiquan area in the middle of South Altyn Tagh. Acta Petrologica Sinica 32, 759-774 (in Chinese with English abstract).
[98]
Wang H.C., Lu S.N., Yuan G.B., Xin H.T., Zhang B.H., Wang Q.H., Tian Q., 2003. Tectonic setting and age of the Tanjianshan Group on the northern margin of the Qaidam Basin. Geol. Bull. China. 22(7), 487-493 (in Chinese with English abstract).
[99]
Wilhelm S., Hans A.S., 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib. Mineral. Petrol. 127, 30-45.
[100]
Williams H., Smyth R., 1973. Metamorphic aureoles beneath ophiolitic suites and Alpine peridotites: tectonic implications with West Newfoundland examples. Am. j.Sci. 273, 594-621.
[101]
Wood D. A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50, 11-30.
[102]
Woodhead J.D., Hergt J.M., Davidson J.P., Eggins S.M., 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192, 331-346.
[103]
Wu C.L., Yao S.Z., Zeng L.S., Yang J.S., Wooden J.L., Chen S.Y., Mazdab F.K., 2007. Characteristics of the Bashikaogong-Simierbulake granitoid complex and its zircon SHRIMP dating in the northern Altun, NW China. Sci. China Ser. D 37, 10-26 (in Chinese with English abstract).
[104]
Wu C. L., Gao Y. H., Lei M., Qin H. P., Liu C. H., Li Z. M., Frost B. R., Wooden j.L., 2014. Zircon SHRIMP U-Pb dating, Lu-Hf isotopic characteristics and petrogenesis of the Paleozoic granites in Mangya area, southern Altun, NW China. Acta Petrologica Sinica 30, 2297-2323 (in Chinese with English abstract).
[105]
Wu C.L., Chen H.J., Wu D., Ernst W.G., 2018. Paleozoic granitic magmatism and tectonic evolution of the South Altun block, NW China: Constraints from zircon U-Pb dating and Lu-Hf isotope geochemistry. j.Asian Earth Sci. 160,168-199.
[106]
Wu C., Zuza A. V., Yin A., Chen X. H., Haproff P. J., Li J., Li B., Ding L., 2021. Punctuated orogeny during the assembly of Asia: Tectonostratigraphic evolution of the North China Craton and the Qilian Shan from the Paleoproterozoic to early Paleozoic. Tectonics 40, e2020TC006503.
[107]
Wu C., Zhou Z.G., Zuza A.V., Wang G.S., Liu C.F., Jiang T., 2018. A 1.9-Ga mélange along the northern margin of the North China Craton: Implications for the assembly of Columbia Supercontinent. Tectonics 37, 3610-3646.
[108]
Wu C., Zuza A. V., Chen X.H., Ding L., Levy D. A., Liu C.F., Liu W.C., Jiang T., Stockli D.F. et al. 2019. Tectonics of the Eastern Kunlun Range: Cenozoic reactivation of a Paleozoic‐early Mesozoic orogen. Tectonics 38, 1609-1650.
[109]
Wu C., Liu C.F., Fan S., Zuza A.V., Ding L., Liu W.C., Ye B., Yang S., Zhou Z., 2020. Structural analysis and tectonic evolution of the western domain of the Eastern Kunlun Range, northwest Tibet. Geol. Soc. Am. Bull. 132, 5-6, 1291-1315.
[110]
Wu C., Li J., Zuza A.V., Peter J.H., Chen X.H., Ding L., 2022. Proterozoic-Phanerozoic tectonic evolution of the Qilian Shan and Eastern Kunlun Range, northern Tibet. Geol. Soc. Am. Bull. 134,9-10.
[111]
Wu Y.P., Mao D.B., Zhao G.X., Wang J., Wang K.Z., Niu G.H., Yuan G.B., 2007. Geochemistry and geochronology of amphibolites from the Houliugou area, Altyn Tagh, Northwestern China. Geological Survey and Research 30(2), 81-87 (in Chinese with English abstract).
[112]
Wu C., Yin A., Zuza A.V., Zhang J., Liu W., Ding L., 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere 8, 254-292.
[113]
Wu C., Zuza A.V., Yin A., Liu C.F., Reith R.C., Zhang J.Y., Liu W.C., Zhou Z.G., 2017. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere 9(4) 609-636, https://doi.org/10.1130/L640.
[114]
Xiao P.X., 2003. The geological features of ophiolite tectonic mixtite belt from Qingshuiquan to Mangnai in the middle section of Altyn Tagh. Northwest geology 36, 20-29 (in Chinese with English abstract).
[115]
Xiong Q., Zheng J.P., Griffin W.L., O’Reilly S.Y., Zhao J.H., 2011. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Res. 187, 33-57.
[116]
Xiu Q.Y., Yu H.F., Liu Y.S., Lu S.N., Mao D.B., Li H.M., Li Q., 2007. Geology and Zircon U-Pb age of pillow basalts at Qiashikansayi in northern Altun Tagh, NW China. Acta Geologica Sininca 81(6), 787-794 (in Chinese with English abstract).
[117]
Xu X., Song S.G., Su L., Li Z.X., Niu Y.L., Allen M.B., 2015. The 600-580 Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian Qaidam Block and SE Australia, and the reconstruction of East Gondwana. Precambrian Res. 257, 47-64.
[118]
Yang W. Q., Ding H.B, Liu L., Xiao P.X., Cao Y.T., Kang L., Liang S., Liao X.Y., Wang Y.W., 2012. Formation age of ore-bearing strata of the Dimunalike iron deposit in South Altun Mountains and its geological significance. Geological Bulletin of China 31(12), 2090-2101 (in Chinese with English abstract).
[119]
Yang Z. J., Ma H. D., Wang Z. X., 2012. SHRIMP U-Pb zircon dating of gabbro from the Binggou ophiolite mélange in the northern Altyn, and geological implication. Acta Petrologica Sinica 28, 2269-2276 (in Chinese with English abstract).
[120]
Yang j.S., Shi R. D., Wu C. L., Su D. C., Chen S. Y., Wang X. B., Wooden J., 2008. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrologica Sinica 24, 1567-1584 (in Chinese with English abstract).
[121]
Yao J.L., Cawood P.A., Zhao G.C., Han Y.G., Xia X.P., Liu Q., Wang P., 2021. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. Nature Communications 12, 4189.
[122]
Zhang Z. C., Guo Z. J., Song B., 2009. SHRIMP zircon dating of gabbro from the ophiolite mélange in the northern Altyn Tagh and its geological implications. Acta Petrologica Sinica 25, 568- 576 (in Chinese with English abstract).
[123]
Zhang G.B., Han L., Zhang L.F., Song S.G., Liu S.Q. 2023. The transition from oceanic to continental subduction and collision: A case study of the North Qaidam ultrahigh-pressure metamorphic belt, northern Tibetan Plateau. j.Asian Earth Sci. 242, 105488.
[124]
Zhang J.X., Mattinson C.G., Yu S.Y., Li Y.S., 2014. Combined rutile-zircon thermometry and U-Pb geochronology: New constraints on Early Paleozoic HP/UHT granulite in the south Altyn Tagh, north Tibet, China. Lithos 200-201, 241-257.
[125]
Zhang J., Mattinson C., Yu S., Li Y., Yu X., Mao X., Lu Z., Peng Y., 2019. Two contrasting accretion v. collision orogenies: insights from Early Paleozoic polyphase metamorphism in the Altun-Qilian-North Qaidam orogenic system, NW China. Geol. Soc., London Spec. Publ. 474, 153-181.
[126]
Zhang J.X., Zhang Z.M., Xu Z.Q., Yang J.S., Cui J.W., 2000. Discovery of khondalite series from the western segment of Altyn and their petrological and geochronological studies. Sci. China Earth Sci. 43, 308-331.
[127]
Zhang J.X., Yang J.S., Mattinson C.G., Xu Z.Q., Meng F.C., Shi R.D., 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: petrological and isotopic constraints. Lithos 84, 51-76.
[128]
Zhang J.X., Yang J.S., Meng F.C., Wan Y.S., Li H.B., Wu C.L., 2006. U-Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam Mountains, western China: new evidence for an early Paleozoic HP-UHP metamorphic belt. j.Asian Earth Sci. 28, 143-150.
[129]
Zhang X.H., Zhang H.F., Tang Y.J., Wilde S.A., Hu Z.C., 2008. Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem. Geol. 249, 262-281.
[130]
Zhao J.H., Zhou M.F., 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Res. 152 (1-2), 27-47.
[131]
Zhou Z.G., Liu C.F., Wang G.S., Zhang N., Li H.Y., Wu C., 2019. Geochronology, geochemistry and tectonic significance of the Dashizhai ophiolitic mélange belt, southeastern Xing’an-Mongolia orogenic belt. Int. j.Earth Sci. 108,67-88.
[132]
Zhu X.H., Chen D.L., Wang C., Wang H., Liu L., 2015. The initiation, development and termination of the Neoproterozioic-Early Paleozoic Ocean in the northern margin of Qaidam Basin. Acta Geologica Sinica 89, 234-251 (in Chinese with English abstract).
[133]
Zhu X.H., Chen D.L., Liu L., Zhao J., Zhang L., 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam. Acta Petrologica Sinica 30(3), 822-834 (in Chinese with English abstract).
[134]
Zhu X.H., 2021. Magmatic response to the Early Paleozoic tectonic transition in the South Qilian and North Qaidam and its constraints on orogenic process. Ph.D thesis, Northwest University (in Chinese with English abstract).
[135]
Zuza A.V., Wu C., Reith R.C., Yin A., Li J.H., Zhang J.Y., Zhang Y.X., Wu L., Liu W.C., 2018. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geol. Soc. Am. Bull. 130, 5-6.
PDF(16608 KB)

331

Accesses

0

Citations

Detail

Sections
Recommended

/