Factor analysis of recent major heatwaves in East Asia

Arim Yoon, Jeongwon Kim, Jooyeop Lee, Hyun Min Sung, Je-Woo Hong, Seung-Ki Min, Junhong Lee, Jinkyu Hong

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101730.

PDF(2419 KB)
Geoscience Frontiers All Journals
PDF(2419 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101730. DOI: 10.1016/j.gsf.2023.101730
Research Paper

Factor analysis of recent major heatwaves in East Asia

Author information +
History +

Abstract

Heatwaves (HWs) present a major hazard to our society and more extreme heatwaves are expected with future climatic changes. Hence, it is important to improve our understanding of the underlying processes that drive HWs, in order to boost our socioeconomic-ecological resilience. In this study, we quantified the influences of key driving factors (large-scale atmospheric circulation, soil moisture, and sea surface temperature) and their synergies on recent heatwaves in East Asia. We conducted a factor separation analysis for three recent HW events by constraining the key factors in the regional Weather Research and Forecasting model with their climatologies or pseudo-observations in different combinations. Our study showed distinct spatial variations in the HW-controlling factors in East Asia. The synergistic interaction of large-scale circulation and soil moisture was the most important factors in the 2013 Chinese HW. During the 2018 HWs in Korea and Japan, the same stagnant large-scale atmospheric circulation played a dominant role in driving the HW events. The land-atmosphere coupling via soil moisture, its interaction with circulation, and SST exhibited stronger influences during the Korean HW than the Japanese HW. Our analysis also revealed temporal variations in the factors driving Korean and Chinese HWs due to typhoon passage and other multiple processes over heterogeneous surfaces (i.e., topographically induced Foehn winds, large-scale warm advection from the warm ocean, spatial differences in soil moisture). Our findings suggest that future heatwave-related studies should consider interactive contributions of key factors, their interplay with surface heterogeneities of complex terrain.

Keywords

Heatwave / East Asia / Large-scale circulation / Soil moisture / Sea surface temperature / Synergistic impacts

Cite this article

Download citation ▾
Arim Yoon, Jeongwon Kim, Jooyeop Lee, Hyun Min Sung, Je-Woo Hong, Seung-Ki Min, Junhong Lee, Jinkyu Hong. Factor analysis of recent major heatwaves in East Asia. Geoscience Frontiers, 2024, 15(1): 101730 https://doi.org/10.1016/j.gsf.2023.101730

References

[1]
Benson D.O., Dirmeyer P.A., 2021. Characterizing the relationship between temperature and soil extremes and their role in the exacerbation of heat waves over the contiguous United States. j.Clim. 34, 2175-2187.
[2]
Betts A.K., Ball J.H., Beljaars A.C., Miller M.J., Viterbo P.A., 1996. The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives. j.Geophys. Res. Atmos. 101(D3), 7209-7225.
[3]
Black E., Blackburn M., Harrison G., Hoskins B., Methven J., 2004. Factors contributing to the summer 2003 European heatwave. Weather 59(8), 217-223.
[4]
Cassou C., Terray L., Phillips A.S., 2005. Tropical Atlantic influence on European heat waves. j.Clim. 18,2805-2811.
[5]
Chen R., Lu R., 2015. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. j.Clim. 28,5830-5844.
[6]
Choi J., Song C., Kim E.,Ahn J., 2022. Possible relationship between heatwaves in Korea and the summer blocking frequency in the Sea of Okhotsk. International j.Climatol. https://doi.org/10.1002/joc.7659.
[7]
Ding T., Qian W., Yan Z., 2010. Changes in hot days and heat waves in China during 1961-2007. Int. j.Climatol. 30, 1452-1462, doi: 10.1002/joc.1989.
[8]
Dole R., Hoerling M., Perlwitz J., Eischeid J., Pegion P., Zhang T., Quan X.-W., Xu T., Murray D., 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 38, L06702, doi:10.1029/ 2010GL046582.
[9]
Dong Z., Wang L., Xu P., Cao J., Yang R., 2023. Heatwaves similar to the unprecedented one in summer 2021 over western north America area projected to become more frequent in a warm world. Earth’s Future 11, e2021EF003437.
[10]
Duchez A., Frajka-Williams E., Josey S., Evans D., Grist J., Marsh R., McCarthy G., Sinha B., Berry D., Hirschi J., 2016. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett.,11, 074004.
[11]
Fischer E., Seneviratne S. I., Lüthi D., Schär C., 2007. Contribution of land‐atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34, L6707, doi: 10.1029/2006GL02906.
[12]
Frölicher T.L., Laufkötter C., 2018. Emerging risks from marine heat waves. Nat. Commun. 9, 1-4.
[13]
Gómez B., Charlton-Pérez C., Lewis H., Canday B., 2020. The Met Office operational soil moisture analysis system. Remote Sens. 12, 3691.
[14]
Goyette S., 2017. Numerical investigation with a coupled single-column lake-atmosphere model: using the Alpert-Stein factor separation methodology to assess the sensitivity of surface interactions. Clim. Dyn. 48, 2359-2373.
[15]
Ha K.J., Yeo J.H., Seo Y.W., Chung E.S., Moon J.Y., Feng X., Lee. Y.W., Ho C.H., 2020. What caused the extraordinarily hot 2018 summer in Korea? j.Meteorol. Soc. Japan. Ser. II. 98, 153-167.
[16]
Hauser M., Orth R., Seneviratne S. I., 2016. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43,2819-2826.
[17]
Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R. J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N., 2020. The ERA 5 global reanalysis. Q. j.R. Meteorol. Soc. 146, 1999-2049.
[18]
Hirschi M., Seneviratne S. I., Alexandrov V., Boberg F., Boroneant C., Christensen O. B., Formayer H., Orlowsky B., Stepanek P., 2011. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17-21.
[19]
Hong J.-W., Hong J., Kwon E., Yoon D., 2019. Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea. Environ. Pollut. 254, 112934, https://doi.org/ 10.1007/s10546-019-00452-5.
[20]
Iskandar I., Lestari D., Utari P., Sari Q., Setiabudidaya D., Mardiansyah W., 2018. How strong was the 2015/2016 El Niño event? j.Phys. Conf. Ser. 1011, 012030.
[21]
Jiang J., Liu Y., Mao J., Wu G. 2023. Extreme heatwave over Eastern China in summer 2022: the role of three oceans and local soil moisture feedback. Environ. Res. Lett. 18, 044025, https://doi.org/10.1088/1748-9326/acc5fb.
[22]
JMA, 2018. Characteristics and physical mechanisms on the record-breaking heavy rain and heatwave in 2018 July. Japan Meteorological Agency, 21 pp.,
[23]
Kawase H., Imada Y., Tsuguti H., Nakaegawa T., Seino N., Murata A., Takayabu I., 2020. The heavy rain event of July 2018 in Japan enhanced by historical warming. Bull. Amer. Meteor. Soc. 101, S109-S114.
[24]
KMA, 2018. 2018 Abnormal Climate Report, Korea Meteorological Administration. Korea Meteorological Administration, 48 pp (in Korean).
[25]
Koster R.D., Dirmeyer P.A., Guo Z., Bonan G., Chan E., Cox P., Gordon C.T., Kanae S.J., Kowalczyk E., Lawrence D., Liu P., Lu C.-H., Malyshev S., Mcavaney B., Mitchell K., Mocko D., Oki T., Oleson K., Pitman A., Sud Y.C., Taylor C.M., Verseghy D., Vasic R., Xue Y., Yamada T., 2004. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138-1140.
[26]
Koster R.D., Sud Y.C., Guo Z., Dirmeyer P.A., Bonan G., Oleson K.W., Chan E., Verseghy D., Cox P., Davies H., Kowalczyk E., Gordon C.T., Kanae S., Lawrence D., Liu P., Mocko D., Lu C.H., Mitchell K., Malyshev S., McAvaney B., Oki T., Yamada T., Pitman A., Taylor C.M., Vasic R., Xue Y., 2006. GLACE: the global land-atmosphere coupling experiment. Part I: overview. j.Hydrometeorol. 7, 590-610.
[27]
Lee J., Hong J., Noh Y., Jiménez P.A., 2020. Implementation of a roughness sublayer parameterization in the Weather Research and Forecasting model (WRF version 3.7. 1) and its evaluation for regional climate simulations. Geosci. Model Dev. 13, 521-536.
[28]
Li J., Ding T., Jia X., Zhao X., 2015. Analysis on the extreme heat wave over China around Yangtze River region in the summer of 2013 and its main contributing factors. nullAdv. Meteorol. https://doi.org/10.1155/2015/706713
[29]
Lim Y. J., Hong J., Lee T. Y., 2012. Spin-up behavior of soil moisture content over East Asia in a land surface model. Meteorol. Atmospheric Phys. 118,151-161.
[30]
Lin H., Mo R., Vitart F., 2022. The 2021 western north American heatwave and its subseasonal predictions. Geophys. Res. Lett. 49, e2021GL097036.
[31]
Liu B., Zhu C., Su J., Ma S., Xu K., 2019. Record-breaking northward shift of the western North Pacific subtropical high in July 2018. j.Meteorol. Soc. Japan. Ser. II. 97(4), 913-925.
[32]
Lorenz R., Jaeger E.B., Seneviratne S.I., 2010. Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett. 37, L09703, doi: 10.1029/2010GL042.
[33]
Ma H., Shao H., Song J., 2014. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. Meteorol. Atmospheric Phys. 123(3), 105-114.
[34]
Meehl G. A., Tebaldi C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686), 994-997.
[35]
Miralles D.G., Teuling A.J., Van Heerwaarden C.C., De Arellano J.V.G., 2014. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7(5), 345-349.
[36]
Miralles D.G., Gentine P., Seneviratne S.I., Teuling A.J., 2019. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436(1), 19-35.
[37]
Nakamura H., T. Fukamachi, 2004. Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Q. j.R. Meteorol. Soc. 130, 1213-1233.
[38]
Neal E., Huang C.S.Y., Nakamura N., 2022. The 2021 Pacific northwest heat wave and associated blocking: Meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699.
[39]
Perkins S.E., Alexander L.V., Nairn J.R., 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, L20714, doi: 10.1029/2012GL053361.
[40]
Petch J.C., Short C.J., Best M.J., McCarthy M., Lewis H.W., Vosper S.B., Weeks M., 2020. Sensitivity of the 2018 UK summer heatwave to local sea temperatures and soil moisture. Atmospheric Sci. Lett. 21, e948.
[41]
Pfahl S., Wernli H., 2012. Quantifying the relevance of atmospheric blocking for co‐located temperature extremes in the Northern Hemisphere on (sub‐) daily time scales. Geophys. Res. Lett. 39, L12807, https://doi.org/10.1029/2012GL052261.
[42]
Ren L., Zhou T., Zhang W., 2020. Attribution of the record-breaking heat event over Northeast Asia in summer 2018: the role of circulation. Environ. Res. Lett.,15, 054018.
[43]
Rousi E., Kornhuber K., Beobide-Arsuaga G., Luo F., Coumou D., 2022. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun.13, 3851.
[44]
Seneviratne S.I., Lüthi D., Litschi M., Schär C., 2006. Land-atmosphere coupling and climate change in Europe. Nature. 443, 205-209.
[45]
Seneviratne, S I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J., 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 99, 125-161.
[46]
Seneviratne S.I., Wilhelm M., Stanelle T., van den Hurk B., Hagemann S., Berg A., Cheruy F., Higgins M.E., Meier A., Brovkin V., Claussen M., Ducharne A., Dufresne J.L., Findell K.L., Ghattas J., Lawrence D.M., Malyshew S., Rummukainen M., Smith B., 2013. Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment. Geophys. Res. Lett. 40,5212-5217.
[47]
Seo Y., Ha K., 2022. Changes in land-atmosphere coupling increase compound drought and heatwaves over northern East Asia. NPJ Clim. Atmos. Sci. 5, 100, https://doi.org/10.1038/s41612-022-00325-8.
[48]
Shimpo A., Takemura K., Wakamatsu S., Togawa H., Mochizuki Y., Takekawa M., Tanaka S., Ymashita K., Maeda S., Kurora R., Murai H., Kitabatake N., Tsuguti T., Mukougawa H., Iwasaki T., Kawamura R., Kimoto M., Takayabu I., Takayabu Y.N., Tanimoto Y., Hirooka T., Masumoto Y., Watanabe M., Tsuboki K., Nakamura H., 2019. Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan. SOLA, 15A-003.
[49]
Song I., Byun U., Hong J., Park S., 2018. Domain-size and top-height dependence in regional predictions for East Asia in spring, Atmospheric. Sci. Lett. 19, e799, https://doi:10.1002/asl.799.
[50]
Stein U., Alpert P., 1993. Factor separation in numerical simulations. j.Atmospheric Sci. 50, 2107-2115.
[51]
Sui C.H., Chung P.H., Li T., 2007. Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett. 34, 11701, doi: 10.1029/2006GL029.
[52]
Teuling A.J., Seneviratne S.I., Stöckli R., Reichstein M., Moors E., Ciais P., Ciais P., Luyssaert S., van der Hurk. B., Ammann C., Bernhofer C., Dellwik E, Gianelle D., Gielen B., Grunwald T., Klumpp K., Montagnani L., Moureaux C., Sottocornola M., Wohlfahrt G., 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722-727.
[53]
van den Hurk B., Doblas-Reyes F., Balsamo G., Koster R.D., Senevitrane S.I., Camargo H., 2012. Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim. Dyn. 38, 349-362.
[54]
van Garderen L., Feser F., Shepherd T.G., 2021. A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline. Nat. Hazards Earth Syst. Sci. 21, 171-186.
[55]
Wang P., Tang J., Wang S., Dong X., Fang J., 2018. Regional heatwaves in China: A cluster analysis. Clim. Dyn. 50, 1901-1917.
[56]
Wehrli K., Guillod B.P., Hauser M., Leclair M., Seneviratne S.I., 2018. Assessing the dynamic versus thermodynamic origin of climate model biases. Geophys. Res. Lett. 45,8471-8479.
[57]
Wehrli K., Guillod B.P., Hauser M., Leclair M., Seneviratne S.I., 2019. Identifying key driving processes of major recent heat waves. j.Geophys. Res. Atmos. 124,11746-11765.
[58]
Wie J., Moon B.K., Hyun Y.K., Lee J., 2021. Impact of local atmospheric circulation and sea surface temperature of the East Sea (Sea of Japan) on heat waves over the Korean peninsula. Theor. Appl. Climatol. 144,431-446.
[59]
Yeh S., Won Y., Hong J., Lee K., Kwon M., Seo K., Ham Y., 2018. The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Weather Rev. 146, 1463-1474.https://doi.org/10.1175/MWR-D-17-0205.1.
[60]
Yoon D., Cha D.H., Lee G., Park C., Lee M.I., Min K.H., 2018. Impacts of synoptic and local factors on heat wave events over southeastern region of Korea in 2015. j.Geophys. Res. Atmos. 123,12-081.
[61]
Yoon D., Cha D.H., Lee M.I., Min K.H., Kim J., Jun S.Y., Choi Y., 2020. Recent changes in heatwave characteristics over Korea. Clim. Dyn. 55, 1685-1696.
[62]
Yuan W., Cai W., Chen Y., Liu S., Dong W., Zhang H., Yu G., Chen Z., He H., Guo W., Liu D., Liu S., Xiang W., Xie Z., Zhao Z., Liu G., 2016. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep.6, 18813.
[63]
Yuan X., Wang L., Wood E.F., 2018. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc.99, S86-S90.
[64]
Zhang J., Wu L., Dong W., 2011. Land‐atmosphere coupling and summer climate variability over East Asia. j.Geophys. Res. Atmos. 116, D05117, doi: 10.1029/2010JD014714.
[65]
Zscheischler J., Seneviratne S.I., 2017. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e170026.
PDF(2419 KB)

321

Accesses

0

Citations

Detail

Sections
Recommended

/