Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica)

Martina Busetti, Riccardo Geletti, Dario Civile, Chiara Sauli, Giuseppe Brancatelli, Edy Forlin, Daniela Accettella, Lorenza Barro Savonuzzi, Laura De Santis, Aldo Vesnaver, Andrea Cova

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101727.

PDF(15173 KB)
Geoscience Frontiers All Journals
PDF(15173 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101727. DOI: 10.1016/j.gsf.2023.101727
Research Paper

Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica)

Author information +
History +

Abstract

Seafloor and buried reliefs occur along continental margin of the Ross Sea (Antarctica). These features are several kilometres wide and tens of metres high, exhibiting cone or flat-top dome shapes. Previous studies have proposed a volcanic or glacial origin for these formations, but these hypotheses do not account for all the available evidence.In this study, we use morpho-bathymetric data, intermediate resolution multichannel seismic and high resolution chirp profiles, as well as magnetic lines to investigate these clusters of mounds. By employing targeted processing techniques to enhance the geophysical characterization of the seafloor and buried reliefs, and to understand the underlying geological features, we propose that the reliefs are mud volcanoes. Some of these formations appear to be associated with a plumbing system, as indicated by acoustic anomalies linked to sediment containing gas. These formations are likely fed by clayey source rocks of Miocene age. Additionally, other reliefs might be the result of mud mobilisation caused by gravity instability and fluid overpressure.

Keywords

Ross Sea / Antarctica / Mud volcanoes / Gas plumbing system / Gas hydrate / Bottom Simulating Reflector

Cite this article

Download citation ▾
Martina Busetti, Riccardo Geletti, Dario Civile, Chiara Sauli, Giuseppe Brancatelli, Edy Forlin, Daniela Accettella, Lorenza Barro Savonuzzi, Laura De Santis, Aldo Vesnaver, Andrea Cova. Geophysical evidence of a large occurrence of mud volcanoes associated with gas plumbing system in the Ross Sea (Antarctica). Geoscience Frontiers, 2024, 15(1): 101727 https://doi.org/10.1016/j.gsf.2023.101727

CRediT authorship contribution statement

Dongsheng Cai: Writing – review & editing, Methodology. Ghazala Aziz: Conceptualization, Resources, Validation, Visualization, Writing – original draft. Suleman Sarwar: Supervision. Majid Ibrahim Alsaggaf: Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Software. Avik Sinha: Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]
Andresen K. J., 2012. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution? Marine Geology 332-334, 89-108. 10.1016/j.margeo.2012.07.006.
[2]
Andresen K.J., Clausen O. R., Jørgesen R.B., 2010. A composite mud volcano system in the Chalk Group of the North Sea Central Graben. Journal of the Geological Society 167, 1209-1224. 10.1144/0016-76492010-037.
[3]
Barrett P. J. and Scientific Staff, 1985. Plio-Pleistocene glacial sequence cored at CIROS 2 Ferrar Fjord, western McMurdo Sound. Victoria University Antarctic Research Expedition Science and Logistics Reports VUWAE 29, 6, 2, 8-19.
[4]
Barrett P. J., 1986. Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound, Antarctica. New Zealand Department of Scientific and Industrial Research Bulletin 237, 174 pp.
[5]
Barrett P. J., 1989. Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound, Antarctica. New Zealand Department of Scientific and Industrial Research Bulletin, 245, 254 pp.
[6]
Barro Savonuzzi L., Brancatelli G., Forlin E., De Santis L., Geletti R., Busetti M., Wardell N., Del Ben A., 2023. Miocene mounds on the Ross Sea paleo-continental shelf: evidence of the onset of Antarctic glaciations or mud volcanoes? Bulletin of Geophysics and Oceanography 64(3), 1-20. 10.4430/bgo00417.
[7]
Bart P.J., Anderson J.A., Trincardi F., Shipp S.S., 2000. Seismic data from the Northern Basin, Ross Sea, record extreme expansions of the East Antarctic Ice Sheet during the late Neogene. Marine Geology 166(1-4), 31-50. 10.1016/S0025-3227(00)00006-2.
[8]
Bart P.J., Sjunneskog C., Chow J.M., 2011. Piston-core based biostratigraphic constraints on Pleistocene oscillations of the West Antarctic Ice Sheet in western Ross Sea between North Basin and AND-1B drill site. Marine Geology 289(1-4), 86-99. 10.1016/j.margeo.2011.09.005.
[9]
Behrendt J.C., LeMasurier W.E., Cooper A.K., Tessensohn F., Tréhu A., Damaske D., 1991. Geophysical studies of the West Antarctic Rift System, Tectonics 10(6), 1257-1273. 10.1029/91TC00868.
[10]
Boehm G., Brancolini G., Fais S., Snidarcig A., Vesnaver A., 1993. Integrated interpretation of geophysical anomalies in the western Ross Sea (Antarctica). Bollettino di Geofisica Teorica ed Applicata 35(137-138), 119-132.
[11]
Brancatelli G., Forlin E., Bertone N., Del Ben A., Geletti R., 2022. Time to depth seismic reprocessing of vintage data:A case study in the Otranto Channel (South Adriatic Sea). In: RebeccaBell, DavidIacopini, MarkVardy, (Eds) Interpreting Subsurface Seismic Data. Elsevier, pp. 157-197. 10.1016/B978-0-12-818562-9.00009-1.
[12]
Brancolini G., Busetti M., Coren F., De Cillia C., Marchetti M., De Santis L., Zanolla C., Cooper A.K., Cochrane G.R., Zayatz I., Belyaev V., Knyazev M., Vinnikovskaya O., Davey F.J., Hinz K., 1995. ANTOSTRAT Project, seismic stratigraphic atlas of the Ross Sea, Antarctica. In: CooperA.K., BarkerP.F., BrancoliniG., (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin. Antarctic Research Series, vol. 68, AGU Washington, D. C.
[13]
Cape Roberts Science Team, 1998. Initial report on CRP-1, Cape Roberts Project. Terra Antartica 5(5), 1-187.
[14]
Cape Roberts Science Team, 1999. Studies from the Cape Roberts Project, Ross Sea, Antarctica, initial report on CRP-2/2A. Terra Antartica 6, 1-173.
[15]
Cape Roberts Science Team, 2000. Studies from the Cape Roberts Project, Ross Sea, Antarctica, initial report on CRP-3/3A. Terra Antartica 7, 1-209.
[16]
Cartwright J., Santamarina C., 2015. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology 65, 126-140, 10.1016/j.marpetgeo.2015.03.023.
[17]
Chow j.M., Bart P. J., 2003. West Antarctic Ice Sheet grounding events on the Ross Sea outer continental shelf during the middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 198(1-2), 169-186. 10.1016/S0031-0182(03)00400-0.
[18]
Claerbout J., 1985. Imaging the Earth’s Interior, Blackwell, Oxford, UK, 398 pp.
[19]
Claypool G., Kvenvolden K. 1983. Methane and other hydrocarbon gases in marine sediment. Annual Review of Earth and Planetary Sciences 11, 299-327. 10.1146/annurev.ea.11.050183.001503.
[20]
Collen j.D., Xinghua Y., Collier R. J., Johnston J. H., 1989. Hydrocarbon source rock potential and organic maturation. In: BarrettP. (Ed.), Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. DSIR Bulletin, Wellington, 245, 223-230.
[21]
Cook R.W., Woolhouse A.D., 1989. Hydrocarbon residue. In: BarrettP., (Ed.), Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. DSIR Bulletin, Wellington, 245, 211-217.
[22]
Cooper A.K., Davey F.J., Behrendt J.C., 1987. Seismic stratigraphy and structure of the Victoria Land Basin, Western Ross Sea, Antarctica. In: CooperA. K., DaveyF. J., (Eds.), The Antarctic Continental Margin:Geology and Geophysics of the Western Ross Sea. Circum-Pacific Council of Energy and Mineral Resource Earth Science Series, vol. 5B, Huston, Texas, pp. 27-76.
[23]
Davey F.J., Brancolini G., Hamilton R.J., Henrys S., Sorlien C. C., 2000. A revised correlation of the seismic stratigraphy at the Cape Roberts drill sites with the seismic stratigraphy of the Victoria Land Basin, Antarctica. Terra Antartica 7(3), 215-220.
[24]
Denich E., Vesnaver A., Baradello L., 2021. Amplitude recovery and deconvolution of Chirp and Boomer data for marine geology and offshore engineering. Energies 14, 1-14. 10.3390/en14185704.
[25]
Domack E., Ishman S., Leventer A., Sylva S., Willmott V., Huber B., 2005. Chemotrophic Ecosystem Beneath the Larsen Ice Shelf. EOS Transactions of the American Geophysical Union 86, 269-276, 10.1029/2005EO290001.
[26]
Dorschel B., Hebbeln D., Rüggeberg A., Dullo W.C., 2007. Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight. International Journal of Earth Science 96, 73-83, http://dx.doi.org/10.1007/s00531-005-0493-0.
[27]
Dorschel B., Hehemann L., Viquerat S., Warnke F., Dreutter S., Schulze Tenberge Y., Accettella D., An L., Barrios F., Bazhenova E., Black J., Bohovo F., Davey C., De Santis L., Escutia Dotti C., Fremand A.C., Fretwell P.T., Gales J.A., Gao J., Gasperini L., Greenbaum J.S., Henderson Jencks J., Hong J.K., Jakobsson M., Jensen L., Kool J., Larin S., Larter R. D., Leitchenkov G., Loubrieu B., Mackay K., Mayer L., Millan R., Morlighem M., Navidad F., Nitsche F.O., Nogi Y., Pertuisot C., Post A. L., Pritchard H. D., Purser A., Rebesco M., Rignot E., Roberts j.L., Rovere M., Ryzhov I., Sauli C., Schmitt T., Silvano A., Smith J., Snaith H., Tate A. J., Tinto K., Vandenbossche P., Weatherall P., Wintersteller P., Yang C., Zhang T., Arndt J.E., 2022. The International Bathymetric Chart of the Southern Ocean Version 2. Scientific Data 9,27 5, 1-13. 10.1038/s41597-022-01366-7.
[28]
Ferraccioli F., Armadillo E., Zunino A., Bozzo E., Rocchi S., Armienti P., 2009. Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging. Tectonophysics 478, 43-61. 10.1016/j.tecto.2008.11.028.
[29]
Fielding R.C. (2018). Stratigraphic architecture of the Cenozoic succession in the McMurdo Sound region, Antarctica: An archive of polar palaeoenvironmental change in a failed rift setting. Sedimentology 65, 1-61. 10.1111/sed.12413.
[30]
Fielding C. R., Whittaker J., Henrys S. A., Wilson T. J., Naish T. R., 2008. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 8-29. 10.3133/of2007-1047.srp090.
[31]
Freiwald A., Rogers A., Hall-Spencer J., Guinotte J.M., Davies A.J., Yesson C., Martin C.S., Weatherdon L.V. 2021. Global distribution of cold-water corals (version 5.1). Fifth update to the dataset in Freiwald et al. (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John Guinotte. Cambridge (UK): UN Environment Programme World Conservation Monitoring Centre. Data: 10.34892/72x9-rt61.
[32]
Freiwald A., Roberts j.M., 2006. Cold-Water Corals and Ecosystems, Springer Berlin, Heidelberg, 1243. 10.1007/3-540-27673-4.
[33]
Gantar C., Zanolla C., 1993. Gravity and magnetic exploration in the Ross Sea (Antarctica). Bollettino di Geofisica Teorica e Applicata 35(137-138), 219-230.
[34]
Gazdag J. 1978. Wave equation migration with the phase-shift method. Geophysics 43, 1337-1556. 10.1190/1.1440899.
[35]
Geletti R., and Busetti M., 2011. A double bottom simulating reflector in the western Ross Sea, Antarctica. Journal of Geophysical Research, Solid Earth 116(B04101). 10.1029/2010JB007864.
[36]
Geletti R., Busetti M., 2022. Bottom Simulating Reflector in the Western Ross Sea, Antarctica. In: MienertJ., BerndtC., TréhuA.M., CamerlenghiA., LiuCS. (Eds.), World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham., pp. 475-482. 10.1007/978-3-030-81186-0_40.
[37]
Geletti R., Pipan M., and Vesnaver A., 1993. Signal/Noise ratio enhancement of a seismic profile in the Ross Sea (Antarctica). Bollettino di Geofisica Teorica ed Applicata 35(137-138), 173-193.
[38]
Giustiniani M., Tinivella U., Sauli C., Della Vedova B., 2018. Distribution of the gas hydrate stability zone in the Ross Sea, Antarctica. Andean Geology 45(1), 78-86. http://dx.doi.org/10.5027/andgeoV45n1-2989.
[39]
Greenwood S. L., Simkins L. M., Halberstadt A. R. W., Protho L. O., Anderson j.B., 2018. Holocene reconfiguration and readvance of the East Antarctic Ice Sheet. Nature Communication 9, 3176. 10.1038/s41467-018-05625-3.
[40]
Hamilton R., Sorlien C. C., Luyendyk B. P., Bartek L. R., 2001. Cenozoic tectonics of the Cape Roberts rift basin and Transantarctic Mountains front, southwestern Ross Sea, Antarctica. Tectonics 20, 325-342. 10.1029/2000TC001218.
[41]
Hayes D.E., Frakes L.A., et al., 1975. Initial Reports of the Deep Sea Drilling Project., 28. U.S. Government Printing Office, Washington, DC. 1017 pp.
[42]
Horgan H., Naish T., Bannister S., Balfour N., Wilson G., 2005. Seismic stratigraphy of the Plio-Pleistocene Ross Island flexural moatfill: A prognosis for ANDRILL Program drilling beneath McMurdo-Ross Ice Shelf. Global and Planetary Change 45(1-3), 83-97. 10.1016/j.gloplacha.2004.09.014.
[43]
Hovland M., 2008. Do carbonate reefs form due to fluid seepage? Terra Nova 2, 8-18. 10.1111/j.1365-3121.1990.tb00031.x.
[44]
Jensen A. and Frederiksen R., 1992. The fauna associated with the banck-forming deepwater coral Lophelia pertusa (Scleractiniaria) on the Faroe shelf. Sarsia 77, 53-69. 10.1080/00364827.1992.10413492.
[45]
Kopf A.J., 2002. Significance of mud volcanism. Reviews of Geophysics 40, 1-52. 10.1029/2000RG000093.
[46]
Kulhanek D. K., Levy. R. H, Clowes., C. D., Prebble J.G., Rodelli D., Jovane L., Morgans H. E.G., Kraus C., Zwingmann H., Griffith E. M., Scher H. D., McKay R. M., Naish T. R., 2019. Revised chronostratigraphy of DSDP Site 270 and late Oligocene to early Miocene paleoecology of the Ross Sea sector of Antarctica. Global and Planetary Change 178, 46-64. 10.1016/j.gloplacha.2019.04.002.
[47]
Kyle P. R., Moore j.A., Thirlwall M. F., 1992. Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. Journal of Petroleum 33,849-875. 10.1093/petrology/33.4.849.
[48]
Lawver L. A., Davis M. B., Wilson T. J. and shipboard scientific party, 2007. Neotectonic and other features of the Victoria Land Basin, Antarctica, interpreted from multibeam bathymetry data. In: CooperA.K., RaymondC.R., et al., (Eds.), Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES X, USGS Open-File Report 2007-1047, Extended Abstract 017, 4 p.
[49]
Lawver L., Lee J., Kim Y., Davey F., 2012. Flat-topped mounds in western Ross Sea: carbonate mounds or subglacial volcanic features? Geosphere 8(3), 645-653. 10.1130/GES00766.1.
[50]
LeMasurier W.E., Thomson J.W., Baker P.E., Kyle P.R., Rowley P.D., Smellie J.L., Verwoerd W.J., 1990. Volcanoes of the Antarctic Plate and Southern Ocean. Antarctic Research Series, 48, American Geophysical Union, Washington, D.C., 487 pp. 10.1029/AR048.
[51]
Løseth H., Gading M., Wensaas L., 2009. Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology 26, 1304-1319. 10.1016/j.marpetgeo.2008.09.008.
[52]
Mazzini A., Etiope G., 2017. Mud volcanism: an updated review. Earth-Science Review 168, 81-112. http://dx.doi.org/10.1016/j.earscirev.2017.03.001.
[53]
McIver R. D., 1975. Hydrocarbon gases in canned core samples from Leg 28 sites 271, 272, and 273, Ross Sea. In: HayesD. E., FrakesL. A., et al., (Eds.), Initials reports of the Deep Sea Drilling Project, v. 28 Washington, DC (US Government Printing Office), pp. 815-817. http://dx.doi.org/10.2973/dsdp.proc.28.128.1975.
[54]
McKay R.M., De Santis L.,Kulhanek, and the Expedition 374 Scientists, 2019. Ross Sea West Antarctic Ice Sheet History. Proceedings of the International Ocean Discovery Program, 374:College Station, TX (International Ocean Discovery Program). 10.14379/​iodp.proc.374.2019.
[55]
Mortensen P. B., Hovland M., Brattegard T., Farestveit R., 1995. Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64°N on the Norwegian Shelf: structure and associated megafauna. Sarsia 80(2), 145-158. 10.1080/00364827.1995.10413586.
[56]
Naish T., Powell R., Levy R., 2007. Studies from the ANDRILL McMurdo Ice Shelf Project, Antarctica:Initial science report on AND-1B. Terra Antartica 14(3), 328 pp.
[57]
Naish T., Powell R., Levy R., Wilson G., Scherer R., Talarico F., Krissek L., Niessen F., Pompilio M., Wilson T., Carter L., DeConto R., Huybers P., McKay R., Pollard D., Ross J., Winter D., Barrett P., Browne G., Cody R., Cowan E., Crampton J., Dunbar G., Dunbar N., Florindo F., Gebhardt C., Graham I., Hannah M., Hansaraj D., Harwood D., Helling D., Henrys S., Hinnov L., Kuhn G., Kyle P., Läufer A., Maffioli P., Magens D., Mandernack K., McIntosh W., Millan C., Morin R., Ohneiser C., Paulsen T., Persico D., Raine I., Reed J., Riesselman C., Sagnotti L., Schmitt D., Sjunneskog C., Strong P., Taviani M., Vogel S., Wilch T.& Williams T. 2009. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458, 322-328. 10.1038/nature07867.
[58]
Odonne F., Imbert P., Remy D., Gabalda G., Aliyev A. A., Abbasov O. R., Baloglanov E. E., Bichaud V., Juste R., Dupuis M., Bonvalot S., 2021. Surface structure, activity and microgravimetry modeling delineate contrasted mud chamber types below flat and conical mud volcanoes from Azerbaijan. Marine and Petroleum Geology 134, 1-24. 10.1016/j.marpetgeo.2021.105315.
[59]
Pekar S. F., Speece M. A., Wilson G. S., Sunwall D. S., Tinto K. J., 2013. The Offshore New Harbour Project: Deciphering the Middle Miocene through Late Eocene seismic stratigraphy of Offshore New Harbour, western Ross Sea, Antarctica. Geological Society of London Special Publications 381(1), 199-213. 10.1144/SP381.2.
[60]
Pérez L.F., De Santis L., McKay R.M., Larter R.D., Ash J., Bart P.J., Böhm G., Brancatelli G., Browne I., Colleoni F., Dodd J.P., Geletti R., Harwood D.M., Kuhn G., Sverre Laberg J., Leckie R.M., Levy R.H., Marschalek J., Mateo Z., Naish T.R., Sangiorgi F., Shevenell A.E., Sorlien C.C., Flierdt T. van de,IODP Expedition 374 Scientists, 2021. Early and middle Miocene ice sheet dynamics in the Ross Sea: results from integrated core-log-seismic interpretation. GSA Bull., 134, 3487-370. https://doi.org/10.1130/B35814.1.
[61]
Pérez L.F., McKay R.M., Santis L. De, Larter R.D., Levy R.H., Naish T.R., Anderson J.A., Bart P.J., Busetti M., Dunbar G., Sauli C., Sorlien C. C., Speece M., 2022. Miocene ice sheet dynamics in the westernmost Ross Sea (Antarctica): Regional correlations. Global and Planetary Change 216, 10391. 10.1016/j.gloplacha.2022.103891.
[62]
Prothro L.O., Majewski W., Yokoyama Y., Simkins L.M., Anderson J.B., Yamane M., Miyairi Y., Ohkouchi N., 2020. Timing and pathways of East Antarctic Ice Sheet retreat. Quaternary Science Reviews 230, 106166. 10.1016/j.quascirev.2020.106166.
[63]
Rapp j.B., Kvenvolden K. A., Golan-Bac M., 1987. Hydrocarbon geochemistry of sediments offshore from Antarctica. In: CooperA. K., DaveyF. J., (Eds.), The Antarctic Continental Margin:Geology and Geophysics of the Western Ross Sea. Circum-Pacific Council of Energy and Mineral Resource Earth Science Series, vol. 5B, Huston, Texas, pp. 217-224.
[64]
Remia A., Hart C., Oliverio M. Taviani M. 2003. Bottom carbonate production in Little America Basin, Ross Sea, Antarctica. In:Proceedings of the 4th Meeting on Italian Antarctic Glaciology (4th CONGA), Milan, 25-26 June 2002. Terra Antarctica Reports, 8, 153-157.
[65]
Revil A., 2002. Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophysical Research Letters 29(12), 15-1-15-4. https://doi.org/10.1029/2001GL014465.
[66]
Rilling S., Mukasa S., Wilson T., Lawver L., Hall C., 2009. New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica. Journal of Geophysical Research 114/ B12207. http://dx.doi.org/10.1029/2009JB006303.
[67]
Roberts J.M., Wheeler A.J., Freiwald A., 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312 (5773), 543-547. http://dx.doi.org/10.1126/science.1119861.
[68]
Rogers A. D., 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review Hydrobiology 84(4), 315-406.
[69]
Salvini F., Brancolini G.,, Busetti M., Storti F., Mazzarini F., Coren F., 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance. Journal of Geophysical Research 102(B11), 24,669-24,696. https://doi.org/10.1029/97JB01643.
[70]
Sauli C., Busetti M., De Santis L., Wardell N., 2014. Late Neogene geomorphological and glacial reconstruction of the northern Victoria Land coast, western Ross Sea (Antarctica). Marine Geology 355(1), 297-309. http://dx.doi.org/10.1016/j.margeo.2014.06.008.
[71]
Sorlien C., Luyendyk B., Bartek L., 2010. Multi-Channel Seismic Shot Data from McMurdo Sound, Antarctica acquired during the R/V Nathaniel B. Palmer expedition NBP0301 (2003). Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.1594/IEDA/315814.
[72]
Savage M.L., Ciesielsky P.F. (1983). Revised History of Glacial Sedimentation in the Ross Sea Region. In:Proceedings of the Fourth International Symposium on Antarctic Earth Sciences, University of Adelaide, South Australia, 555-559.
[73]
Ship S., Anderson J., Domack E., 1999. Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: part 1 - geophysical results. Geological Society of America Bulletin 111(10), 1486-1516.
[74]
Sloan E. D., 1990. Clathrate Hydrates of Natural Gases, 1st ed., Marcel Dekker, New York. 641 pp.
[75]
Smellie j.L., Rocchi S., Armienti P., 2011. Late Miocene volcanic sequences in northern Victoria Land, Antarctica: products of glaciovolcanic eruptions under different thermal regimes. Bulletin of Volcanology 73(1), 1-25. 10.1007/s00445-010-0399-y.
[76]
SMS Science Team, 2010. An integrated age model for the ANDRILL-2A drill core. In: K. Kontar, D.M. Harwood, F. Florindo, S. Fischbein (Compilers), ANDRILL Southern McMurdo Sound Project Science Integration Workshop, Erice, Italy, 6-11th April, 2010, ANDRILL Contribution 16,12-13.
[77]
Sorlien C., Luyendyk B., Bartek L., 2010. Multi-Channel Seismic Shot Data from McMurdo Sound, Antarctica acquired during the R/V Nathaniel B. Palmer expedition NBP0301 (2003). Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.1594/IEDA/315814.
[78]
Sorlien C. C., Luyendyk B. P., Decesari R. C., Wilson D. S., Bartek L. R., 2007. Oligocene development of the West Antarctic Ice Sheet recorded in eastern Ross Sea strata. The Geological Society of America 35(5), 467-470. 10.1130/G23387A.1.
[79]
Taner M. T., Koehler F., Sheriff R. E., 1979. Complex seismic trace analysis. Geophysics 44, 1041-1063. 10.1190/1.1440994.
[80]
ten Brink U.S., Schneider C., Johnson A.H., 1995. Morphology and stratal geometry of the Antarctic continental shelf:Insights from models. In: CooperA. K., BarkerP.F., BrancoliniG. (Eds.), Geology and seismic stratigraphy of the Antarctic margin. In: Antarctic Research Series AGU, 68. AGU, Washington, D.C, pp. 1 - 24, https://doi.org/10.1029/AR068p0001.10.1029/AR068.
[81]
Wangen M., 2022. Models of overpressure build‐up in shallow sediments by glacial deposition and glacial loading with respect to chimney formation. Modeling Earth Systems and Environment 8, 1227-1242. 10.1007/s40808-020-01064-6.
[82]
Weigelt E., Uenzelmann-Neben G., Gohl K., Larter R. D., 2012. Did massive glacial dewatering modify sedimentary structures on the Amundsen Sea Embayment shelf, West Antarctica? Global and Planetary Change 92-93, 8-16. 10.1016/j.gloplacha.2012.04.006.
PDF(15173 KB)

Accesses

Citations

Detail

Sections
Recommended

/