Extreme exposure of fluoride and arsenic contamination in shallow coastal aquifers of the Ganges delta, transboundary of the Indo-Bangladesh region

Dipankar Ruidas, Subodh Chandra Pal, Tanmoy Biswas, Asish Saha, Abu Reza Md. Towfiqul Islam

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101725.

PDF(5402 KB)
Geoscience Frontiers All Journals
PDF(5402 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101725. DOI: 10.1016/j.gsf.2023.101725
Research Paper

Extreme exposure of fluoride and arsenic contamination in shallow coastal aquifers of the Ganges delta, transboundary of the Indo-Bangladesh region

Author information +
History +

Abstract

Globally, shallow aquifer groundwater (GW) has been severely affected in recent decades for both geogenic and anthropogenic reasons. The hydro-geochemical characteristics of the GW change inconsistently with the addition of unwanted inorganic trace elements into the GW aquifer of the Indo-Bangladesh delta region (IBDR), such as arsenic (As) along with fluoride (F-) contamination. Contaminated GW can have a negative impact on drinking water supplies and agricultural output. GW pollution can have serious adverse effects on the environment and human health. Thus, the GW quality of this region is deteriorating progressively, and human health threatening by various life-threatening disorders. Hence, the current study concentrated on the GW quality evaluation and prediction of possible health issues in the IBDR due to elevated contamination of As along with F- within GW aquifers by considering sixteen causative. Field survey-based statistical methods such as entropy quality index (EWQI) combined with health risk index (HRI) was implemented for evaluating the As and F- sensitivity with the help of correlation testing and principal component analysis. The study's outcome explains that a substantial portion of the IBDR has been vastly experiencing inferior GW quality, environmental issues, and health-related problems in dry and wet seasons, correspondingly for As and F- exposure. Piper diagram verified the suitability of water that almost 55% of GW across the study area’s aquifers are unfit for drinking as well as cultivation of crops. Sensitivity analysis and the Monte Carlo simulation method were also applied to assess the contaminant's concentration level and probable health risk appraisal. The present study concludes that the elevated exposure of As and F- pollution has to be monitored regularly and prevent unwanted GW contamination through implementing sustainable approaches and policies to fulfil the sustainable development goal 6 (SDG-6) till 2030, ensuring the most basic human right of clean, safe, and hygienic water.

Keywords

Indo-Bangladesh delta / Entropy quality index / Health risk index / Monte Carlo simulation / SDG-6

Cite this article

Download citation ▾
Dipankar Ruidas, Subodh Chandra Pal, Tanmoy Biswas, Asish Saha, Abu Reza Md. Towfiqul Islam. Extreme exposure of fluoride and arsenic contamination in shallow coastal aquifers of the Ganges delta, transboundary of the Indo-Bangladesh region. Geoscience Frontiers, 2024, 15(1): 101725 https://doi.org/10.1016/j.gsf.2023.101725

References

[1]
Abiriga D., Vestgarden L.S., Klempe H., 2020. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ. 737, 140307, https://doi.org/10.1016/j.scitotenv.2020.140307.
[2]
Abtahi M., Dobaradaran S., Koolivand A., Jorfi S., Saeedi R., 2023. Assessment of cause-specific mortality and disability-adjusted life years (DALYs) induced by exposure to inorganic arsenic through drinking water and foodstuffs in Iran. Sci. Total Environ. 856, 159118, https://doi.org/10.1016/j.scitotenv.2022.159118.
[3]
Acharyya S.K., Shah B.A., 2007. Groundwater arsenic contamination affecting different geologic domains in India—a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy. j.Environ. Sci. Health, Part A 42, 1795-1805, https://doi.org/10.1080/10934520701566744.
[4]
Adimalla N., 2021. Application of the Entropy Weighted Water Quality Index (EWQI) and the Pollution Index of Groundwater (PIG) to assess groundwater quality for drinking purposes: A case study in a rural area of Telangana State, India. Arch Environ Contam Toxicol 80, 31-40, https://doi.org/10.1007/s00244-020-00800-4.
[5]
Adimalla N., Manne R., Zhang Y., Xu P., Qian H., 2022. Evaluation of groundwater quality and its suitability for drinking purposes in semi-arid region of Southern India: an application of GIS. Geocarto Int. 1-12, https://doi.org/10.1080/10106049.2022.2040603.
[6]
Ahmad W., Iqbal J., Nasir M.J., Ahmad B., Khan M.T., Khan S.N., Adnan S., 2021. Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci. Rep. 11, 16526, https://doi.org/10.1038/s41598-021-96075-3.
[7]
Ahmad S.A., Khan M.H., 2015. Ground water arsenic contamination and its health effects in Bangladesh. In: FloraS.J.S. (Ed.), Handbook of Arsenic Toxicology. Elsevier, pp. 51-72.
[8]
Ahmed N., Bodrud-Doza M., Islam A.R.M.T., Hossain S., Moniruzzaman M., Deb N., Bhuiyan M.A.Q., 2019. Appraising spatial variations of As, Fe, Mn and NO3 contaminations associated health risks of drinking water from Surma basin, Bangladesh. Chemosphere 218, 726-740.
[9]
Akhter T., Naz M., Salehin M., Arif S.T., Hoque S.F., Hope R., Rahman M.R., 2023. Hydrogeologic constraints for drinking water security in Southwest Coastal Bangladesh: Implications for sustainable development goal 6.1. Water 15, 2333, https://doi.org/10.3390/w15132333.
[10]
Appleyard S.J., Angeloni J., Watkins R., 2006. Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl. Geochem. 21, 83-97.
[11]
Badeenezhad A., Radfard M., Passalari H., Parseh I., Abbasi F., Rostami S., 2021. Factors affecting the nitrate concentration and its health risk assessment in drinking groundwater by application of Monte Carlo simulation and geographic information system. Hum. Ecol. Risk Assess. 27, 1458-1471, https://doi.org/10.1080/10807039.2019.1655634.
[12]
Biswas S., Sahoo S., Debsarkar A., 2022. Social Vulnerability of Arsenic Contaminated Groundwater in the Context of Ganga-Brahmaputra-Meghna Basin: A Critical Review. In: Shit, P.K., Pourghasemi, H.R., Bhunia, G.S., Das, P., Narsimha, A. (Eds.), Geospatial Technology for Environmental Hazards: Modeling and Management in Asian Countries. Advances in Geographic Information Science. Springer International Publishing, Cham, pp. 39-61, https://doi.org/10.1007/978-3-030-75197-5_3.
[13]
Biswas T., Pal S.C., Chowdhuri I., Ruidas D., Saha A., Islam A.R.Md.T., Shit M., 2023a. Effects of elevated arsenic and nitrate concentrations on groundwater resources in deltaic region of Sundarban Ramsar site, Indo-Bangladesh region. Mar. Pollut. Bull. 188, 114618, https://doi.org/10.1016/j.marpolbul.2023.114618.
[14]
Biswas T., Pal S.C., Saha A., Ruidas D., Islam A.R.Md.T., Shit M., 2023b. Hydro-chemical assessment of groundwater pollutant and corresponding health risk in the Ganges delta, Indo-Bangladesh region. j.Clean. Prod. 382, 135229, https://doi.org/10.1016/j.jclepro.2022.135229.
[15]
Bodrud-Doza M., Islam S.M.D.-U., Hasan Md.T., Alam F., Haque Md.M., Rakib M.A., Asad Md.A., Rahman Md.A., 2019. Groundwater pollution by trace metals and human health risk assessment in central west part of Bangladesh. Groundw. Sustain. Dev. 9, 100219, https://doi.org/10.1016/j.gsd.2019.100219.
[16]
Bodrud-Doza Md., Islam S.M.D.-U., Rume T., Quraishi S.B., Rahman M.S., Bhuiyan M.A.H., 2020. Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. Groundw. Sustain. Dev. 10, 100374, https://doi.org/10.1016/j.gsd.2020.100374.
[17]
Calliera M., Capri E., 2022. Multi-actor approaches and engagement strategies to promote the adoption of best groundwater management practices. Curr. Opin. Environ Sci. Health 27, 100351, https://doi.org/10.1016/j.coesh.2022.100351.
[18]
Chakraborty M., Sarkar S., Mukherjee A., Shamsudduha M., Ahmed K.M., Bhattacharya A., Mitra A., 2020. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci. Total Environ. 748, 141107, https://doi.org/10.1016/j.scitotenv.2020.141107.
[19]
Chakraborty M., Mukherjee A., Ahmed K.M., 2022. Regional-scale hydrogeochemical evolution across the arsenic-enriched transboundary aquifers of the Ganges River Delta system, India and Bangladesh. Sci. Total Environ. 823, 153490, https://doi.org/10.1016/j.scitotenv.2022.153490.
[20]
Chatterjee S., 2022. Spatial Pattern of Arsenic Contamination in Floodplain Aquifers, Western Bank of Bhagirathi River, Lower Ganges Delta, West Bengal, India. In: JanaN.C., SinghR.B. (Eds.), Climate, Environment and Disaster in Developing Countries. Advances in Geographical and Environmental Sciences. Springer Nature, Singapore, pp. 245-272, https://doi.org/10.1007/978-981-16-6966-8_13.
[21]
Chen G., Wang X., Wang R., Liu G., 2019. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 171, 737-745.
[22]
Chucuya S., Vera A., Pino-Vargas E., Steenken A., Mahlknecht J., Montalván I., 2022. Hydrogeochemical characterization and identification of factors influencing groundwater quality in coastal aquifers, Case: La Yarada, Tacna, Peru. Int. j.Environ. Res. Public Health 19, 2815, https://doi.org/ 10.3390/ijerph19052815.
[23]
Das K., Mukherjee A., Malakar P., Das P., Dey U., 2021. Impact of global-scale hydroclimatic patterns on surface water-groundwater interactions in the climatically vulnerable Ganges river delta of the Sundarbans. Sci. Total Environ. 798, 149198.
[24]
De A., Mridha D., Joardar M., Das A., Chowdhury N.R., Roychowdhury T., 2022. Distribution, prevalence and health risk assessment of fluoride and arsenic in groundwater from lower Gangetic plain in West Bengal, India. Groundw. Sustain. Dev. 16, 100722, https://doi.org/10.1016/j.gsd.2021.100722.
[25]
Dhaoui O., Agoubi B., Antunes I.M., Tlig L., Kharroubi A., 2023. Groundwater quality for irrigation in an arid region—application of fuzzy logic techniques. Environ. Sci. Pollut. Res. 30, 29773-29789, https://doi.org/10.1007/s11356-022-24334-5.
[26]
Dube T., Shoko C., Sibanda M., Baloyi M.M., Molekoa M., Nkuna D., Rafapa B., Rampheri B.M., 2020. Spatial modelling of groundwater quality across a land use and land covergradient in Limpopo Province, South Africa. Phys. Chem. Earth, Parts A/B/C 115, 102820, https://doi.org/10.1016/j.pce.2019.102820.
[27]
Dueñas-Moreno J., Mora A., Cervantes-Avilés P., Mahlknecht J., 2022. Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate - A review. Environ. Int. 170, 107550, https://doi.org/10.1016/j.envint.2022.107550.
[28]
Egbueri J.C., 2020. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study. Groundw. Sustain. Dev. 10, 100292, https://doi.org/10.1016/j.gsd.2019.100292.
[29]
Elumalai V., Nethononda V.G., Manivannan V., Rajmohan N., Li P., Elango L., 2020. Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu catchment, Limpopo, South Africa. j.African Earth Sci. 171, 103967, https://doi.org/10.1016/j.jafrearsci.2020.103967.
[30]
Emenike C.P., Tenebe I.T., Jarvis P., 2018. Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. Ecotoxicol. Environ. Saf. 156, 391-402.
[31]
Everard M., Kangabam R., Tiwari M.K., McInnes R., Kumar R., Talukdar G.H., Dixon H., Joshi P., Allan R., Joshi D., 2019. Ecosystem service assessment of selected wetlands of Kolkata and the Indian Gangetic Delta: multi-beneficial systems under differentiated management stress. Wetl. Ecol. Manag. 27, 405-426.
[32]
Ganguli S., Rifat M., Das D., Islam S., Islam M.N., 2021. Groundwater pollution in Bangladesh: A review. Grassroots J. Natural Resources 4, 115-145.
[33]
Goswami R., Kumar M., Biyani N., Shea P.J., 2020. Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (river island), Assam, India. Environ. Geochem. Health 42, 443-460.
[34]
Hasan M.S.U., Rai A.K., 2020. Groundwater quality assessment in the Lower Ganga Basin using entropy information theory and GIS. j.Clean. Prod. 274, 123077, https://doi.org/10.1016/j.jclepro.2020.123077.
[35]
He S., Wu J., 2019. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, Northwest China. Expo. Health 11, 125-137, https://doi.org/10.1007/s12403-018-0289-7.
[36]
Hermans L.M., Narain V., Kempers R., Gomes S.L., Banerjee P., Hasan R., Salehin M., Khan S.A., Hossain A.T.M., Islam K.F., 2022. Power and empowerment in transdisciplinary research: a negotiated approach for peri-urban groundwater problems in the Ganges Delta. Hydrol. Earth Syst. Sci. 26, 2201-2219.
[37]
Huq Md.E., Fahad S., Shao Z., Sarven M.S., Khan I.A., Alam M., Saeed M., Ullah H., Adnan M., Saud S., Cheng Q., Ali S., Wahid F., Zamin M., Raza M.A., Saeed B., Riaz M., Khan W.U., 2020. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. j.Environ. Manage. 262, 110318, https://doi.org/10.1016/j.jenvman.2020.110318.
[38]
Islam A.R.Md.T., Al Mamun A., Rahman Md.M., Zahid A., 2020. Simultaneous comparison of modified-integrated water quality and entropy weighted indices: Implication for safe drinking water in the coastal region of Bangladesh. Ecol. Indic. 113, 106229, https://doi.org/10.1016/j.ecolind.2020.106229.
[39]
Islam A.R.M.T., Islam H.M.T., Mia M.U., Khan R., Habib M.A., Bodrud-Doza M., Siddique M.A.B., Chu R., 2020. Co-distribution, possible origins, status and potential health risk of trace elements in surface water sources from six major river basins, Bangladesh. Chemosphere 249, 126180, https://doi.org/10.1016/j.chemosphere.2020.126180.
[40]
Islam A.R.Md.T., Kabir M.M., Faruk S., Al Jahin J., Bodrud-Doza Md., Didar-ul-Alam Md., Bahadur N.M., Mohinuzzaman M., Fatema K.J., Safiur Rahman M., Choudhury T.R., 2021. Sustainable groundwater quality in southeast coastal Bangladesh: co-dispersions, sources, and probabilistic health risk assessment. Environ. Dev. Sustain. 23, 18394-18423, https://doi.org/10.1007/s10668-021-01447-4.
[41]
Islam A.R.Md.T., Pal S.C., Chakrabortty R., Idris A.M., Salam R., Islam M.S., Zahid A., Shahid S., Ismail Z.B., 2022. A coupled novel framework for assessing vulnerability of water resources using hydrochemical analysis and data-driven models. j.Clean. Prod. 336, 130407, https://doi.org/10.1016/j.jclepro.2022.130407.
[42]
Ivy N., Mukherjee T., Bhattacharya S., Ghosh A., Sharma P., 2023. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. Environ. Geochem. Health 45, 1261-1287, https://doi.org/10.1007/s10653-022-01330-9.
[43]
Jabbo J.N., Isa N.M., Aris A.Z., Ramli M.F., Abubakar M.B., 2022. Geochemometric approach to groundwater quality and health risk assessment of heavy metals of Yankari Game Reserve and its environs, Northeast Nigeria. j.Clean. Prod. 330, 129916, https://doi.org/10.1016/j.jclepro.2021.129916.
[44]
Janardhana Raju N., 2012. Arsenic exposure through groundwater in the middle Ganga plain in the Varanasi environs, India: A future threat. j.Geol. Soc. India 79, 302-314, https://doi.org/10.1007/s12594-012-0044-9.
[45]
Jannat J.N., Khan M.S.I., Islam H.M.T., Islam M.S., Khan R., Siddique M.A.B., Varol M., Tokatli C., Pal S.C., Islam A., Idris A.M., Malafaia G., Islam A.R.M.T., 2022. Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. j.Clean. Prod. 372, 133675, https://doi.org/10.1016/j.jclepro.2022.133675.
[46]
Jaydhar A.K., Chandra Pal S., Saha A., Islam A.R.Md.T., Ruidas D., 2022. Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India. j.Clean. Prod. 369, 133150, https://doi.org/10.1016/j.jclepro.2022.133150.
[47]
Karunanidhi D., Subramani T., Srinivasamoorthy K., Yang Q., 2022. Environmental chemistry, toxicity and health risk assessment of groundwater: Environmental persistence and management strategies. Environ. Res. 214, 113884, https://doi.org/10.1016/j.envres.2022.113884.
[48]
Keesari T., Sinha U.K., Saha D., Dwivedi S.N., Shukla R.R., Mohokar H., Roy A., 2021. Isotope and hydrochemical systematics of groundwater from a multi-tiered aquifer in the central parts of Indo-Gangetic Plains, India - Implications for groundwater sustainability and security. Sci. Total Environ. 789, 147860, https://doi.org/10.1016/j.scitotenv.2021.147860.
[49]
Khan M.A., Khan N., Ahmad A., Kumar R., Singh A., Chaurasia D., Neogi S., Kumar V., Bhargava P.C., 2023. Potential health risk assessment, spatio-temporal hydrochemistry and groundwater quality of Yamuna river basin, Northern India. Chemosphere 311, 136880, https://doi.org/10.1016/j.chemosphere.2022.136880.
[50]
Khan A., Michelsen N., Marandi A., Hossain R., Hossain M.A., Roehl K.E., Zahid A., Hassan M.Q., Schüth C., 2020. Processes controlling the extent of groundwater pollution with chromium from tanneries in the Hazaribagh area, Dhaka, Bangladesh. Sci. Total Environ. 710, 136213, https://doi.org/10.1016/j.scitotenv.2019.136213.
[51]
Kudrass H.R., Machalett B., Palamenghi L., Meyer I., Zhang W., 2018. Sediment transport by tropical cyclones recorded in a submarine canyon off Bangladesh. Geo-Mar. Lett. 38, 481-496, https://doi.org/10.1007/s00367-018-0550-x.
[52]
Kumar P.J.S., Augustine C.M., 2022. Entropy-weighted water quality index (EWQI) modeling of groundwater quality and spatial mapping in Uppar Odai Sub-Basin, South India. Model. Earth Syst. Environ. 8, 911-924, https://doi.org/10.1007/s40808-021-01132-5.
[53]
Kumar A., Bhattacharya T., Shaikh W.A., Roy A., Mukherjee S., Kumar M., 2021. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environ. Res. 200, 111758, https://doi.org/10.1016/j.envres.2021.111758.
[54]
Kumar M., Goswami R., Patel A.K., Srivastava M., Das N., 2020. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere 249, 126126, https://doi.org/10.1016/j.chemosphere.2020.126126.
[55]
Li Y., Bi Y., Mi W., Xie S., Ji L., 2021. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. j.Hazard. Mater. 406, 124337, https://doi.org/10.1016/j.jhazmat.2020.124337.
[56]
Li P., Wu J., 2019. Sustainable living with risks: meeting the challenges. Human and Ecological Risk Assessment: Int. j. 25, 1-10.
[57]
MacDonald A.M., Bonsor H.C., Taylor R., Shamsudduha M., Burgess W.G., Ahmed K.M., Mukherjee A., Zahid A., Lapworth D., Krishan G., Rao M.S., Moench M., 2015. Groundwater resources in the Indo‐Gangetic Basin:Resilience to climate change and abstraction (Technical Report). British Geological Survey.
[58]
Mainuddin M., Karim F., Gaydon D.S., Kirby J.M., 2021. Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Sci. Rep. 11, 7041, https://doi.org/10.1038/s41598-021-86206-1.
[59]
Mallongi A., Rauf A.U., Daud A., Hatta M., Al-Madhoun W., Amiruddin R., Stang S., Wahyu A., Astuti R.D.P., 2022a. Health risk assessment of potentially toxic elements in Maros karst groundwater: a Monte Carlo simulation approach. Geomat. Nat. Hazards Risk 13, 338-363, https://doi.org/10.1080/19475705.2022.2027528.
[60]
Malyan S.K., Singh R., Rawat M., Kumar M., Pugazhendhi A., Kumar A., Kumar V., Kumar S.S., 2019. An overview of carcinogenic pollutants in groundwater of India. Biocatal. Agric. Biotechnol. 21, 101288, https://doi.org/10.1016/j.bcab.2019.101288.
[61]
Mandal J., Golui D., Raj A., Ganguly P., 2019. Risk assessment of arsenic in wheat and maize grown in organic matter amended soils of Indo-Gangetic plain of Bihar, India. Soil and Sediment Contamination: Int. j. 28, 757-772.
[62]
Masood N., Hudson-Edwards K.A., Farooqi A., 2022. Groundwater nitrate and fluoride profiles, sources and health risk assessment in the coal mining areas of Salt Range, Punjab Pakistan. Environ. Geochem. Health 44, 715-728, https://doi.org/10.1007/s10653-021-00987-y.
[63]
Maurya S., Saxena A., 2022. Spatiotemporal assessment of groundwater quality in the Central Ganga Plain, India, using multivariate statistical tools. Environ. Monit. Assess. 194, 865, https://doi.org/10.1007/s10661-022-10442-9.
[64]
Monteiro De Oliveira E.C., Caixeta E.S., Santos V.S.V., Pereira B.B., 2021. Arsenic exposure from groundwater: environmental contamination, human health effects, and sustainable solutions. j.Toxicol. Environ., Part B 24, 119-135, https://doi.org/10.1080/10937404.2021.1898504.
[65]
Mthembu P.P., Elumalai V., Senthilkumar M., Wu J., 2021. Investigation of geochemical characterization and groundwater quality with special emphasis on health risk assessment in alluvial aquifers, South Africa. Int. j.Environ. Sci. Technol. 18, 3711-3730, https://doi.org/10.1007/s13762-021-03129-0.
[66]
Mukherjee A., Fryar A.E., Eastridge E.M., Nally R.S., Chakraborty M., Scanlon B.R., 2018. Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Sci. Total Environ. 645, 1371-1387.
[67]
Mukherjee S., Thakur A.K., Goswami R., Mazumder P., Taki K., Vithanage M., Kumar M., 2021. Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain. j.Environ. Manage. 281, 111814, https://doi.org/10.1016/j.jenvman.2020.111814.
[68]
Murshed S.B., Kaluarachchi J.J., 2018. Scarcity of fresh water resources in the Ganges Delta of Bangladesh. Water Secur. 4, 8-18.
[69]
Narsimha A., Rajitha S., 2018. Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum. Ecol. Risk Assess. 24, 2119-2132.
[70]
Orosun M.M., Adewuyi A.D., Salawu N.B., Isinkaye M.O., Orosun O.R., Oniku A.S., 2020. Monte Carlo approach to risks assessment of heavy metals at automobile spare part and recycling market in Ilorin, Nigeria. Sci. Rep. 10, 22084.
[71]
Pal S., Paul S., 2020. Assessing wetland habitat vulnerability in moribund Ganges delta using bivariate models and machine learning algorithms. Ecol. Indic. 119, 106866, https://doi.org/10.1016/j.ecolind.2020.106866.
[72]
Pal S.C., Ruidas D., Saha A., Islam A.R.Md.T., Chowdhuri I., 2022. Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. j.Clean. Prod. 346, 131205, https://doi.org/10.1016/j.jclepro.2022.131205.
[73]
Parrone D., Ghergo S., Frollini E., Rossi D., Preziosi E., 2020. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy. j.Geochem. Explor. 217, 106590, https://doi.org/10.1016/j.gexplo.2020.106590.
[74]
Parvin F., Tareq S.M., 2021. Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment. Appl. Water Sci. 11, 1-17.
[75]
Patel B., Gundaliya R., Desai B., Shah M., Shingala J., Kaul D., Kandya A., 2023. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. Environ. Geochem. Health 45, 1331-1358, https://doi.org/10.1007/s10653-022-01334-5.
[76]
Peiyue L.I., Jianhua W.U., Hui Q., 2010. Groundwater quality assessment based on entropy weighted osculating value method. Int. j.Environ. Sci. 1, 621-630.
[77]
Piper A.M., 1944. A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union 25, 914-928.
[78]
Podgorski J., Berg M., 2022. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 1-9, https://doi.org/10.1038/s41467-022-31940-x.
[79]
Raha U.K., Kumar B.R., Sarkar S.K., 2021. Policy framework for mitigating land-based marine plastic pollution in the Gangetic Delta Region of Bay of Bengal- A review. j.Clean. Prod. 278, 123409, https://doi.org/10.1016/j.jclepro.2020.123409.
[80]
Rahman M.M., Bodrud-Doza M., Siddiqua M.T., Zahid A., Islam A.R.M.T., 2020. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh. Sci. Total Environ. 724, 138316, https://doi.org/10.1016/j.scitotenv.2020.138316.
[81]
Rao N.S., Vidyasagar G., Surya Rao P., Bhanumurthy P., 2017. Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India. Appl. Water Sci. 7, 285-294, https://doi.org/10.1007/s13201-014-0244-0.
[82]
Rashid A., Farooqi A., Gao X., Zahir S., Noor S., Khattak J.A., 2020. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 243, 125409, https://doi.org/10.1016/j.chemosphere.2019.125409.
[83]
Ravindra K., Mor S., 2019. Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environ. Pollut. 250, 820-830.
[84]
Rezaei H., Zarei A., Kamarehie B., Jafari A., Fakhri Y., Bidarpoor F., Karami M.A., Farhang M., Ghaderpoori M., Sadeghi H., 2019. Levels, distributions and health risk assessment of lead, cadmium and arsenic found in drinking groundwater of Dehgolan’s villages, Iran. Toxicol. Environ. Health Sci. 11, 54-62.
[85]
Ruidas D., Pal S.C., Islam A.R.Md.T., Saha A., 2021. Characterization of groundwater potential zones in water-scarce hardrock regions using data driven model. Environ. Earth Sci. 80, 809, https://doi.org/10.1007/s12665-021-10116-8.
[86]
Ruidas D., Chakrabortty R., Islam A.R.Md.T., Saha A., Pal S.C., 2022a. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ. Earth Sci. 81, 145, https://doi.org/10.1007/s12665-022-10269-0.
[87]
Ruidas D., Pal S.C., Islam T., Md A.R., Saha A., 2022b. Hydrogeochemical evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a water scares plateau region of Eastern India. Expos. Health 1-19.
[88]
Ruidas D., Pal S.C., Saha A., Chowdhuri I., Shit M., 2022c. Hydrogeochemical characterization based water resources vulnerability assessment in India’s first Ramsar site of Chilka lake. Mar. Pollut. Bull. 184, 114107, https://doi.org/10.1016/j.marpolbul.2022.114107.
[89]
Saha N., Bodrud-Doza Md., Islam A.R.M.T., Begum B.A., Rahman M.S., 2020. Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater. Environ. Earth Sci. 79, 477, https://doi.org/10.1007/s12665-020-09228-4.
[90]
Saha A., Pal S.C., Chowdhuri I., Roy P., Chakrabortty R., 2022. Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms. Environ. Pollut. 314, 120203, https://doi.org/10.1016/j.envpol.2022.120203.
[91]
Saha N., Rahman M.S., 2020. Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicol. Environ. Saf. 206, 111349, https://doi.org/10.1016/j.ecoenv.2020.111349.
[92]
Sajedi-Hosseini F., Malekian A., Choubin B., Rahmati O., Cipullo S., Coulon F., Pradhan B., 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 644, 954-962, https://doi.org/10.1016/j.scitotenv.2018.07.054.
[93]
Sawut R., Kasim N., Maihemuti B., Hu L., Abliz A., Abdujappar A., Kurban M., 2018. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Sci. Total Environ. 642, 864-878.
[94]
Seo S.N., 2021. A Refuge from Oceans and Hurricanes:A Story of Cyclone Shelters in Bangladesh Abutting the Bay of Bengal. In: SeoS.N. (Ed.), Climate Change and Economics:Engaging with Future Generations with Action Plans. Springer International Publishing, Cham, pp. 79-94, https://doi.org/10.1007/978-3-030-66680-4_5.
[95]
Shahid M., Niazi N.K., Dumat C., Naidu R., Khalid S., Rahman M.M., Bibi I., 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 242, 307-319, https://doi.org/10.1016/j.envpol.2018.06.083.
[96]
Shalyari N., Alinejad A., Hashemi A.H.G., RadFard M., Dehghani M., 2019. Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX 6, 1812-1821.
[97]
Shannon C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[98]
Sharma B.M., Bečanová J., Scheringer M., Sharma A., Bharat G.K., Whitehead P.G., Klánová J., Nizzetto L., 2019. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 646, 1459-1467.
[99]
Shi J., Dong Y., Shi Y., Yin T., He W., An T., Tang Y., Hou X., Chong S., Chen D., Qin K., Lin H., 2022. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation. Environ. Res. 210, 112855, https://doi.org/10.1016/j.envres.2022.112855.
[100]
Shukla S., Saxena A., 2020. Groundwater quality and associated human health risk assessment in parts of Raebareli district, Uttar Pradesh, India. Groundw. Sustain. Dev. 10, 100366, https://doi.org/10.1016/j.gsd.2020.100366.
[101]
Singh C.K., Shashtri S., Mukherjee S., Kumari R., Avatar R., Singh A., Singh R.P., 2011. Application of GWQI to assess effect of land use change on groundwater quality in Lower Shiwaliks of Punjab: Remote sensing and GIS based approach. Water Resour. Manag. 25, 1881-1898, https://doi.org/10.1007/s11269-011-9779-0.
[102]
Soleimani H., Nasri O., Ghoochani M., Azhdarpoor A., Dehghani M., Radfard M., Darvishmotevalli M., Oskoei V., Heydari M., 2022. Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int. j.Environ. Anal. Chem. 102, 2213-2231, https://doi.org/10.1080/03067319.2020.1751147.
[103]
Subba Rao N., Sunitha B., Adimalla N., Chaudhary M., 2020a. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environ. Geochem. Health 42, 579-599, https://doi.org/10.1007/s10653-019-00393-5.
[104]
Thakur B.K., Gupta V., Bhattacharya P., Jakariya M., Tahmidul Islam M., 2021. Arsenic in drinking water sources in the Middle Gangetic Plains in Bihar: An assessment of the depth of wells to ensure safe water supply. Groundw. Sustain. Dev. 12, 100504, https://doi.org/10.1016/j.gsd.2020.100504.
[105]
Tong S., Li H., Tudi M., Yuan X., Yang L., 2021. Comparison of characteristics, water quality and health risk assessment of trace elements in surface water and groundwater in China. Ecotoxicol. Environ. Saf. 219, 112283, https://doi.org/10.1016/j.ecoenv.2021.112283.
[106]
Tong R.-P., Yang X.-Y., 2017. Environmental health risk assessment of contaminated soil based on Monte Carlo Method: a case of PAHs. Huan Jing Ke Xue 38, 2522-2529 (in Chinese with English abstract).
[107]
Triest L., Hasan S., Mitro P.R., De Ryck D.J.R., Van der Stocken T., 2018. Geographical distance and large rivers shape genetic structure of Avicennia officinalis in the highly dynamic Sundarbans mangrove forest and Ganges delta region. Estuaries Coast 41, 908-920, https://doi.org/10.1007/s12237-017-0309-z.
[108]
Ukah B.U., Ameh P.D., Egbueri J.C., Unigwe C.O., Ubido O.E., 2020. Impact of effluent-derived heavy metals on the groundwater quality in Ajao industrial area, Nigeria: an assessment using entropy water quality index (EWQI). Int. j.Energ. Water Res. 4, 231-244, https://doi.org/10.1007/s42108-020-00058-5.
[109]
Verma S., Mukherjee A., Mahanta C., Choudhury R., Badoni R.P., Joshi G., 2019. Arsenic fate in the Brahmaputra river basin aquifers: Controls of geogenic processes, provenance and water-rock interactions. Appl. Geochemistry 107, 171-186, https://doi.org/10.1016/j.apgeochem.2019.06.004.
[110]
Wagh V.M., Panaskar D.B., Mukate S.V., Aamalawar M.L., Laxman Sahu U., 2020. Nitrate associated health risks from groundwater of Kadava river basin Nashik, Maharashtra, India. Hum. Ecol. Risk Assess. 26, 654-672.
[111]
Wang Y., Li P., 2022. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ. Res. 207, 112210, https://doi.org/10.1016/j.envres.2021.112210.
[112]
Wei M., Wu J., Li W., Zhang Q., Su F., Wang Y., 2022. Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Expos. Health 14, 219-238.
[113]
Wu J., Li P., Qian H., Duan Z., Zhang X., 2014. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7, 3973-3982, https://doi.org/10.1007/s12517-013-1057-4.
[114]
Xia C.-A., Pasetto D., Hu B.X., Putti M., Guadagnini A., 2020. Integration of moment equations in a reduced-order modeling strategy for Monte Carlo simulations of groundwater flow. j.Hydrol. 590, 125257, https://doi.org/10.1016/j.jhydrol.2020.125257.
[115]
Zhang Q., Li P., Lyu Q., Ren X., He S., 2022. Groundwater contamination risk assessment using a modified DRATICL model and pollution loading: A case study in the Guanzhong Basin of China. Chemosphere 291, 132695, https://doi.org/10.1016/j.chemosphere.2021.132695.
[116]
Zhang L., Yang Q., Wang H., Gu Q., Zhang Y., 2022. Genetic interpretation and health risk assessment of arsenic in Hetao Plain of inner Mongolia, China. Environ. Res. 208, 112680, https://doi.org/10.1016/j.envres.2022.112680.
[117]
Zhong C., Yang Q., Liang J., Ma H., 2022. Fuzzy comprehensive evaluation with AHP and entropy methods and health risk assessment of groundwater in Yinchuan Basin, northwest China. Environ. Res. 204, 111956, https://doi.org/10.1016/j.envres.2021.111956.
PDF(5402 KB)

Accesses

Citations

Detail

Sections
Recommended

/