Vanadium mineralization at Los Chihuidos sediment-hosted Cu-V deposit, Neuquén Basin, Argentina: An approach to vanadium ore forming processes

Ana L. Rainoldi, Daniel Beaufort, Marta B. Franchini, Adolfo Giusiano, Sabine Petit, Patricia Patrier, M. Josefina Pons

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101724.

PDF(8103 KB)
Geoscience Frontiers All Journals
PDF(8103 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101724. DOI: 10.1016/j.gsf.2023.101724
Research Paper

Vanadium mineralization at Los Chihuidos sediment-hosted Cu-V deposit, Neuquén Basin, Argentina: An approach to vanadium ore forming processes

Author information +
History +

Abstract

Vanadium mineralization at Los Chihuidos deposit of the Neuquén Basin is linked to the development of a redox front system related to the inflow of hydrocarbons into the red sandstone of the Huincul Formation. Interaction of hydrocarbons with oxidized red beds and connate water generated redox reactions where hematite was dissolved due to iron reduction resulting in the discoloration of the red strata. At the contact between oxidized red sandstone and reduced white sandstone, precipitation of specific mineral phases resulted in the V ore with minor amounts of Cu. With the implementation of the redox interface, abundant V-montmorillonite and V-hematite precipitated at the more oxidizing conditions and Cu-V-corrensite-type at the more reducing conditions of the redox front. As the redox front advanced with fluids constantly migrating into the reservoir, more reducing conditions were stablished, promoting chloritization and minor illitization with V-Cu incorporation and continuous upgrading of the ore. Main ore mineralogy consists of clay minerals including V-bearing montmorillonite, Cu-V-corrensite-type, V-di-trioctahedral chlorite and Cu-tri-trioctahedral chlorite with minor V-illite-smectite mixed-layer minerals and associated secondary V-hematite. Chloritization over illitization was favored due to high amounts of Fe and Mg in detrital clasts and in connate fluids and by low K availability related to low amounts of detrital K-feldspar. The spatial transition of V and /or Cu bearing clay minerals observed through the mineralized redox front at Los Chihuidos deposit (kaolinite → smectite → illite/smectite → corrensite-type → di- trioctahedral -chlorite → tri- trioctahedral -chlorite) and the related variation of V-Cu concentrations in bulk rock are indicative of increasing pH and decreasing Eh of resident solutions from red to white sandstones during the hypogene mineralization process. Late influx of Cu-rich oxidized basinal brines precipitated main copper ore with Cu-sulfides in the white sandstone up to the contact with the redox front in contact with hydrocarbons. During uplift and exhumation, percolation of meteoric water promoted remobilization of V and Cu and the precipitation of oxidized V-Cu ore.

Keywords

Clay minerals / V-chlorite / Redox front / Bleaching / Hydrocarbons

Cite this article

Download citation ▾
Ana L. Rainoldi, Daniel Beaufort, Marta B. Franchini, Adolfo Giusiano, Sabine Petit, Patricia Patrier, M. Josefina Pons. Vanadium mineralization at Los Chihuidos sediment-hosted Cu-V deposit, Neuquén Basin, Argentina: An approach to vanadium ore forming processes. Geoscience Frontiers, 2024, 15(1): 101724 https://doi.org/10.1016/j.gsf.2023.101724

CRediT authorship contribution statement

Dongsheng Cai: Writing – review & editing, Methodology. Ghazala Aziz: Conceptualization, Resources, Validation, Visualization, Writing – original draft. Suleman Sarwar: Supervision. Majid Ibrahim Alsaggaf: Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Software. Avik Sinha: Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]
Algeo T.J., Maynard J.B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 206, 289-318.
[2]
Anechine M., Stahlschmidt E., del Pino M., 2002. Evaluación petrofísica de reservorios complejos dentro de la Formación Mulichinco. Yacimiento Sierra Chata. Cuenca Neuquina, in:Proc. V Congreso de Exploración y Desarrollo de Hidrocarburos V, Argentina, CD-ROM, 10 pp (in Spanish).
[3]
Ardolino A., Franchi M., 1996. Geología y Recursos Naturales del Departamento de Añelo, provincia del Neuquén, República Argentina. Dirección Nacional del Servicio Geológico, Anales 25, p. 1-212 (in Spanish).
[4]
Bailey S.W., 1982. Nomenclature for regular interstratifications. Am. Mineral. 67, 394-398.
[5]
Beaufort D., Baronnet A., Lanson B., Meunier A., 1997. Corrensite: a single phase or a mixed layered phyllosilicate of the saponite to-chlorite conversion series? The case study of Sancerre-Couy deep drill hole (France). Am. Mineral. 82, 110-125.
[6]
Beaufort D., Rigault C., Billon S., Billault V., Inoue A. Inoue S., Patrier P. 2015. Chlorite and chloritization processes through mixed layer mineral series in low-temperature geological systems - A review. Clay Miner. 50, 497-523.
[7]
Beitler B., Parry W.T., Chan M.A., 2005. Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah. j.Sediment. Res. 75, 457-561.
[8]
Bonetti C., Zhou, L., Riegler, T., Brugger, J., Fairclough, M., 2020. Large S isotope and trace element fractionations in pyrite of uranium roll front systems results from internally-driven biogeochemical cycle. Geochim. Coscmochim. Acta 282, 113-132.
[9]
Bonnetti C., Cuney M., Michels R., Truche L., Malartre F., Liu X., Yang J., 2015. The multiple roles of sulfate-reducing bacteria and Fe-Ti oxides in the genesis of the Bayinwula roll front-type uranium deposit, Erlian Basin, NE China. Econ. Geol. 110, 1059-1081.
[10]
Boynton W.V., 1984. Cosmochemistry of the rare earth elements:meteoritic studies. In: HendersonP. (Ed.), Rare Earth Element Geochemistry, Elsevier, Amsterdam, 63-114.
[11]
Breit G.N., Wanty R.B., 1991. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. Chem. Geol. 91, 83-97.
[12]
Brown A.C., 2005. Refinements for footwall red-bed diagenesis in the sediment hosted stratiform copper deposits model. Econ. Geol. 100, 765-771.
[13]
Carothers W.W., Kharaka Y.K., 1978. Aliphatic acid anions in oil-field waters: implications for origin of natural gas: AAPG Bull. 62, 2441-2453.
[14]
Cazau L., Uliana M.A., 1973. El Cretácico superior continental de la Cuenca Neuquina,in:Proc. V Congreso Geológico Argentino, Argentina, 131-163 (in Spanish).
[15]
Cevallos M.F., Giusiano A.E., Franchini M., Rainoldi A.L., Martínez R.S., Carbone O.C., Alaimo A.A., 2014. Evidencias de migración terciaria de hidrocarburos en el Dorso de Los Chihuidos, Cuenca Neuquina, Argentina, in:Proc. IX Congreso de Exploración y Desarrollo de Hidrocarburos, Argentina, 133-154 (in Spanish with English abstract).
[16]
Cuney M., Kyser K., 2009. Sandstone-hosted uranium deposits. In: CuneyM., KyserK. (Eds.), Chapter 9:Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada Short Course Series 39, 257 pp.
[17]
Di Giulio A., Ronchi A., Sanfilippo A., Tiepolo M., Pimentel M., Ramos V.A., 2012. Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology 40, 559-562.
[18]
Drits V.A., Ivanovskaya T.A., Sakharov B.A., Zviagina B.B., Gor’kova N.V., Pokrovskaya E.V., Savichev A.T., 2011. Mixed-Layer corrensite-chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar uplift). Lithol. Miner. Resour. 46, 566-593.
[19]
Emerson S.R., Huested S.S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 34, 177-196.
[20]
Folk R.L., Andrews P.B., Lewis D.W., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand: New Zealand J. Geol. Geophysics, 13, 937-968.
[21]
Fralick P., 2003. Geochemistry of clastic sedimentary rocks:ratio techniques. In: LentzD.R. (Ed.), Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments: Geological Association of Canada, Geotext 4, 85-103.
[22]
Garrido A.C., 2010. Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina (Argentina): nueva propuesta de ordenamiento estratigráfico. Rev. Museo Arg Cienc. Nat. 12, 121-177 (in Spanish with English abstract).
[23]
Giusiano A., Bouhier E., 2009. Mineralización de Cu en el Grupo Neuquén vinculada a la migración de hidrocarburos. Dorso de los Chihuidos, Neuquén, Argentina. Bol. Inf. Pet., 6-18 (in Spanish with English abstract).
[24]
Hansley P.L., Spirakis C.S., 1992. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Econ. Geol. 87, 352-365.
[25]
Hernández Bilbao E., 2016. High-resolution che-mostratigraphy, sequence stratigraphic correlation, porosity and fracture characterization of the Vaca Muerta Formation, Neuquén basin, Argentina. PhD thesis, Colorado School of Mines, 195 pp. http://hdl.handle.net/11124/170104.
[26]
Jin R., Teng X., Li X., Si Q., Wang W., 2020. Genesis of the sandstone-type uranium deposits along the northern margin of the Ordos Basin, China. Geosci. Front. 11: 215-227.
[27]
Kay S.M., Gorring M., Ramos V.A., 2004. Magmatic sources, setting and causes of Eocene to Recent Patagonian plateau magmatism (36°S to 52°S latitude). Rev. Asoc. Geol. Arg. 59, 556-568.
[28]
Kelley K.D., Scott C.T., Polyak D.E, Kimball B.E., 2017. Vanadium, chap. U ofIn: K.J., DeYoungJ.H.Jr., SealR.R.II, BradleyD.C. (Eds.), Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. U.S. Geological Survey Professional Paper 1802, pp. U1- U36, https://doi.org/10.3133/pp1802U.
[29]
Langmuir D., 1978. Uranium solution-mineral equilibria at low temperatures with alications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 42, 547-569.
[30]
Leanza H.A., Zanettini J.C.M., Rodríguez M.F., 2011. Mapa Geológico de la Provincia de Neuquén. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Buenos Aires, Argentina (in Spanish with English abstract).
[31]
Lewis S.E., Henderson R.A., Dickens G.R., Shields G.A., Coxhell S., 2010. The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia). Miner. Deposita 45, 599-620.
[32]
MacIntyre T.J., Hitzman M.W., Thorson J.P., 2023. Hydrocarbon-induced bleaching and copper mineralization in the Wingate Sandstone, Paradox Valley, Colorado: Two episodes of fluid migration during the evolution of the Paradox Basin. AAPG Bull 107, 169-189.
[33]
Madejová J., Balan E., Petit S., 2011. Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. In: ChristidisG.E. (Ed.), Advances in the Characterization of Industrial Minerals. Notes in Mineralogy 9, pp. 171-226.
[34]
Maliva R.G., Dickson J.A.D., Fallick A.E., 1999. Kaolin cements in limestones: potential indicators of organic-rich porewaters during diagenesis. J. Sed. Res. 69, 158-163.
[35]
Maretto H., Pángaro F., 2005. Edad de formación de algunas de las grandes estructuras del engolfamiento de la Cuenca Neuquina: Actividad tectónica durante la depositación de la Fm. Quintucoin:Proc. VI Congreso de Exploración y Desarrollo de Hidrocarburos, Argentina, CD-ROM, 11 p (in Spanish).
[36]
McKelvey V.E., Strobell J.D., Slaughter A.L., 1986. The vanadiferous zone of the Phosphoria Formation in Western Wyoming and Southeastern Idaho. US Geological Survey Professional Paper 1465, 27 pp.
[37]
McLennan S.M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Process. Rev. Mineral. 21, 169-200.
[38]
Meunier J.D., 1994. The composition and origin of vanadium-rich clay minerals in Colorado Plateau Jurassic sandstones. Clay Clay Mineral 42, 391-401.401.
[39]
Milliken K.L., Mack L.E., Land L.S., 1994. Elemental mobility in sandstones during burial: whole-rock chemical and isotopic data, Frio formation, south Texas. J. Sed. Res., 788-796.
[40]
Morford J.L., Emerson S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735-1750.
[41]
Mosquera A., Ramos V.A., 2006. Intraplate deformation in the Neuquén Embayment. In: KayS.M., RamosV.A. (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°-39°S lat): Geological Society of America Special Paper 407, pp. 97-123.
[42]
Murakami T., Sato T., Inoue A., 1999. HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. Am. Mineral. 84, 1080-1087.
[43]
Northrop. R., Goldhaber M.N., Landis G.P., Unruh J.W., Reynolds R.L., Campbell J.A., Wanty R.B., Grauch R.I., Whitney G., Rye, R.O., 1990. Genesis of the tabular-type vanadium-uranium deposits of the Henry Basin, Utah. Econ. Geol. 85, 215-269.
[44]
Oinuma K., Hayashi H., 1965. Infrared study of clay minerals. Am. Mineral. 50, 1213-1227.
[45]
Orión del Sur SA, 2012. Exploration internal report 2012, Los Chihuidos High SSC prospects. Orión del Sur SA.
[46]
Orión del Sur SA, 2008. Exploration internal report 2008. Orión del Sur SA.
[47]
Parnell J., Carey P.F., 1995. Emplacement of bitumen (asphaltite) veins in the Neuquén Basin, Argentina. AAPG Bull 79, 1798-1816.
[48]
Paz M., Pons M.J., Giusiano A., Ćabana C., Franchini M., González E., Impiccini A., Rainoldi A.L., 2016. La relación entre la mineralización de Cu y bitumen en el Prospecto La Cuprosa. Rev. Asoc. Geol. Arg. 73, 563-581 (in Spanish with English abstract).
[49]
Peacor D.R., Coveney Jr. R.M., Zhao G., 2000. Authigenic illite and organic matter: the principal hosts of vanadium in the Mecca Quarry Shale at Velpen, Indiana. Clay Clay Mineral. 48, 311-316.
[50]
Pons M. J., Franchini M.B., Giusiano A., Impiccini A., Godeas M., 2009. Alteraciones, mineralización de Cu y bitumen en areniscas Cretácicas del Prospecto Barda González, Neuquén, Argentina. Rev. Asoc. Geol. Arg. 64: 321-333 (in Spanish with English abstract).
[51]
Pons M.J., Franchini M., Giusiano A., Maydagán L., Rainoldi A.L., 2014. Mineralización de Cu (V-U) en la Formación Huincul, prospecto Tordillos, Cuenca Neuquina. Rev. Asoc. Geol. Arg. 71, 537-552 (in Spanish with English abstract).
[52]
Pons M.J., Rainoldi A., Franchini M.B., Beaufort D., Impiccini A., Cessartti N., Giusiano A., Patrier P., 2015. Mineralogical signature of hydrocarbon circulation in cretaceous red beds of the Barda González area, Neuquén Basin. AAPG Bull. 99, 525-554. https://doi.org/10.1306/08131413170.
[53]
Pons M.J., Franchini M., Giusiano A., Patrier P., Beaufort D., Impiccini A., Rainoldi A.L., Meinert L., 2017. Alteration halos in the Tordillos sediment-hosted copper deposit of the Neuquén Basin, Argentina. Ore Geol. Rev. 80, 691-715. http://dx.doi.org/10.1016/j.oregeorev.2016.06.011.
[54]
Pons M.J., Franchini M., Rainoldi A.L., Giusiano A., Cesaretti N., Montagna A.O., Herrington R., 2021. Base metal mobility linked to brine and hydrocarbon migration at the Huincul High in the Neuquén Basin, Argentina: Implications for the formation of sediment-hosted base metal deposits. j.Geochem. Expl. 226, 106778. https://doi.org/10.1016/j.gexplo.2021.106778.
[55]
Rainoldi A.L., Limarino C.O., Giusiano A., Bouhier E., 2012. Análisis estratigráfico de la Formación Huincul (Grupo Neuquén) en el prospecto Sapo Sur (37°47‘S-69°27‘O), Dorso de los Chihuidos, Neuquén (Abstract), in:Proc. XIII Reunión Argentina de Sedimentología, Argentina, 185-186 (in Spanish).
[56]
Rainoldi A.L., Franchini M., Beaufort D., Impiccini A., Giusiano A. Pons M.J., Patrier P., 2014. Large scale bleaching of red beds related to upward migration of hydrocarbons: Los Chihuidos High, Neuquén Basin, Argentina. J. Sed. Res. 84, 373-393. http://dx.doi.org/10.2110/jsr.2014.31.
[57]
Rainoldi A.L., Franchini M., Beaufort D., Mozley P., Giusiano A., Cesaretti N., Patrier P., Pons M.J., 2015. Mineral reaction associated with hydrocarbons paleomigrations in the Huincul High, Neuquén Basin, Argentina Geol Soc Amer Bull 127:1711-1729. https://doi.org/10.1130/B31201.1.
[58]
Rainoldi A.L., Franchini M., Boyce A.J., Giusiano A., Cesaretti N.N., Pons J., Ríos J., 2019. Stable isotope and fluid inclusion study of sediment-hosted stratiform copper deposits from the Neuquén Basin, Argentina Miner. Deposita 54: 415-436. https://doi.org/10.1007/s00126-018-0815-3.
[59]
Ramos V.A., Barbieri M., 1989. El volcanismo Cenozoico de Huantrairco: Edad y relaciones isotópicas iniciales, provincia del Neuquén: Rev. Asoc. Geol. Arg. 53, 210-223 (in Spanish).
[60]
Salmien R. (Chief-editor), Batista M.J., Bidovec M., Demetriades A., De Vivo B., De Vos W., Duris M., Gilucis A., Gregorauskiene V., Halamic J., Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., Locutura J., Marsina K., Mazreku A., O’Connor P.J., Olsson S.Å., Ottesen R.T., Petersell V., Plant J.A., Reeder S., Salpeteur I., Sandström H., Siewers U., Steenfelt A., Tarvainen T., 2005. Geochemical Atlas of Europe, Part 1 Background Information, Methodology and Maps. Geological Survey of Finland, 526 pp.
[61]
Schmid S., Taylor W.R., Jordan D., 2020. The Bigrlyi tabular sandstone-hosted uranium-vanadium deposit, Ngalia Basin, Central Australia. Minerals 10, 896.
[62]
Spalletti L.A., Schwarz E., Veiga G.D., 2014. Geoquímica inorgánica como indicador de procedencia y ambiente sedimentario en sucesiones de lutitas negras: los depósitos transgresivos titonianos Formación Vaca Muerta) de la Cuenca Neuquina, Argentina. Andean Geol. 41, 401-435 (in Spanish with English abstract). http://dx.doi.org/10.5027/andgeoV41n2-a07.
[63]
Surdam R.C., Crossey L.J., Hagen E.S., Heasler H.P., 1989. Organic-Inorganic interactions and sandstone diagenesis: AAPG Bull. 73, 1-32.
[64]
Surdam R.C., Boese S.W., Crossey L.J., 1984. The chemistry of secondary porosity. In: McDonaldO., SurdamR. (Eds.), Clastic diagenesis: AAPG Memoir 37, pp. 127-149.
[65]
Testi A., Giusiano A., 2020. Mineralización de V-Cu-U en un frente redox en el Grupo Neuquén, Prospecto Campesino Norte. Cuenca Neuquina, Neuquén, Argentina, in:Proc. XII Congreso Geológico Argentino de Geología Económica, Argentina, 63-68 (in Spanish).
[66]
Thyne G., Boudreau B.P., Ramm M., Elin Midtbø R., 2001. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea. AAPG Bull. 85, 621-635.
[67]
Tunik M., Pons J., Pimentel M., Ramos V.A., 2008. Procedencia de los depósitos sinorogénicos del Grupo Neuquén (cuenca neuquina del sur de Mendoza y Neuquén), in:Proc. XVII Congreso Geológico Argentino, Argentina, 1310-1311 (in Spanish).
[68]
Turkekian K.K., Wedepohl K.H., 1961. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 72:175-192.
[69]
Velde B., 1985. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence: Amsterdam, Elsevier, Developments in Sedimentology 40, 427 pp.
[70]
Vergani G.D., Tankard A.J., Belotti H.J., Welsink H.J., 1995. Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina. In: TankardA.J., SuárezS.R., WelsinkH.J. (Eds.), Petroleum basins of South America: AAPG Memoir 62, pp. 383-402.
[71]
Vottero A., González J.M., 2002. Los reservorios de la Formación Mulichinco. In: SchiumaM., HinterwimmerG., VerganiG. (Eds.), Rocas Reservorio de las Cuencas Productivas de la Argentina. V Congreso de Exploración y Desarrollo de Hidrocarburos. Mar del Plata, Argentina. pp. 383-400 (in Spanish).
[72]
Wanty R.B., 1986. Geochemistry of Vanadium in an Epigenetic Sandstone-Hosted Vanadium-Uranium Deposit, Henry Basin Utah. Ph.D. thesis, Colorado School of Mines, Golden, Colo. (unpublished).
[73]
Wanty R.B., Goldhaber M.B., 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta 56, 1471-1483.
[74]
Whitney G., Northrop H.R., 1986. Vanadium chlorite from a sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah. Clay Clay Mineral. 34, 488-495.
[75]
Wilkinson M., Haszeldine R.S., Milliken K., 2003. Cross-formational flux of aluminium and potassium in Gulf Coast (USA) sediments. In: WordenR.H., MoradS. (Eds.), Clay Mineral Cements in Sandstones. Int. Assoc. Sedimentol. Special Publication 34, pp. 147-160.
[76]
Zamora Valcarce G., Zapata T., Ramos V.A., Rodríguez F., Bernardo L.M., 2009. Evolución tectónica del frente Andino en Neuquén: Rev. Asoc. Geol. Arg. 65, 192-203 (in Spanish with English abstract).
[77]
Zavala C., Martínez Lampe j.M., Fernández M., Di Meglio M., Arcuri M., 2008. El diacronismo entre las Formaciones Tordillo y Quebrada del Sapo (Kimeridgiano) en el sector sur de la cuenca neuquina. Rev. Asoc. Geol. Arg. 63, 754-765 (in Spanish with English abstract).
[78]
Zientek M.L., Wintzer N.E., Hayes T.S., Parks H.L., Briggs D.A., Causey J.D., Hatch S.A., Jenkins M.C., Williams D.J., 2015. Qualitative assessment of selected areas of the world for undiscovered sediment-hosted stratabound copper deposits. U.S. Geological Survey Scientific Investigations Report 2010-5090-Y.
PDF(8103 KB)

Accesses

Citations

Detail

Sections
Recommended

/