The formation and growth mechanisms of young back-arc spreading ridges from high-resolution bathymetry: The Marsili Seamount (Tyrrhenian Sea, Italy)

Eugenio Nicotra, Salvatore Passaro, Guido Ventura

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101723.

PDF(7526 KB)
Geoscience Frontiers All Journals
PDF(7526 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101723. DOI: 10.1016/j.gsf.2023.101723
Research Paper

The formation and growth mechanisms of young back-arc spreading ridges from high-resolution bathymetry: The Marsili Seamount (Tyrrhenian Sea, Italy)

Author information +
History +

Abstract

The formation and growth mechanisms of Mid-Ocean Ridges (MOR) are relatively well known, whereas those of back-arc spreading ridges are comparatively less known because geophysical, geochemical, and morphological data are scarce and of low density. Here we present a high-resolution bathymetry of the Marsili Seamount (MS; 1 Ma - 3 ka), which represents the inflated spreading ridge of the 2 Ma old Marsili back-arc basin associated to the subduction of the Ionian Sea below the Calabrian Arc and Tyrrhenian Sea. MS is 70 km long, 30 km wide, and its height reaches about 3000 m from surrounding seafloor. Our new digital bathymetric model has a 5 m grid cell size resolution and covers the MS bathymetry from -1670 mbsl to the top at -491 mbsl. We conduct morphometric and morphological analyses of the bathymetry and recognize landforms due to volcanic, tectonic, hydrothermal and gravity processes. MS consists of volcanoes related to fissural and central-type activity, this latter located at the northern and southern tips of the main dike swarms. Dike swarms represent the surface expression of different ridge segments whose strikes are controlled by the larger scale back-arc spreading processes and by the local occurrence of an active hydrothermal field. This latter develops in a flat area between two partly overlapping ridge segments where historical volcanism and extensional processes concentrate. Such ridges represent the embryonic stage of the formation of transform-like faults. Central volcanoes, the northern of which is characterized by a caldera, form at the tips of MS because the decrease in width of the major volcanic fissures promotes vent localization associated with the formation of sill-like reservoirs from which central-type vents may develop. Gravity processes affecting the MS flanks are due to shallow seafloor sliding. Caldera collapses affecting the northernmost central-type polygenic volcano must be included in the evaluation of the hazard related to potential tsunami. Inward dipping faults characterize the MS eastern flank suggesting a moderately asymmetric growth of the spreading ridge possibly associated with the eastward opening of the Marsili back-arc.The Marsili back-arc spreading rate is similar to those of MOR slow spreading ridges. However, the MS morphology resembles that of fast spreading ridges. These two features also characterize more extended back-arc spreading ridges (e.g. the Mariana in Western Pacific). We conclude that, independently from the spatial scale, the increase in the ridge accretion rate is related to the progressive addition of a subduction-related component to a pure spreading mantle source.

Keywords

Back-arc spreading ridge / Morphology / Tectonics / Volcanism / Marsili seamount

Cite this article

Download citation ▾
Eugenio Nicotra, Salvatore Passaro, Guido Ventura. The formation and growth mechanisms of young back-arc spreading ridges from high-resolution bathymetry: The Marsili Seamount (Tyrrhenian Sea, Italy). Geoscience Frontiers, 2024, 15(1): 101723 https://doi.org/10.1016/j.gsf.2023.101723

References

[1]
Aliani S., Bortoluzzi G., Caramanna G., Raffa F., 2010. Seawater dynamics and environmental settings after November 2002 gas eruption off Bottaro (Panarea, Aeolian Islands, Mediterranean Sea). Cont. Shelf Res. 30(12), 1338-1348.
[2]
Anderson M.O., Chadwick W.W., Hannington Jr.M.D., Merle S.G., Resing J.A., Baker E.T., Butterfield D.A., Walker S.L., Augustin N., 2017. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.78°N and 18.38°N. Geochem. Geophys. Geosyst. 18, 2240-2274. 10.1002/2017GC006813.
[3]
Artemieva I.M., 2023. Back-arc basins: A global view from geophysical synthesis and analysis. Earth-Sci. Rev. 236, 104242. 10.1016/j.earscirev.2022.104242.
[4]
Beccaluva L., Rossi P.L., Serri G., 1982. Neogene to Recent volcanism of the Southern Tyrrhenian-Sicilian area: implications for the geodynamic evolution of the Calabrian Arc. Earth Evolution Sciences 2(3), 222-238.
[5]
Caratori Tontini F., Cocchi L., Muccini F., Carmisciano C., Marani M., Bonatti E., Ligi M., Boschi E., 2010. Potential‐field modeling of collapse‐prone submarine volcanoes in the southern Tyrrhenian Sea (Italy). Geophys. Res. Lett. 37 (3), L03305. 10.1029/2009GL041757.
[6]
Caratori Tontini F., Bortoluzzi G., Carmisciano C., Cocchi L., de Ronde C.E.J., Ligi M., Muccini F., 2014. Near-bottom magnetic signatures of submarine hydrothermal systems at Marsili and Palinuro Volcanoes, Southern Tyrrhenian Sea, Italy. Econ. Geol. 109, 2119-2128. 10.2113/econgeo.109.8.2119.
[7]
Caratori Tontini F., Bassett D., de Ronde C.E.J., Timm C., Wysoczanski, 2019. Early evolution of a young back-arc basin in the Havre Trough. Nat. Geosci. 12, 856-862. 10.1038/s41561-019-0439-y.
[8]
Carminati E., Lustrino M., Doglioni C., 2012. Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579, 173-192.
[9]
Carracedo J.C., Guillou H., Nomade S., Rodriguez-Badiola E., Perez-Torrado F.J., Rodriguez-Gonzalez A., Paris R., Troll V.R., Wiesmaier S., Delcamp A., Fernandez-Turiel J.L., 2011. Evolution of ocean-island rifts: The northeast rift zone of Tenerife, Canary Islands. Geol. Soc. Am. Bull. 123 (3-4), 562-584. 10.1130/B30119.1.
[10]
Claps P., Fiorentino M., Oliveto G., 1996. Informational entropy of fractal river networks. j.Hydrol. 187, 145-156.
[11]
Cocchi L., Caratori Tontini F., Muccini F., Marani M.P., Bortoluzzi G., Carmisciano C., 2009. Chronology of the transition from a spreading ridge to an accretional seamount in the Marsili backarc basin (Tyrrhenian Sea). Terra Nova 21 (5), 369-374. 10.1111/j.1365-3121.2009.00891.x.
[12]
Cocchi L., Passaro S., Caratori Tontini F., Ventura G., 2017. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. Nat. Comm. 8, 1451. 10.1038/s41467-017-01626-w.
[13]
Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Bohner J., 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscience Model Development 8, 1991-2007. 10.5194/gmd-8-1991-2015.
[14]
Cressie N.A.C., 1990. The Origins of Kriging. Math. Geol. 22, 239-252.
[15]
D'Alessandro, A., D'Anna, G., Luzio, D., Mangano, G., 2009. The INGV's new OBS/H: Analysis of the signals recorded at the Marsili submarine volcano. j.Volcanol. Geotherm. Res. 183 ( 1-2), 17-29. 10.1016/j.jvolgeores.2009.02.008.
[16]
De Astis G., Ventura G., Vilardo G., 2003. Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data (Open Access). Tectonics 22 (4), 14-1-14-17. 10.1029/2003tc001506.
[17]
Dekov V., Savelli C., 2004. Hydrothermal activity in the SE Tyrrhenian Sea: An overview of 30 years of research. Mar. Geol. 204, 161-185. 10.1016/S0025-3227(03)00355-4.
[18]
Doglioni C., 1991. A proposal for the kinematic modeling of W-dipping subductions: possible applications to the Tyrrhenian-Apennines system. Terra Nova 3, 423-434.
[19]
Doglioni C., Gueguen E., S‘abat F., Fernandez M., 1997. The western Mediterranean extensional basins and the Alpine orogen. Terra Nova 9, 109-112.
[20]
Drymoni K., Russo E., Tibaldi A., Corti N., Bonali F.L., 2023. Dyke-induced graben formation in a heterogeneous succession on Mt. Etna: Insights from field observations and FEM numerical models, j.Volcanol. Geotherm. Res. 433, 107712. 10.1016/j.jvolgeores.2022.107712.
[21]
Esposito V., Andaloro F., Canese S., Bortoluzzi G., Bo M., Di Bella M., Italiano F., Sabatino G., Battaglia P., Consoli P., Giordano P., Spagnoli F., La Cono V., Yakimov M.M., Scotti G., Romeo T., 2018. Exceptional discovery of a shallow-water hydrothermal site in the SW area of Basiluzzo islet (Aeolian archipelago, South Tyrrhenian Sea): An environment to preserve. Plos One 13 (1), e01907 10. 10.1371/journal.pone.0190710.
[22]
Faccenna C., Mattei M., Funiciello D., Jolivet L., 1997. Styles of back-arc extension in the Central Mediterranean. Terra Nova 9, 126-130. 10.1046/j.1365-3121.1997.d01-12.x.
[23]
Gallotti G., Zaniboni F., Pagnoni G., Tinti S., 2021. Tsunamis from prospected mass failure on the Marsili submarine volcano flanks and hints for tsunami hazard evaluation. Bull. Volcanol. 83, 2. 10.1007/s00445-020-01425-0.
[24]
Gerya T., 2012. Origin and models of oceanic transform faults. Tectonophysics 522-523, 34-54.
[25]
Gudmundsson A., 1990. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176, 257-275.
[26]
Holt A.F., Royden L.H., 2020. Subduction dynamics and mantle pressure: 2. Towards a global understanding of slab dip and upper mantle circulation. Geochem. Geophys. Geosyst. 20, 08771. 10.1029/2019GC008771.
[27]
Huajian G., Cheng-Hsin C., 1992. Slightly curved or kinked cracks in anisotropic elastic solids. International Journal of Solids and Structures 29, 947-972. 10.1016/0020-7683(92)90068-5.
[28]
Iezzi G., Caso C., Ventura G., Vallefuoco M., Cavallo A., Behrens H., Mollo S., Paltrinieri D., Signanini P., Vetere F., 2013. First documented deep submarine explosive eruptions at the Marsili Seamount (Tyrrhenian Sea, Italy): a case of historical volcanism in the Mediterranean Sea. Gondwana Res. 25, 764-774.
[29]
Iezzi G., Lanzafame G., Mancini L., Behrens H., Tamburrino S., Vallefuoco M., Passaro S., Signanini P., Ventura G., 2020. Deep sea explosive eruptions may be not so different from subaerial eruptions. Sci. Rep. 10 (1), 6709. 10.1038/s41598-020-63737-7.
[30]
Jasiewicz J., Stepinski T.F., 2013. Geomorphons-a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147-156. 10.1016/j.geomorph.2012.11.005.
[31]
Jones T.J., Llewellin E.W., 2021. Convective tipping point initiates localization of basaltic fissure eruptions. Earth Planet. Sci. Lett. 553, 116637. 10.1016/j.epsl.2020.116637.
[32]
Karig D.E., 1971. Origin and development of marginal basins in the western Pacific. j.Geophys. Res. 76(11), 2542-2561. 10.1029/JB076i011p02542.
[33]
Kastens K., Mascle, J., 1990. The geological evolution of the Tyrrhenian Sea: an introduction to the scientific results of ODP Leg 107. Proceedings of Ocean Drilling Program Science Results 107, 3-26.
[34]
Kelley D.S., Baross J.A., Delaney J.R., 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385-491.
[35]
Li S.Z., Suo Y.H., Li X.Y., Liu B., Dai L., Wang G., Zhou J., Li Y., Liu Y., Cao X., Somerville I., Mu D., Zhao S., Liu J., Meng F., Zehn L., Zhao L., Zhu J., Yu S., Liu Y., Zhang G., 2018. Microplate Tectonics: new insights from microblocks in the global oceans, continental margins and deep mantle. Earth Sci. Rev. 185, 1029-1064.
[36]
Ligi M., Cocchi L., Bortoluzzi G., D’Oriano F., Muccini F., Caratori Tontini F., de Ronde C.E.J., Carmisciano C., 2014. Mapping of seafloor hydrothermally altered rocks using geophysical methods: Marsili and Palinuro Seamounts, Southern Tyrrhenian Sea. Econ. Geol. 109, 2102-2117. 10.2113/econgeo.109.8.2103.
[37]
Lupton J., De Ronde C., Sprovieri M., Baker E.T., Bruno P.P., Italiano F., Walker S., Faure K., Leybourne M., Britten K., Greene R., 2011. Active hydrothermal discharge on the submarine Aeolian Arc. j.Geophys. Res.: Solid Earth 116 (2), B02102. 10.1029/2010JB007738.
[38]
Lustrino M., Duggen S., Rosenberg C.L., 2011. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Sci. Rev. 104 (1-3), 1-40.
[39]
Macdonald K.C., 1982. Mid-Ocean Ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu. Rev. Earth Planet. Sci. 10, 155.
[40]
Magrini F., Diaferia G., El-Sharkawy A., Cammarano F., van der Meijde M., Meier T., Boschi L., 2022. Surface wave tomography of the central-western Mediterranean: New insights into the Liguro-Provençal and Tyrrhenian basins. j.Geophys. Res.: Solid Earth 127, e2021JB023267. 10.1029/2021JB023267.
[41]
Maher S.M., Gee J.S., Cheadle M.J., John B.E., 2021. Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust. Nature 597, 511-515.
[42]
Marani M.P., Trua T., 2002. Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea). j.Geophys. Res.: Solid Earth 107, 00285. 10.1029/2001JB000285.
[43]
Marani M.P., Gamberi F., Bonatti E., 2004. From seafloor to deep mantle: architecture of the Tyrrhenian backarc basin. Memorie Descrittive Carta Geologica d'Italia, LXIV.
[44]
Nicotra E., Viccaro M., De Rosa R., Sapienza M., 2014. Volcanological evolution of the Rivi-Capo volcanic complex at Salina, Aeolian Islands: magma storage processes and ascent dynamics. Bull. Volcanol. 76, 840-864.
[45]
Nicotra E., Viccaro M., Donato P., Acocella V., De Rosa R., 2021. Catching the Main Ethiopian Rift evolving towards plate divergence. Sci. Rep. 11, 21821.
[46]
Olive J.A., Dublanchet P., 2020,. Controls on the magmatic fraction of extension at mid-ocean ridges. Earth Planet. Sci. Lett. 549, 116541. 10.1016/j.epsl.2020.116541.
[47]
Panza G.F., Raykova R.B., Carminati E., Doglioni C., 2007. Upper mantle flow in the western Mediterranean. Earth Planet. Sci. Lett. 257, 200-214.
[48]
Passaro S., Milano G., D'isanto C., Ruggieri S., Tonielli R., Bruno P., Sprovieri M., Marsella E., 2010. DTM-Based morphometry of the Palinuro seamount (Italy, Eastern Tyrrhenian Sea): geomorphological and volcanological implication. Geomorphology 115( 1-2), 129-140. 10.1016/j.geomorph.2009.09.041.
[49]
Pollard D.D., Aydin A., 1984. Propagation and linkage of oceanic ridge segments. j.Geophys. Res. 89, 10017-10028. 10.1029/JB089iB12p10017.
[50]
Püthe C., Gerya T., 2014. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res. 25, 270-283.
[51]
Romer R.H.W., Beier C., Haase K.M., Eberts A., Hübscher C., 2021. The evolution of central volcanoes in ultraslow rift systems: Constraints from D. João de Castro seamount, Azores. Tectonics 40, e2020TC006663. 10.1029/2020TC006663.
[52]
Rosenbaum G., Lister G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines and the Sicilian Maghrebides. Tectonics 23, TC1013. 10.1029/2003TC001518.
[53]
Sartori R., 2003. The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere. Episodes 26, 217-223.
[54]
Savelli C., 2001. Two-stage progression of volcanism (8-0 Ma) in the Central Mediterranean (Southern Italy). j.Geodyn. 31(4), 393-410.
[55]
Schliffke N., van Hunen J., Allen M.B., Magni V., Gueydan F., 2022. Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio. Nat. Comm. 13, 582. 10.1038/s41467-022-28228-5.
[56]
Sdrolias M., Muller R.D., 2006. Controls on back-arc basin formation. Geochem. Geophys. Geosyst. 7, Q04016. 10.1029/2005GC001090.
[57]
Smith I.E.M., Németh K., 2017. Source to surface model of monogenetic volcanism: A critical review. Geol. Soc. Spec. Pub. 446 (1), 1-28.
[58]
Solomon S.C., Toomey D.R., 1992. The structure of Mid-Ocean ridges. Annu. Rev. Earth Planet. Sci. 20, 329-366.
[59]
Stern R.J., 2002. Subduction zones. Reviews in Geophysics 40( 4), 1012. 10.1029/2001RG000108.
[60]
Tamburrino S., Vallefuoco M., Ventura G., Insinga D.D., Sprovieri M., Tiepolo M., Passaro S., 2015. The proximal marine records of the Marsili Seamount in the last 7 ka (Southern Tyrrhenian Sea back-arc, Italy) put constraints on the evolution of plumbing systems in declining back-arc spreading ridges. Global Planet. Change 133, 2-16.
[61]
Tan Y.J., Tolstoy M., Waldhauser F., Wilcock W.S., 2016. Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature 540(7632), 261-265.
[62]
Tentler T., 2003. Analogue modeling of overlapping spreading centers: Insight into their propagation and coalescence. Tectonophysics 376, 99-115.
[63]
Tibaldi A., 2015. Structure of volcano plumbing systems: A review of multi-parametric effects: J. Volcanol. Geotherm. Res. 298, 85-135.
[64]
Trua T., Marani P.M., Gamberi F., 2011. Magmatic evidence for African mantle propagation into the southern Tyrrhenian back-arc region. In: BeccaluvaL., BianchiniG., WilsonM. (Eds), Volcanism and Evolution of the African Lithosphere. Spec. Pap. Geol. Soc. Am. 478, 307-331.
[65]
van Wijk J.W.,Blackman D.K., 2007. Development of en echelon magmatic segments along oblique spreading ridges. Geology 35, 599-602. 10.1130/G23294A.1.
[66]
Ventura G., Milano G., Passaro S., Sprovieri M., 2013. The Marsili ridge (Southern Tyrrhenian Sea, Italy): An island-arc volcanic complex emplaced on a ‘relict’ back-arc basin. Earth Sci. Rev. 116 ( 1), 85-94. 10.1016/j.earscirev.2012.11.005.
[67]
Wei S.S., Wiens D.A., 2020. High bulk and shear attenuation due to partial melt in the Tonga-Lau back-arc mantle. j.Geophys. Res.: Solid Earth 125 (1), 2019JB017527.
[68]
Wylie J.J., Helfrich K.R., Dade B., Lister J.R., Salzig J.F., 1999. Flow localisation in fissure eruptions. Bull. Volcanol. 60(6), 432-440. 10.1007/s004450050243.
PDF(7526 KB)

Accesses

Citations

Detail

Sections
Recommended

/