Recharge and vulnerability assessment of groundwater resources in North west India: Insights from isotope-geospatial modelling approach

Annadasankar Roy, Sitangshu Chatterjee, Uday Kumar Sinha, Anil Kumar Jain, Hemant Mohokar, Ajay Jaryal, Tirumalesh Keesari, Harish Jagat Pant

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101721.

PDF(7927 KB)
Geoscience Frontiers All Journals
PDF(7927 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101721. DOI: 10.1016/j.gsf.2023.101721
Research Paper

Recharge and vulnerability assessment of groundwater resources in North west India: Insights from isotope-geospatial modelling approach

Author information +
History +

Abstract

Recent studies indicate dwindling groundwater quantity and quality of the largest regional aquifer system in North West India, raising concern over freshwater availability to about 182 million population residing in this region. Widespread agricultural activities have resulted severe groundwater pollution in this area, demanding a systematic vulnerability assessment for proactive measures. Conventional vulnerability assessment models encounter drawbacks due to subjectivity, complexity, data-prerequisites, and spatial-temporal constraints. This study incorporates isotopic information into a weighted-overlay framework to overcome the above-mentioned limitations and proposes a novel vulnerability assessment model. The isotope methodology provides crucial insights on groundwater recharge mechanisms (18O and 2H) and dynamics (3H) - often ignored in vulnerability assessment. Isotopic characterisation of precipitation helped in establishing Local Meteoric Water Line (LMWL) as well as inferring contrasting recharge mechanisms operating in different aquifers. Shallow aquifer (depth < 60 m) showed significant evaporative signature with evaporation loss accounting up to 18.04% based on Rayleigh distillation equations. Inter-aquifer connections were apparent from Kernel Density Estimate (KDE) and isotope correlations. A weighted overlay isotope-geospatial model was developed combining 18O, 3H, aquifer permeability, and water level data. The central and northern parts of study area fall under least (0.29%) and extremely (1.79%) vulnerable zones respectively, while majority of the study area fall under moderate (42.71%) and highly vulnerable zones (55.20%). Model validation was performed using groundwater NO3- concentration, which showed an overall accuracy up to 82%. Monte Carlo Simulation (MCS) was performed for sensitivity analysis and permeability was found to be the most sensitive input parameter, followed by 3H, 18O, and water level. Comparing the vulnerability map with Land Use Land Cover (LULC) and population density maps helped in precisely identifying the high-risk sites, warranting a prompt attention. The model developed in this study integrates isotopic information with vulnerability assessment and resulted in model output with good accuracy, scientific basis, and widespread relevance, which highlights its crucial role in formulating proactive water resource management plans, especially in less explored data-scarce locations.

Keywords

Agricultural pollution / Data scarcity / Recharge mechanism / Rayleigh distillation / Isotope-geospatial model / Vulnerability assessment

Cite this article

Download citation ▾
Annadasankar Roy, Sitangshu Chatterjee, Uday Kumar Sinha, Anil Kumar Jain, Hemant Mohokar, Ajay Jaryal, Tirumalesh Keesari, Harish Jagat Pant. Recharge and vulnerability assessment of groundwater resources in North west India: Insights from isotope-geospatial modelling approach. Geoscience Frontiers, 2024, 15(1): 101721 https://doi.org/10.1016/j.gsf.2023.101721

References

[1]
Arid Communities and Technologies (ACT), 2011. Study on designed capacity of Dharoi dam vs. actual command area irrigation. Development Support Centre, Near Government Tubewell, Bopal, Ahmedabad- 380058, Gujarat, India.
[2]
Arya S., Subramani T., Vennila G., Roy P.D., 2020. Groundwater vulnerability to pollution in the semi-arid Vattamalaikarai River Basin of south India thorough DRASTIC index evaluation. Chemie. der Erde. 80, 125635. 10.1016/j.chemer.2020.125635.
[3]
Assaf H., Saadeh M., 2009. Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Wat. Resour. Manage. 23(5), 775-96.
[4]
Barbulescu A., 2020. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 12, 1356. 10.3390/w12051356.
[5]
Bela B., 1992. Lush fields and parched throats: The Political economy of Groundwater in Gujarat.
[6]
Bera A., Mukhopadhyay B.P., Chowdhury P., Ghosh A., Biswas S., 2021. Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. Ecotoxicol. Environ. Saf. 214, 112085. 10.1016/j. ecoenv.2021.112085.
[7]
BIS, 2012. Indian standards specification for drinking water. IS:10500:2012, 2nd Rev, BIS, New Delhi.
[8]
Brown R.M., McClelland N.I., Deininger R.A., Tozer R.G., 1970. Water quality index-do we dare? Water Sew. Works. 117(10), 339-343.
[9]
CGWB, 2014. District groundwater brochure Patan district Gujarat, Government of India Ministry of Water Resources, Central Ground Water Board, West Central Region Ahmedabad.
[10]
CGWB, 2020a. Aquifer mapping and management of ground water resources, Patan district, Gujarat. Central Ground Water Board, Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti, Government of India.
[11]
CGWB, 2020b. Central Ground Water Board, Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation, Ground water year book 2020-21, Gujarat state.
[12]
Chakraborty B., Roy S., Bera A., Adhikary P.P., Bera B., Sengupta D., Bhunia G.S., Shit P.K., 2021. Groundwater vulnerability assessment using GIS-based DRASTIC model in the upper catchment of Dwarakeshwar river basin, West Bengal, India. Environ. Earth Sci. 81. 10.1007/s12665-021-10002-3.
[13]
Chinnasamy P., Misra G., Shah T., Maheshwari B., Prathapar S., 2015. Evaluating the effectiveness of water infrastructures for increasing groundwater recharge and agricultural production - A case study of Gujarat, India. Agric. Water Manage. 158, 179-188. 10.1016/j.agwat.2015.05.009.
[14]
Chitsazan M., Akhtari Y., 2008. A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour. Manage. 23, 1137-1155. 10.1007/s11269-008-9319-8.
[15]
Clark I.D., Fritz P., 1997. Tracing the hydrological cycle. In: EnvironmentalIsotopes in Hydrogeology. CRCPress,Florida, pp.35-60.
[16]
Coplen T.B., 1993. Uses of environmental isotopes. In: AlleyW.M. (ed.), Regional ground-water quality. Van Nostrand Reinhold, New York.
[17]
Deshpande R.D., Maurya A.S., Kumar B., Sarkar A., Gupta S.K., 2010. Rain-vapor interaction and vapor source identification using stable isotopes from semiarid western India. j.Geophys. Res. Atmos. 115, 1-11. 10.1029/2010JD014458.
[18]
Döll P., Schmied H. M., Schuh C., Portmann F. T., and Eicker A., 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites, Water Resour. Res. 50, 5698-5720, doi: 10.1002/2014WR015595.
[19]
Fannakh A., Farsang A., 2022. DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: a review. Environ. Sci. Eur. 34. 10.1186/s12302-022-00646-8.
[20]
Ferronato N., Torretta V., 2019. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. j.Environ. Res. Public Health 16, 1060. 10.3390/ijerph16061060.
[21]
Geary R.C., 1954. The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician 5, 115. 10.2307/2986645.
[22]
Gemitzi A., Petalas C., Tsihrintzis V. A., & Pisinaras V., 2006. Assessment of groundwater vulnerability to pollution: A combination of GIS, fuzzy logic and decision making techniques. Environ. Geol. 49(5), 653-673. 10.1007/s00254-005-0104-1.
[23]
Ghouili N., Jarraya-Horriche F., Hamzaoui-Azaza F., Zaghrarni M.F., Ribeiro L., Zammouri M., 2021. Groundwater vulnerability mapping using the Susceptibility Index (SI) method: Case study of Takelsa aquifer, Northeastern Tunisia. j.Afr. Earth Sci. 173, 104035. 10.1016/j.jafrearsci.2020.104035.
[24]
Goyal R.K., Sharma M., 2015. Groundwater Quality Assessment of Arid Northern Gujarat (India). Ann. Arid Zone. 54, 27-33.
[25]
Groning M., Lutz H.O., Roller-Lutz Z., Kralik M., Gourcy L., Pöltenstein L., 2012. A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. j.Hydrol. 448-449, 195-200.
[26]
GSI, 1987. Quaternary geological and geomorphological studies in the west Banas basin, Banaskantha district, Gujarat. Geological Survey of India Western Region, Government of India.
[27]
Gupta S.K., Deshpande R.D., 2005. Groundwater isotopic investigations in India: What has been learned? Curr. Sci. 89, 825-835.
[28]
Hansen B., Thorling L., Kim H., Blicher-Mathiesen G., 2019. Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark. j.Environ. Manage. 240, 66-74. 10.1016/j.jenvman.2019.03.075.
[29]
Hosmer D.W., Lemeshow S., 2000. Applied logistic regression. 2nd Edition. John Wiley& Sons, Inc., New York. 10.1002/0471722146.
[30]
Hounslow A.W., 1995. Water quality data. Analysis and interpretation. Boca Raton, Florida, USA: CRC/Lewis Publishers.
[31]
Hren M. T., Bookhagen B., Blisniuk P. M., Booth A. L., & Chamberlain C. P., 2009. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Science Let. 288(1-2), 20-32. 10.1016/j.epsl.2009.08.041.
[32]
Water pollution from agriculture: a global review. Published by the Food and Agriculture Organization of the United Nations Rome, 2017 and the International Water Management Institute on behalf of the Water Land and Ecosystems research program Colombo, 2017.
[33]
Jeelani G., Deshpande R.D., 2017. Isotope fingerprinting of precipitation associated with western disturbances and Indian summer monsoons across the Himalayas. Journal of Earth System Science 126. 10.1007/s12040-017-0894-z.
[34]
Jeelani G., Deshpande R.D., Shah R.A., Hassan W., 2017. Influence of southwest monsoons in the Kashmir Valley, western Himalayas. Isotopes Environ. Health Stud. 53, 400-412. 10.1080/10256016.2016.1273224.
[35]
Karunakalage A., Sarkar T., Kannaujiya S., Chauhan P., Pranjal P., Taloor A. K., Kumar S., 2021. The appraisal of groundwater storage dwindling effect, by applying high resolution downscaling GRACE data in and around Mehsana district, Gujarat, India. Groundwater Sustaina. Develop. 13, 100559. 10.1016/j.gsd.2021.100559.
[36]
Keesari T., Kulkarni U., Deodhar A., Ramanjaneyulu P.S, Sanjukta A., Kumar U., 2013. Geochemical characterization of groundwater from an arid region in India. Environmental Earth Sciences 71, 4869-4888, https://doi.org/10.1007/s12665-013-2878-x.
[37]
Keesari T., Sinha U.K., Saha D., Dwivedi S., Shukla R., Mohokar H., & Roy A., 2021. Isotope and hydrochemical systematics of groundwater from multi-tiered aquifer in central parts of Indo-Gangetic Plains, India - implications on groundwater sustainability and security. Sci. Total Environ. 789, 147860. 10.1016/j.scitotenv.2021.147860.
[38]
Khakhar M., Ruparelia J.P., Vyas A., 2017. Assessing groundwater vulnerability using GIS-based DRASTIC model for Ahmedabad district, India. Environ. Earth Sci. 76. 10.1007/s12665-017-6761-z.
[39]
Kumar B., Rai S.P., Kumar U.S., Verma S.K., Garg P., Kumar S.V.V., Jaiswal R., Purendra B.K., Kumar S.R., Pande N.G., 2010. Isotopic characteristics of Indian precipitation. Water Resour. Res. 46, 1-15. 10.1029/2009WR008532.
[40]
Kumar P., Singh C.K., Saraswat C., Mishra B., Sharma T., 2017. Evaluation of aqueous geochemistry of fluoride enriched groundwater: A case study of the Patan district, Gujarat, Western India. Water Sci. 31, 215-229. 10.1016/j.wsj.2017.05.002.
[41]
Kumar P., Thakur P., Debnath S., 2019. Groundwater Vulnerability Assessment and Mapping Using DRASTIC Model. CRC Press.
[42]
Lapworth D.J., Krishan G., MacDonald A.M., Rao M.S., 2017. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 599-600, 1433-1444. 10.1016/j.scitotenv.2017.04.223.
[43]
Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K.Sources and Consequences of Groundwater Contamination. Arch Environ Contam Toxicol. 2021 Jan; 80(1):1-10, https://doi.org/10.1007/s00244-020-00805-z.
[44]
Macdonald D.M.J., Dixon A.J., Gooddy D.C., 2018. Water and nitrate exchange between a managed river and peri-urban floodplain aquifer: Quantification and management implications. Ecol. Eng. 123, 226-237. 10.1016/j.ecoleng.2018.09.005.
[45]
Machiwal D., Jha M.K., Singh V.P., Mohan C., 2018. Assessment and mapping of groundwater vulnerability to pollution: current status and challenges. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2018.08.009.
[46]
Mandal R., Das A., Sudheer A.K., Ranjan R., Gaddam M., 2022. Fluoride Contamination of Groundwater from Semi-Arid Regions of Western India. Nat. Enviro. Pol. Tech. 21(4), 1983-1994.
[47]
Männik M., Karro E., Marandi A., Polikarpus M., Ani T., Rosentau A., 2023. Modified DRASTIC method for groundwater vulnerability assessment in areas with diverse Quaternary deposits. Hydrol. Res. 54, 840-854. 10.2166/nh.2023.009.
[48]
Mao X., Wang H., Feng L., 2018. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer. j.Hydrol. 560, 572-581.
[49]
Moran P.A.P., 1950. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17. 10.2307/2332142.
[50]
Mukherjee I., Singh U.K., 2020a. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. CATENA. 194, 104681, ISSN 0341-8162. 10.1016/j.catena.2020.104681.
[51]
Mukherjee I., Singh U.K., 2020b. Characterization of groundwater nitrate exposure using Monte Carlo and Sobol sensitivity approaches in the diverse aquifer systems of an agricultural semiarid region of Lower Ganga Basin, India. Sci. Total Environ. 787(2021), 147657. 10.1016/j.scitotenv.2021.147657.
[52]
Mukherji A., 2020. Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach. Appl. Econ. Perspect. Policy 44, 394-410. 10.1002/aepp.13123.
[53]
Noble J., Ansari M.A., 2019. Isotope hydrology and geophysical techniques for reviving a part of the drought prone areas of Vidarbha, Maharashtra. India. j.Hydrol. 570, 495—507. 10.1016/j.jhydrol.2019.01.020.
[54]
Panda D.K., Mishra A., Kumar A., 2012. Quantification of trends in groundwater levels of Gujarat in western India, Hydrolog. Sci. J. 57 (7), 1325-1336.
[55]
Patel P., Mehta D., Sharma N., 2022. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Sup. 22, 5190-5205. 10.2166/ws.2022.126.
[56]
Prajapati J.R., Raol B. V, 2008. Studies on Ground Water Quality of Patan City, North Gujarat, India. Nat. Environ. and Pollution Tech. 7, 27-32.
[57]
Qian H., Chen J., Howard K.W.F., 2020. Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environ. Pol. 263, 114669. 10.1016/j.envpol.2020.114669.
[58]
Rina K., Datta P.S., Singh C.K., Mukherjee S., 2014. Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat, India. Environ. Earth Sci. 71, 1711-1719. 10.1007/s12665-013-2575-9.
[59]
Rodell M., Velicogna I., Famiglietti J.S., 2009. Satellite-based estimates of groundwater depletion in India. Nature. 460, 999-1002.
[60]
Rosen L., 1994. Study of the DRASTIC methodology with the emphasis on Swedish conditions. In: 37th Conference of the International Association for Great Lakes Research and Estuaire Research Federation. Buffalo, p. 166.
[61]
Roy A., Keesari T., Mohokar H., Sinha U.K., Bitra S., 2018. Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Appl. Water Sci. 8. 10.1007/s13201-018-0761-3.
[62]
Roy A., Keesari T., Pant D., Rai G., Sinha U. K., Mohokar H., Jaryal A., Sharma D., 2022. Unravelling 30 ka recharge history of an intensely exploited multi-tier aquifer system in North West India through isotopic tracers - Implications on deep groundwater sustainability. Sci. Total Environ. 807. 151401. 10.1016/j.scitotenv.2021.151401.
[63]
Rozanski K., Araguás-Araguás L., Gonfiantini, Roberto., 1992. Isotopic patterns in Global Precipitation. j.Geophy. Res. 78. 10.1029/GM078p0001.
[64]
Saravanan S., Pitchaikani S., Venkatesan G., 2020. Assessment and evaluation of groundwater vulnerability index maps of Upper Palar River Basin, Tamilnadu, India. j.Earth Syst. Sci. 129. 10.1007/s12040-020-01425-w.
[65]
Sarkar S., Mukherjee A., Duttagupta S., Bhanja S.N., Bhattacharya A., Chakraborty S., 2021. Vulnerability of groundwater from elevated nitrate pollution across India: Insights from spatio-temporal patterns using large-scale monitoring data. j.Contam. Hydrol. 243, 103895. 10.1016/j.jconhyd.2021.103895.
[66]
Sener E., Sener S., Davraz A., 2009. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydrogeol. J. 17, 2023e2035.
[67]
Sharma M. K., Jain C. K.,Tamma R.G., Gurunadha R.V. V. S., 2015. Modelling of lindane transport in groundwater of metropolitan city Vadodara, Gujarat, India. Environ. Monit. Assess. 187, 295. 10.1007/s10661-015-4522-6.
[68]
Shrestha S., Semkuyu D.J., Pandey V.P., 2016. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Sci. Total Environ. 556, 23-35. 10.1016/j.scitotenv.2016.03.021.
[69]
Smalling K.L., Devereux O.H., Gordon S.E., Phillips P.J., Blazer V.S., Hladik M.L., Kolpin D.W., Meyer M.T., Sperry A.J., Wagner T., 2021. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. Sci. Total Environ. 774, 145687. 10.1016/j.scitotenv.2021.145687.
[70]
T., Almeida P., Carvalho D.A.,Ribeiro L., 2002. Influence of irrigation on groundwater nitrate concentrations in areas considered to have low vulnerability to contamination. Proc XXXII IAH & VI ALHSUD Congress, Oct. 2002, Mar del Plata,
[71]
Tilahun K., Merkel B., 2009. Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ. Earth Sci. 59, 1485-1496. 10.1007/s12665-009-0134-1.
[72]
USGS, 2012. TracerLPM (Version 1): An Excel® Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data by Bryant C. Jurgens, j.K. Böhlke, and Sandra M. Eberts.
[73]
Vías J., Andreo B., Perles M., Carrasco F., Vadillo I., Gavilán P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 14. 912-925. 10.1007/s10040-006-0023-6.
[74]
Vrzel J., Solomon D.K., Blazeka Z., Ogrinc N., 2018. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). j.Hydrol. 556, 384-396.
[75]
Yu G., Wang J., Liu L., Li Y., Zhang Y., Wang S., 2020. The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. BMC Public Health 20. 10.1186/s12889-020-08583-y.
PDF(7927 KB)

290

Accesses

0

Citations

Detail

Sections
Recommended

/