Major, trace element and Sr-Nd isotope evidence for a sublithospheric mantle source for the Umkondo large igneous province

Ben Hayes, Lewis D. Ashwal, Khulekani B. Khumalo, Linda M. Iaccheri

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101719.

PDF(10227 KB)
Geoscience Frontiers All Journals
PDF(10227 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101719. DOI: 10.1016/j.gsf.2023.101719
Research Paper

Major, trace element and Sr-Nd isotope evidence for a sublithospheric mantle source for the Umkondo large igneous province

Author information +
History +

Abstract

The Mesoproterozoic (1.11 Ga) Umkondo large igneous province (LIP) in southern Africa and Antarctica was emplaced in < 5 Myr and is dominated by low-Ti tholeiitic doleritic-gabbroic sills. It is of particular interest because it is the least studied LIP in southern Africa with both sublithospheric and lithospheric mantle sources proposed and it coincides with the early assembly of Rodinia, so it has importance in understanding the nature of magmatism and tectonics in and around the Kalahari craton during the Mesoproterozoic. In this study, we compiled a large database of existing (~750) and new (~100) major and trace element data for the Umkondo province, as well as 42 new Sr-Nd isotopic measurements, to provide constraints on its magma sources and geochemical evolution. Major element compositional variations in the low-Ti tholeiites are explained by low-pressure (1 kbar) three-phase fractional crystallisation (olivine, clinopyroxene and plagioclase) of a parent magma with ~ 10 wt.% MgO in oxidising conditions (QFM + 1). Inverse models show that the low-Ti tholeiitic magmas were derived as residual melts after the crystallization of 12%-33% olivine from primary komatiitic-basaltic magmas (up to ~ 20 wt.% MgO) in equilibrium with mantle olivine (Fo90). Low Sm/Yb and TiO2/Yb-Nb/Yb indicate that the primary magmas were derived by 2%-20% shallow (40-50 km) partial melting of spinel lherzolite. High Sm/Yb is restricted to dyke swarms and may imply limited magma production from deeper (up to ~ 70 km) garnet lherzolite-like sources. The low-Ti tholeiites of the Umkondo province are enriched in large ion lithophile elements (Rb-Sr-Cs-K) and depleted in high-field strength elements (Zr-Hf-Nb-Ta), indicating the involvement of crustal material and/or the subcontinental lithospheric mantle. This is supported by covariations in Th/Nb, Nb/Yb, Nb/La and Ce/Sm with generally negative ΔNb. Sr-Nd isotopes lend support to the notion that the Umkondo magmas were derived from depleted and/or enriched sublithospheric mantle sources and subsequently contaminated by enriched lithospheric material during emplacement (initial (at 1.11 Ga) 87Sr/86Sr between 0.704820 and 0.737464 and εNd between -8.9 and +5.3). The Vredefort sills are significant as they display the most depleted Sr-Nd isotopic signatures (average initial 87Sr/86Sr of 0.705342 and average εNd of 0.4) and are the least contaminated magma suite in the Umkondo province. Because of (i) the large volume of low-Ti magmas, (ii) evidence of a primary hot and MgO-rich (komatiitic) magma, and (iii) the short duration of magmatism, we suggest that the Umkondo province was formed by plume-induced melting of the sublithospheric mantle beneath the Kalahari craton in an extensional setting. This contrasts with previous suggestions that the heat source developed in response to the “thermal insulation” of the mantle beneath a thickened Kalahari craton in the absence of a mantle plume. There is further evidence from the elevated Zn/Fe that the sublithospheric mantle was lithologically heterogeneous and consisted of mixed peridotite and pyroxenite domains. There is a general lack of ultramafic cumulates in the low-Ti magma suite that may imply there was deeper ponding and storage of the primary magmas that fractionated large quantities of ultramafic rocks. There is also a paucity of high-Ti rocks in the Umkondo province that may reflect limited direct melting of the lithospheric mantle or that they are simply not as well-preserved in this province compared to the Karoo province. The similar trace element and Sr-Nd isotopic compositions of the Umkondo sills in southern Africa with the Borgmassivet sills in Antarctica support the concept that the Kalahari craton and Grunehogna terrane were adjoined at 1.11 Ga. The timing of the Umkondo province indicates there was localised lithospheric extension and upwelling asthenospheric mantle during a time of dominantly compressional tectonics on Earth at the end of the ‘boring billion’.

Keywords

Umkondo large igneous province / Low-Ti magma / Continental tholeiites / Sublithospheric mantle sources / Kalahari craton / Rodinia

Cite this article

Download citation ▾
Ben Hayes, Lewis D. Ashwal, Khulekani B. Khumalo, Linda M. Iaccheri. Major, trace element and Sr-Nd isotope evidence for a sublithospheric mantle source for the Umkondo large igneous province. Geoscience Frontiers, 2024, 15(1): 101719 https://doi.org/10.1016/j.gsf.2023.101719

References

[1]
Allsopp H.J., Kramers J.D., Jones D.L., Erlank A.J., 1989. The age of the Umkondo Group, Eastern Zimbabwe, and implications for palaeomagnetic correlations. S. Afr. j.Geol. 92, (1), 11-19.
[2]
Andersen D.L., 1994. The sublithospheric mantle as the source of continental flood basalts; The case against the continental lithosphere and plume head reservoirs. Earth Planet. Sci. Lett. 123, (1), 269-280.
[3]
Arndt N.T., Christensen U., 1992. The role of lithospheric mantle in continental flood volcanism; Thermal and geochemical constraints. j.Geophys. Res.: Solid Earth 97, 10967-10981.
[4]
Arndt N.T., Czamanske G.K., Wooden J.L., Fedorenko V.A., 1993. Mantle and crustal contributions to continental flood volcanism. Tectonophysics 223 (1-2), 39-52.
[5]
Arndt N. T., Chauvel C., Czamanske G.K., Fedorenko V., 1998. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River Basin, Siberian flood volcanic province. Contrib. Mineral. Petrol. 133 (3), 297-313.
[6]
Ashwal L.D., 2021, Sub-lithospheric mantle sources for overlapping southern African large igneous provinces. S. Afr. j.Geol. 124 (2), 421-442.
[7]
Ashwal L.D., Ziegler A., Glynn S., Truebody T., Bolhar R., 2021. Sr-enriched glassy picrites from the Karoo large igneous province are evolved, not primitive magmatic rocks. Geochem. Geophys. Geosyst. 22, e2020GC009561. https://doi.org/10.1029/2020GC009561.
[8]
Ashwal L.D., Webb S.J., Knoper M.W., 2005. Magmatic stratigraphy in the Bushveld Northern Lobe; Continuous geophysical and mineralogical data from the 2950 m Bellevue drillcore. S. Afr. j.Geol. 108 (2), 199-232.
[9]
Beard C.D., Scoates J.S., Weis D., Bédard J.H., Dell’Oro T.A., 2017. Geochemistry and origin of the Neoproterozoic Natkusiak flood basalts and related Franklin sills, Victoria Island, Arctic Canada. j.Petrol. 58 (11), 2191-2220.
[10]
Bédard J.H., Saumur B.M., Tegner C., Troll V.R., Deegan F.M., Evenchick C.A., Grasby S.E., Dewing K., 2021. Geochemical systematics of High Arctic large igneous province continental tholeiites from Canada-Evidence for progressive crustal contamination in the plumbing system. j.Petrol. 62 (9), egab041.https://doi.org/10.1093/petrology/egab041.
[11]
Bourdeau J.E., Hayes B., Zhang S.E., Logue A. Bybee G.M., 2022. Origin and significance of noritic blocks in layered anorthosites in the Bushveld Complex, South Africa. Contrib. Mineral. Petrol. 177 (1), 1-26.
[12]
Bristow J.W., Armstrong R.A., Allsopp H.L., 1982. A note on the geology and geochronology of the Tsange gabbros. Trans. Geol. Soc. S. Afr. 85 (3), 135-139.
[13]
Bullen D.S., 2005. The petrology of Proterozoic mafic sills in southern Africa. PhD thesis, University of Portsmouth, 397 pp.
[14]
Bullen D.S., Hall R.P., Hanson R.E., 2012. Geochemistry and petrogenesis of mafic sills in the 1.1 Ga Umkondo large igneous province, southern Africa. Lithos 142, 116-129.
[15]
Carlson R.W., Lugmair G.W., Macdougall J.D., 1981. Columbia River volcanism; The question of mantle heterogeneity of crustal contamination. Geochim. Cosmochim. Acta 45 (12), 2483-2499.
[16]
Choudhary B.R., Ernst R.E., Xu G.Y., Evans D.A.D., de Kock M.O., Meert J.G., Ruiz A.S., Lima G.A., 2019. Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambrian Res. 332, 105382. https://doi.org/10.1016/j.precamres.2019.105382.
[17]
Cole J., Finn C.A., Webb S.J., 2021. Geometry of the Bushveld Complex from 3D potential field modelling. Precambrian Res. 106219.
[18]
Coltice N., Bertrand H., Rey P., Jourdan F., Phillips B.R., Ricard Y., 2009. Global warming of the mantle beneath continents back to the Archaean. Gondwana Res. 15 (3-4), 254-266.
[19]
Condie K.C., 1997. Sources of Proterozoic mafic dyke swarms; Constraints from Th-Ta and La-Yb ratios. Precambrian Res. 81 (1-2), 3-14.
[20]
Condie K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, 306 pp.
[21]
Corner B., Verran D.R., Hildebrand P.R., 2012. Geophysical interpretation of the nature and extent of the Xade Mafic Complex, Botswana. S. Afr. j.Geol. 115 (4), 485-498.
[22]
Courtillot V., Jaupart C., Manighetti I., Tapponnier P., Besse J., 1999. On casual links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166 (3-4), 177-195.
[23]
Courtillot V.E, Renne P.R., 2003. On the ages of flood basalt events. C.R. Geosci. 335 (1), 113-140.
[24]
Cox K.G., 1980. A model for flood basalt volcanism. j.Petrol. 21 (4), 629-650.
[25]
Cox K.G., MacDonald R., Hornung G., 1967. Geochemical and petrographic provinces in the Karroo basalts of southern Africa. Am. Mineral. 52 (9-10), 1451-1474.
[26]
Dalziel I.W., 2023. Rodinia palaeogeography: Laurentia as the geological ‘Key’. Geol. Soc. London Spec. Pub. 542 (1), SP542-2022.
[27]
de Kock M.O., Ernst R.E., Söderlund U., Jourdan F., Hofmann A., Le Gall B., Bertrand H., Chisonga B.C., Beukes N., Rajesh H.M., 2014. Dykes of the 1.11 Ga Umkondo LIP, southern Africa; Clues to a complex plumbing system. Precambrian Res. 249, 129-143.
[28]
DePaolo D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53 (2), 189-202.
[29]
Dockman D.M., Pearson D.G., Heaman L.M., Gibson S.A., Sarkar C., 2018. Timing and origin of magmatism in the Sverdrup Basin, northern Canada-Implications for lithospheric evolution in the High Arctic large igneous province (HALIP). Tectonophysics 742, 50-65.
[30]
Elburg M., Goldberg A., 2000. Age and geochemistry of Karoo dolerite dykes from northeast Botswana. j.Afr. Earth Sci. 31 (3-4), 539-554.
[31]
Ellam R.M., Cox K.G., 1991. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet. Sci. Lett. 105 (1-3), 330-342.
[32]
Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, 653 pp.
[33]
Ernst R.E., Head J.W., Parfitt E., Grosfils E., Wilson L., 1995. Giant radiating dyke swarms on Earth and Venus. Earth Sci. Rev. 39 (1-2), 1-58.
[34]
Ernst R.E., Pereira E., Hamilton M.A., Pisarevsky S.A., Rodriques J., Tassinari C.G., Teixeira W., Van-Dunem V., 2013. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton; Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res. 230, 103-118.
[35]
Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S., Taylor R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett. 153 (3-4), 197-208.
[36]
Gallagher K., Hawkesworth C., 1992. Dehydration melting and generation of continental flood basalts. Nature 358 (6381), 57-59.
[37]
Ghiorso M.S., Gualda G.A., 2015. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169 (6), 1-30.
[38]
Gibson S.A., Geist D.G., Day J.A., Dale C.W., 2012. Short wavelength heterogeneity in the Galapagos plume: Evidence from compositionally diverse basalts on Isla Santiago. Geochem. Geophys. Geosyst. 13 (9), Q09007.
[39]
Gose W.A., Hanson R.E., Dalziel I.W.D., Pancake J.A., Seidel E.K., 2006. Paleomagnetism of the 1.1 Ga Umkondo large igneous province in southern Africa. j.Geophys. Res.: Solid Earth 111, B09101, https://doi.org/10.1029/2005JB003897.
[40]
Groenewald P.B., Moyes A.B., Grantham G.H., Krynauw J.R., 1995. East Antarctic crustal evolution; Geological constraints and modelling in western Dronning Maud Land. Precambrian Res. 75 (3-4), 231-250.
[41]
Gualda G.A., Ghiorso M.S., Lemons R.V., Carley T.L., 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. j.Petrol. 53 (5), 875-890.
[42]
Hanson R.E., Martin M.W., Bowring S.A., Munyanyiwa H., 1998. U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe; 1.1 Ga large igneous province in southern Africa-east Antarctica and possible Rodinia correlations. Geology 26 (12), 1143-1146.
[43]
Hanson R.E., Crowley J.L., Bowring S.A., Ramezani J., Gose W.A., Dalziel I.W.D., Pancake J.A., Seidel E.K., Blenkinsop T.G., Mukwakwami J., 2004. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science 304 (5674), 1126-1129.
[44]
Hanson R.E., Harmer R.E., Blenkinsop T.G., Bullen D.S., Dalziel I.W.D., Gose W.A., Hall R.P., Kampunzu A.B., Key R.M., Mukwakwami J., 2006. Mesoproterozoic intraplate magmatism in the Kalahari craton; A review. j.Afr. Earth Sci. 46 (1-2), 141-167.
[45]
Hargraves R.N., 1994. Palaeomagnetic results from the Timbavati gabbros in the Kruger National Park, South Africa. S. Afr. j.Geol. 97 (2), 114-118.
[46]
Hart S.R., Hauri E.H., Oschmann L.A., Whitehead J.A., 1992. Mantle plumes and entrainment; Isotopic evidence. Science 256 (5056), 517-520.
[47]
Heinonen J.S., Luttinen A.V., Riley T.R., Michallik R.M., 2013. Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos 177, 366-380.
[48]
Heinonen J.S., Luttinen A.V., Bohrson W.A., 2016. Enriched continental flood basalts from depleted mantle melts; Modeling the lithospheric contamination of Karoo lavas from Antarctica. Contrib. Mineral. Petrol. 171 (1) 1-22.
[49]
Herzberg C., Asimow P.D., 2015. PRIMELT 3 MEGA.XLSM software for primary magma calculation; peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16 (2), 563-578.
[50]
Hofmann A.W., 1997, Mantle geochemistry; The message from oceanic volcanism. Nature 385 (6613), 219-229.
[51]
Howarth G.H., Harris C., 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth Planet. Sci. Lett. 475, 143-151.
[52]
Jackson M.G., Weis D., Huang S., 2012. Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics. Geochemistry, Geophysics, Geosystems 13 (9).
[53]
Jones D.L., Bates M.P., Li, Z-X., Corner B., Hodgkinson G., 2003. Palaeomagnetic results from the ca. 1130 Ma Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, Antarctica, and tectonic implications. Tectonophysics 375 (104), 247-260.
[54]
Jones D.L., McElhinny M.W., 1966, Paleomagnetic correlation of basic intrusions in the Precambrian of southern Africa. j.Geophys. Res. 71 (2), 543-552.
[55]
Jourdan F., Bertrand H., Schärer U., Blichert-Toft J., Féraud G., Kampunzu A.B., 2007. Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe; Lithospheric vs mantle plume contribution. j.Petrol. 48 (6), 1043-1077.
[56]
Jourdan F., Bertrand H., Féraud G., Le Gall B., Watkeys M.K., 2009. Lithospheric mantle evolution monitored by overlapping large igneous provinces; A case study in southern Africa. Lithos 107 (3-4), 257-268.
[57]
Klausen M.B., 2020. Conditioned duality between supercontinental ‘assembly’ and ‘breakup’ LIPs. Geosci. Front. 1635-1649.
[58]
Le Maitre R.W., 1984. A proposal by the IUGS Subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali-silica (TAS diagram); on behalf of the IUGS Subcommission of igneous rocks. Aust. j.Earth Sci. 31 (2), 243-255.
[59]
Le Roux, V., Lee, C-TA., 2010. Zn/Fe systematics in mafic and ultramafic systems; Implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74 (9), 2779-2796.
[60]
Luttinen A.V., 2018. Bilateral geochemical asymmetry in the Karoo large igneous province. Sci. Rep. 8 (1), 1-11.
[61]
Marsh J.S., Bowen M.P., Rogers N.W., Bowen T.B., 1992. Petrogenesis of late Archaean flood-type basic lavas from the Klipriviersberg Group, Ventersdorp Supergroup, South Africa. j.Petrol. 33 (4), 817-847.
[62]
Matzen A.K., Baker M.B., Beckett J.R., Stolper E.M., 2011. Fe-Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. j.Petrol. 52 (7-8), 1243-1263.
[63]
McDonough W.F., Sun, S-S., 1995. The composition of the Earth. Chem. Geol. 120 (3-4), 223-253.
[64]
McElhinny M.W., Opdyke N.D., 1964. The Palaeomagnetism of the Precambrian dolerites of eastern southern Rhodesia, an example of geologic correlation by rock magnetism. j.Geophys. Res. 69 (12), 2465-2475.
[65]
Meert J.G., Torsvik T.H., 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375 (1-4), 261-288.
[66]
Moabi N.G., Grantham G.H., Roberts J., Le Roux P., Matola R., 2015. The geology and geochemistry of the Espungabera Formation of central Mozambique and its tectonic setting on the eastern margin of the Kalahari craton. j.Afr. Earth Sci. 101, 96-112.
[67]
Moabi N.G., Grantham G.H., Roberts J., Le Roux P., 2017. The geology and geochemistry of the Straumsnutane Formation, Straumsnutane, western Dronning Maud Land, Antarctica and its tectonic setting on the western margin of the Kalahari craton; Additional evidence linking it to the Umkondo large igneous province. Geol. Soc. London Spec. Pub. 457 (1), 61-85.
[68]
Moyes A.B., Krynauw J.R., Barton J.M., 1995. The age of the Ritscherflya Supergroup and Borgmassivet intrusions, Dronning Maud Land, Antarctica. Antarct. Sci. 7 (1), 87-97.
[69]
Muedi T.S., MacLennan S.A., Szymanowski D., Schoene B., Ramezani J., Oalmann J., Linol B., 2022. Constraining the timescales of mafic magmatism of the central Karoo large igneous province using high precision U-Pb zircon geochronology. S. Afr. j.Geol. 125 (1), 99-112.
[70]
Munyanyiwa H., 1999. Geochemical study of the Umkondo dolerites and lavas in the Chimanimani and Chipinge districts (eastern Zimbabwe) and their regional implications. j.Afr. Earth Sci. 28 (2), 349-365.
[71]
Pancake J.A., 2001. Palaeomagnetism and geochronology of Mesoproterozoic mafic and felsic sills in southeast Botswana. MSc thesis, Texan Christian University, 163 pp.
[72]
Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 (1-4), 14-48.
[73]
Pearce J.A., Ernst R.E., Peate D.W., Rogers C., 2021. LIP printing: Use of immobile element proxies to characterise large igneous provinces in the geologic record. Lithos 392, 106068. https://doi.org/10.1016/j.lithos.2021.106068.
[74]
Reimold W.U., Pybus G.Q.J., Kruger F.J., Layer P.W., Koeberl C., 2000. The Anna’s Rust Sheet and related gabbroic intrusions in the Vredefort Dome-Kibaran magmatic event on the Kaapvaal craton and beyond?. j.Afr. Earth Sci. 31 (3-4), 499-521.
[75]
Riley T.R., Millar I.L., 2014. Geochemistry of the 1100 Ma intrusive rocks from the Ahlmannryggen region, Dronning Maud Land, Antarctica. Antarct. Sci. 26 (4), 389-399.
[76]
Rooney T.O., Nelson W.R., Ayalew D., Hanan B., Yirgu G., Kappelman J., 2017. Melting the lithosphere: Metasomes as a source for mantle-derived magmas. Earth Planet. Sci. Lett. 461, 105-118.
[77]
Salminen J., Hanson R.E., Evans D.A.D., Gong Z., Larson T., Walker O., Gumsley A., Söderlund U., Ernst R.E., 2018. Direct Mesoproterozoic connection of the Congo and Kalahari cratons in proto-Africa; Strange attractors across Supercontinental cycles. Geology 46 (11), 1011-1014.
[78]
Santosh M., Groves D.I., 2023. The Not-So-Boring Billion: A metallogenetic conundrum during the evolution from Columbia to Rodinia supercontinents. Earth Sci. Rev. 104287.
[79]
Saunders A.D., Norry M.J., Tarney J., 1988. Origin of MORB and chemically-depleted mantle reservoirs; Trace element constraints. j.Petrol. 1, 415-445.
[80]
Shellnutt J.G., 2014. The Emeishan large igneous province: a synthesis. Geosci. Front. 5 (3), 369-394.
[81]
Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S-L., Danyushevsky L.V., Elliott T., Frey F.A., Garcia M.O., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316 (5823), 412-417.
[82]
Sun, S-S.,McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; Implications for mantle composition and processes. Geol. Soc. London Spec. Pub. 42 (1), 313-345.
[83]
Svensen H., Corfu F., Polteau S., Hammer Ø., Planke S., 2012. Rapid magma emplacement in the Karoo large igneous province. Earth Planet. Sci. Lett. 325, 1-9.
[84]
Swanson-Hysell N.L., Kilian T.M., Hanson R.E., 2015. A new grand mean palaeomagnetic pole for the 1.11 Ga Umkondo large igneous province with implications for palaeogeography and the geomagnetic field. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 203 (3), 2237-2247.
[85]
Tegner C., Michelis S.A.T., McDonald I.D., Brown E.L., Youbi N., Callegaro S., Lindström S., Marzoli A., 2019. Mantle dynamics of the Central Atlantic Magmatic Province (CAMP); Constraints from Platinum Group, Gold and Lithophile elements in flood basalts of Morocco. j.Petrol. 60 (8), 1621-1652.
[86]
Turner S.J., Hawkesworth C., Gallagher K., Stewart K., Peate D., Mantovani M., 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents; Assessment of a conductive heating model and application to the Paraná. j.Geophys. Res.: Solid Earth 101 (B5), 11503-11518.
[87]
Vervoort J.D., Wirth K., Kennedy B., Sandland T., Harpp K.S., 2007. The magmatic evolution of the Midcontinent rift: New geochronologic and geochemical evidence from felsic magmatism. Precambrian Res. 157, 235-268.
[88]
Ward S.E., 2002. The petrogenesis of the Mesoproterozoic mafic dykes and sills of Zimbabwe. PhD thesis, University of Portsmouth, 357 pp.
[89]
Watson R.L.A., 1969. The geology of the Cashel, Melsetter and Chipinga areas. Bulletin of the Geological Survey of Rhodesia 60, 85 pp.
[90]
Weis D., Garcia M.O., Rhodes J.M., Jellinek M., Scoates J.S., 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geoscience 4 (12), 831-838.
[91]
White R.S., McKenzie D.A., 1995. Mantle plumes and flood basalts. j.Geophys. Res.: Solid Earth 100 (B9), 17543-17585.
[92]
Wilson J.F., Jones D.L., Kramers J.D., Halls H.C., Fahrig W.F., 1987. Mafic dyke swarms in Zimbabwe. Mafic Dyke Swarms, Geological Association of Canada Special Paper 34, 433-444.
[93]
Wooden J.L., Czamanske G.K., Fedorenko V.A., Arndt N.T., Chauvel C., Bouse R.M., King B.S.W., Knight R.J., Siems D.F., 1993. Isotopic and trace-element constraints on the mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57 (15), 3677-3704.
[94]
Xu Y.G., He B., Chung S.L., Menzies M.A., Frey F.A., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32 (10), 917-920.
[95]
Zhang, H-F., Goldstein S.L., Zhou, X-H., Sun M., Zheng, J-P.,Cai, Y., 2008. Evolution of subcontinental lithospheric mantle beneath eastern China; Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib. Mineral. Petrol. 155 (3), 271-293.
PDF(10227 KB)

282

Accesses

0

Citations

Detail

Sections
Recommended

/