Mantle contributions to granitoids associated with Sn mineralization: Geochemical and isotopic evidence from the giant Dachang deposit, South China

Tingyi Wang, Qihai Shu, Xiaoping Xia, Chao Li, Yanning Wang, Jiahao Chen, Xiang Sun, M. Santosh, Qingfei Wang

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101718.

PDF(10174 KB)
Geoscience Frontiers All Journals
PDF(10174 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101718. DOI: 10.1016/j.gsf.2023.101718
Research Paper

Mantle contributions to granitoids associated with Sn mineralization: Geochemical and isotopic evidence from the giant Dachang deposit, South China

Author information +
History +

Abstract

Major Sn deposits are commonly linked to crust-derived and highly evolved granites, with magma generation aided by mantle heating. However, whether and how the mantle components contribute to Sn polymetallic mineralization remains unclear. In this study, in combination with a compilation of equivalent data in the region, we provide new constraints on this issue based on detailed investigations on the petrogenesis and metallogenic significance of granitoids including the causative batholith and later granodiorite porphyry dike in the giant Dachang Sn deposit from South China. The former has zircon U-Pb ages of 93-91 Ma and belongs to highly evolved S-type biotite granite, which experienced fractionation of massive feldspar. The latter shows zircon U-Pb ages of 90 Ma and displays I-type granite features. The batholith was mainly derived from the dehydration melting of biotite in the metasedimentary sources, as revealed by the relatively low whole-rock Pb contents (<30 ppm) and high Ba/Pb ratios (2.71-17.1) and initial T(ti-zr) of 790 ℃. Compared with the adjacent crust-derived S-type granites (-24.8 - -5.1) and I-type granites (-11.0 to -5.2), the Dachang S-type biotite granites present higher zircon εHf(t) values (-9.1 to -2.1). Furthermore, the low magmatic zircon δ18O values (6.2 ‰) and higher apatite LREE (3277-4114 ppm) and Sr (1137-1357 ppm) contents than of arc-type basic rocks were discerned. These characteristics jointly hint the contributions of mantle components. The higher initial T(ti-zr) (>850 ℃), whole-rock Mg# (52 to 58), apatite εNd(t) (-9.2 to -6.5) and zircon εHf(t) (-7.6 to 2.5) values but lower zircon δ18O values (6.33 to 8.30 ‰) of the later granodiorite porphyry dike than those of the batholith also suggest that mantle material was involved in the generation of the dikes, which is evident by the variational features of zircon and apatite trace elements. In addition, at the zircon Hf <12000 ppm and Eu/Eu* > 0.05, the higher zircon ΔFMQ values (mostly from -1.8 to 2.0) and H2O contents (100-1100 ppm) of the Dachang granitoids than the pure crust-derived S-type granites (ΔFMQ = mostly from -3.7 to -1.5; H2O < 100 ppm) imply that mantle materials involved are relatively rich in water and oxidized. These suggest that the addition of mantle components is conducive to the extraction of Sn from metasedimentary sources, and moderately facilitates the increase of oxygen fugacity which still maintains the incompatibility of Sn in magmas with ΔFMQ < 2. Also, the involvement of mantle components upgrades the H2O contents in S-type magmas, favoring the migration of ore-forming elements from magmas to hydrothermal fluids. The sediment-derived causative granites displayed higher εHf(t) and εNd(t) values with greater Sn tonnages of their associated world-class Sn polymetallic deposits, supporting the opinion that the contributions of mantle components play an important role in the generation of giant Sn deposits.

Keywords

Highly evolved S-type biotite granite / I-type granodiorite porphyry dike / Crust-mantle mixing / Mantle contributions / Dachang Sn mineralization

Cite this article

Download citation ▾
Tingyi Wang, Qihai Shu, Xiaoping Xia, Chao Li, Yanning Wang, Jiahao Chen, Xiang Sun, M. Santosh, Qingfei Wang. Mantle contributions to granitoids associated with Sn mineralization: Geochemical and isotopic evidence from the giant Dachang deposit, South China. Geoscience Frontiers, 2024, 15(1): 101718 https://doi.org/10.1016/j.gsf.2023.101718
The publisher regrets that Supplementary Table S6 was mistakenly uploaded as Supplementary Table S2 for this article. The correct Supplementary Table S2 is thus provided below.
The publisher would like to apologise for any inconvenience caused.

References

[1]
Andersen T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 192, 59-79.
[2]
Bea F., Pereira M.D., Stroh A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 117, 291-312.
[3]
Bindeman I.N., Valley J.W., 2001. Low-δ18O Rhyolites from Yellowstone: Magmatic Evolution Based on Analyses of Zircons and Individual Phenocrysts. j.Petrol. 42, 1491-1517.
[4]
Breiter K., Lamarão C.N., Borges R.M.K., Dall’Agnol R., 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 192-195, 208-225.
[5]
Brooks C.K., Henderson P., Rønsbo J.G., 1981. Rare-earth partition between allanite and glass in the obsidian of Sandy Braes, Northern Ireland. Mineral. mag. 44, 157-160.
[6]
Cai M., Mao J., Liang T., Franco P., Huang H., 2007. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: clues from fluid inclusions and He isotope systematics. Miner. Deposita 42, 613-626.
[7]
Cao M., Evans N.J., Hollings P., Cooke D.R., McInnes B.I.A., Qin K., 2021. Apatite Texture, Composition, and O-Sr-Nd Isotope Signatures Record Magmatic and Hydrothermal Fluid Characteristics at the Black Mountain Porphyry Deposit, Philippines. Econ. Geol. 116, 1189-1207.
[8]
Chang Z., Shu Q., Meinert L., 2019. Skarn deposits of China. Society of Economic Geologists, Special Publication. 189-234.
[9]
Chappell B.W., Bryant C.J., Wyborn D., 2012. Peraluminous I-type granites. Lithos 153, 142-153.
[10]
Charoy B., Barbey P., 2008. Ferromagnesian silicate association in S-type granites: the Darongshan granitic complex (Guangxi, South China). B. Soc. Geol. Fr. 179, 13-27.
[11]
Chen X.-C., Hu R.-Z., Bi X.-W., Zhong H., Lan J.-B., Zhao C.-H., Zhu J.-J., 2015. Zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes of the Bozhushan granite, Yunnan province, SW China: Constraints on petrogenesis and tectonic setting. j.Asian Earth Sci. 99, 57-71.
[12]
Chen Y., Huang M., Xu Y., Hu Y., Tang S., Li Y., Meng L., 1993. Tin deposits of Dachang:Beijing, China Geological Publishing House 368 p (in Chinese).
[13]
Chen X., Huang W., Chen L., Zou S., Zhang J., Li K., Liang H., 2021. Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the neighbor Yidun arc. Ore Geol. Rev. 139, 104554.
[14]
Cheng Y., Mao J., 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos 120, 258-276.
[15]
Cheng Y., Mao J., Chang Z., Pirajno F., 2013a. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geol. Rev. 53, 50-62.
[16]
Cheng Y., Mao J., Spandler C., 2013b. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos 175-176, 213-229.
[17]
Clark C., Fitzsimons I.C.W., Healy D., Harley S.L., 2011. How Does the Continental Crust Get Really Hot? Elements 7, 235-240.
[18]
Collins W.J., Murphy J.B., Johnson T.E., Huang H.-Q., 2020. Critical role of water in the formation of continental crust. Nat. Geosci. 13, 331-338.
[19]
Dailey S.R., Christiansen E.H., Dorais M.J., Kowallis B.J., Fernandez D.P., Johnson D.M., 2018. Origin of the fluorine- and beryllium-rich rhyolites of the Spor Mountain Formation, Western Utah. Am. Mineral. 103, 1228-1252.
[20]
De Hoog J.C.M., Lissenberg C.J., Brooker R.A., Hinton R., Trail D., Hellebrand E., 2014. Hydrogen incorporation and charge balance in natural zircon. Geochim. Cosmochim. Acta 141, 472-486.
[21]
Deering C.D., Keller B., Schoene B., Bachmann O., Beane R., Ovtcharova M., 2016. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology 44, 267-270.
[22]
Deng J. et al., 2022. Tibetan ore deposits: A conjunction of accretionary orogeny and continental collision. Earth Sci. Rev. 235, 104245.
[23]
Deng J., Wang Q., Li G., 2017. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Res. 50, 216-266.
[24]
Deng J., Zhai Y., Mo X., Wang Q., 2019. Temporal-spatial distribution of metallic ore deposits in China and their geodynamic settings. Soc. Econ. Geol. 22, 103-132.
[25]
Dilles J.H., Kent A.J.R., Wooden J.L., Tosdal R.M., Koleszar A., Lee R.G., Farmer L.P., 2015. ZIRCON COMPOSITIONAL EVIDENCE FOR SULFUR-DEGASSING FROM ORE-FORMING ARC MAGMAS. Econ. Geol. 110, 241-251.
[26]
Dixon J.E., Dixon T.H., Bell D.R., Malservisi R., 2004. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451-467.
[27]
Duc-Tin Q., Audétat A., Keppler H., 2007. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700℃, 140MPa: A LA-ICP-MS study on synthetic fluid inclusions. Geochim. Cosmochim. Acta 71, 3323-3335.
[28]
Dudas M.J., Schmitt R.A., Harward M.E., 1971. Trace element partitioning between volcanic plagioclase and dacitic pyroclastic matrix. Earth Planet. Sci. Lett. 11, 440-446.
[29]
Dunn T., Sen C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochim. Cosmochim. Acta 58, 717-733.
[30]
Ewart A., Griffin W.L., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem. Geol. 117, 251-284.
[31]
Farges F., Linnen R.L., Brown G.E., 2006. REDOX AND SPECIATION OF TIN IN HYDROUS SILICATE GLASSES: A COMPARISON WITH Nb, Ta, Mo AND W. Can. Mineral. 44, 795-810.
[32]
Ferry J.M., Watson E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154, 429-437.
[33]
Finger F., Schiller D., 2012. Lead contents of S-type granites and their petrogenetic significance. Contrib. Mineral. Petrol. 164, 747-755.
[34]
Fisher C.M., Vervoort J.D., Hanchar J.M., 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 363, 125-133.
[35]
Frost C.D., Frost B.R., Beard J.S., 2016. On silica-rich granitoids and their eruptive equivalents. Am. Mineral. 101, 1268-1284.
[36]
Fu M., Changkakoti A., Krouse H.R., Gray J., Kwak T.A.P., 1991. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, China. Econ. Geol. 86, 1683-1703.
[37]
Fu M., Kwak T.A.P., Mernagh T.P., 1993. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People’s Republic of China. Econ. Geol. 88, 283-300.
[38]
Fujimaki H., 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib. Mineral. Petrol. 94, 42-45.
[39]
Gardiner N.J., Hawkesworth C.J., Robb L.J., Whitehouse M.J., Roberts N.M.W., Kirkland C.L., Evans N.J., 2017. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Sci. Rep. 7, 748.
[40]
Goldoff B., Webster J.D., Harlov D.E., 2012. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am. Mineral. 97, 1103-1115.
[41]
Guo J., 2019. Tin mineralization events and fertility of granitoids in the Youjiang Basin, South China: The Gejiu and Dachang Sn-polymetallic districts as examples (Doctor). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 1-232 (in Chinese with English abstract).
[42]
Guo J., Zhang R., Sun W., Ling M., Hu Y., Wu K., Luo M., Zhang L., 2018. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions. Ore Geol. Rev. 95, 863-879.
[43]
Guo J., Wu K., Seltmann R., Zhang R., Ling M., Li C., Sun W., 2022. Unraveling the link between mantle upwelling and formation of Sn-bearing granitic rocks in the world-class Dachang tin district, South China. Geol. Soc. Am. Bul. 134, 1043-1064.
[44]
Harlaux M. et al., 2021. The upper Oligocene San Rafael intrusive complex (Eastern Cordillera, southeast Peru), host of the largest-known high-grade tin deposit. Lithos 400-401, 106409.
[45]
Heinrich C.A., 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ. Geol. 85, 457-481.
[46]
Hsieh P.-S., Chen C.-H., Yang H.-J., Lee C.-Y., 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions. j.Asian Earth Sci. 33, 428-451.
[47]
Hu Z., Zhang W., Liu Y., Gao S., Li M., Zong K., Chen H., Hu S., 2015. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 87, 1152-1157.
[48]
Hu P.-C., Zhu W.-G., Zhong H., Zhang R.-Q., Zhao X.-Y., Mao W., 2021. Late Cretaceous granitic magmatism and Sn mineralization in the giant Yinyan porphyry tin deposit, South China: constraints from zircon and cassiterite U-Pb and molybdenite Re-Os geochronology. Miner. Deposita 56, 743-765.
[49]
Huang W., Liang H., Zhang J., Wu J., Chen X., Ren L., 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from southwest China to western Myanmar. Ore Geol. Rev. 112, 103030.
[50]
Ishihara S., 1981. The granitoid series and mineralization. Econ. Geol. ( 75th Anniversary), 458-484.
[51]
Jiao S., Li X., Huang H., Deng X., 2015. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 239, 217-233.
[52]
Kemp A.I.S., Hawkesworth C.J., Foster G.L., Paterson B.A., Woodhead J.D., Hergt J.M., Gray C.M., Whitehouse M.J., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 315, 980-983.
[53]
Keppler H., Wyllie P.J., 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O?HCl and haplogranite-H2O? HF. Contrib. Mineral. Petrol. 109, 139-150.
[54]
Korges M., Weis P., Lüders V., Laurent O., 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology 46, 75-78.
[55]
Krawczynski M.J., Grove T.L., Behrens H., 2012. Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 164, 317-339.
[56]
Larsen L.M., 1979. Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos 12, 303-315.
[57]
Laurent O., Zeh A., Gerdes A., Villaros A., Gros K., Słaby E., 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contrib. Mineral. Petrol. 172, 80.
[58]
Leeman W.P., Phelps D.W., 1981. Partitioning of rare Earths and other trace elements between sanidine and coexisting volcanic glass. j.Geophys. Res. 86, 10193-10199.
[59]
Lehmann B., 2021. Formation of tin ore deposits: A reassessment. Lithos 402-403, 105756.
[60]
Li Y., 2017. Genesis of the Lamo Zn-Cu Deposit, Nandan, Guangxi (Master). China University of Geosciences (Beijing) 1-83 (in Chinese with English abstract).
[61]
Li J., Chen S.-Y., Zhao Y.-H., 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration. Ore Geol. Rev. 145, 104880.
[62]
Li Z.-X., Li X.-H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 35, 179-182.
[63]
Li X.-Y., Zheng J.-P., Ma Q., Xiong Q., Griffin W.L., Lu J.-G., 2014. From enriched to depleted mantle: Evidence from Cretaceous lamprophyres and Paleogene basaltic rocks in eastern and central Guangxi Province, western Cathaysia block of South China. Lithos 184-187, 300-313.
[64]
Liang T., 2008. Study on the Metallogenic Mechanism of Changpo-Tongkeng Tin-polymetallic Deposit, Dachang, Guangxi (Doctor). Chang’an University 1-249 (in Chinese with English abstract).
[65]
Liang T., Wang D., Cai M., Fan S., Yu Y., Wei K., Huang H., Zheng Y., 2014a. Metallogenic characteristics and ore-forming regularity of metallic deposits along Nandan-Hechi metallogenic belt in northwestern Guangxi. Miner. Deposits 33, 1171-1192 (in Chinese with English abstract).
[66]
Liang T., Wang D., Cai M., Hei H., Huang H., Zheng Y., 2014b. Metallogenic regularity of tin polymetallic deposit from northwestern ore concentration area, Guangxi. Acta Geol. Sin. 88, 2443-2463 (in Chinese with English abstract).
[67]
Linnen R.L., Pichavant M., Holtz F., Burgess S., 1995. The effect of on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar. Geochim. Cosmochim. Acta 59, 1579-1588.
[68]
Linnen R.L., Pichavant M., Holtz F., 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochim. Cosmochim. Acta 60, 4965-4976.
[69]
Liu Y., Gao S., Hu Z., Gao C., Zong K., Wang D., 2010. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. j.Petrol. 51, 537-571.
[70]
Liu Z.-C., Wu F.-Y., Ji W.-Q., Wang J.-G., Liu C.-Z., 2014a. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 208-209, 118-136.
[71]
Liu D., Zhao Z., Zhu D.-C., Niu Y., Harrison T.M., 2014b. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology 42, 43-46.
[72]
Loucks R.R., Fiorentini M.L., Henríquez G.J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. j.Petrol. 61, egaa034.
[73]
Ludwig K., 2003. User’s manual for IsoPlot 3.0. A geochronological toolkit for Microsoft Excel 71.
[74]
Mahood G., Hildreth W., 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta 47, 11-30.
[75]
Mao J., Cheng Y., Chen M., Franco P., 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Deposita 48, 267-294.
[76]
Mao J., Xie G., Yuan S., Liu P., Meng X., Zhou Z., Zheng W., 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrol. Sin. 34, 2501-2517.
[77]
Mao J., Zheng W., Xie G., Lehmann B., Goldfarb R., 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology 49, 592-596.
[78]
Matsui Y., Onuma N., Nagasawa H., Higuchi H., Banno S., 1977. Crystal structure control in trace element partition between crystal and magma. Bull. de Minéralogie 100, 315-324.
[79]
Meng J., Xia X., Ma L., Jiang Z., Xu J., Cui Z., Yang Q., Zhang W., Zhang L., 2021. A H2O-in-zircon perspective on the heterogeneous water content of crust-derived magmas in southern Tibet. Sci. China. Earth Sci. 64, 1184-1194.
[80]
Middlemost E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 37, 215-224.
[81]
Mo J., Xia X.-P., Li P.-F., Spencer C.J., Lai C.-K., Xu J., Yang Q., Sun M.-D., Yu Y., Milan L., 2023. Water-in-zircon: a discriminant between S- and I-type granitoid. Contrib. Mineral. Petrol. 178, 5.
[82]
Murakami T., Chakoumakos B.C., Ewing R.C., Lumpkin G.R., Weber W.J., 1991. Alpha-decay event damage in zircon. Am. Mineral. 76, 1510-1532.
[83]
Nagasawa H., Schnetzler C.C., 1971. Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magma. Geochim. Cosmochim. Acta 35, 953-968.
[84]
Niu X., Shu Q., Xing K., Yuan S., Wei L., Zhang Y., Yu F., Zeng Q., Ma S., 2022. Evaluating Sn mineralization potential at the Haobugao skarn Zn-Pb deposit (NE China) using whole-rock and zircon geochemistry. j.Geochem. Explor. 234, 106938.
[85]
O’Sullivan, G., Chew, D., Kenny, G., Henrichs, I., Mulligan, D., 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 201, 103044.
[86]
Peccerillo A., Taylor S.R., 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63-81.
[87]
Philpotts J.A., Schnetzler C.C., 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim. Cosmochim. Acta 34, 307-322.
[88]
Prowatke S., Klemme S., 2006. Trace element partitioning between apatite and silicate melts. Geochim. Cosmochim. Acta 70, 4513-4527.
[89]
Qi C., Deng X., Li W., Li X., Yang Y., Xie L., 2007. Origin of the Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrol. Sin., 403-412 (in Chinese with English abstract).
[90]
Qiao L., Wang Q., Li C., 2015. The western segment of the suture between the Yangtze and Cathaysia blocks: constraints from inherited and co-magmatic zircons from Permian S-type granitoids in Guangxi, South China. Terra Nova 27, 392-398.
[91]
Rapp R.P., Shimizu N., Norman M.D., Applegate G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol. 160, 335-356.
[92]
Rapp R.P., Watson E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. j.Petrol. 36, 891-931.
[93]
Richards J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233, 27-45.
[94]
Romer R.L., Kroner U., 2015. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Miner. Deposita 50, 327-338.
[95]
Romer R.L., Kroner U., 2016. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 31, 60-95.
[96]
Sano Y., Terada K., Fukuoka T., 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol. 184, 217-230.
[97]
Schmidt C., 2018. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochim. Cosmochim. Acta 220, 499-511.
[98]
Schmidt M.W., Vielzeuf D., Auzanneau E., 2004. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65-84.
[99]
Schnetzler C.C., Philpotts J.A., 1970. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochim. Cosmochim. Acta 34, 331-340.
[100]
Sen C., Dunn T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117, 394-409.
[101]
Shu Q., Chang Z., Hammerli J., Lai Y., Huizenga J.-M., 2017. Composition and Evolution of Fluids Forming the Baiyinnuo’er Zn-Pb Skarn Deposit, Northeastern China: Insights from Laser Ablation ICP-MS Study of Fluid Inclusions*. Econ. Geol. 112, 1441-1460.
[102]
Shu Q., Chang Z., Lai Y., Hu X., Wu H., Zhang Y., Wang P., Zhai D., Zhang C., 2019. Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China. Miner. Deposita 54, 645-656.
[103]
Shu Q., Chang Z., Mavrogenes J., 2021. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China. Geology 49, 473-477.
[104]
Sillitoe R.H., Lehmann B., 2022. Copper-rich tin deposits. Miner. Deposita 57, 1-11.
[105]
Skjerlie K.P., 2002. The Fluid-absent Partial Melting of a Zoisite-bearing Quartz Eclogite from 1middle dot 0 to 3middle dot2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-zone Processes. j.Petrol. 43, 291-314.
[106]
Sláma J. et al., 2008. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35.
[107]
Smithies R.H., Lu Y., Kirkland C.L., Johnson T.E., Mole D.R., Champion D.C., Martin L., Jeon H., Wingate M.T.D., Johnson S.P., 2021. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70-75.
[108]
Song S., Mao J., Yuan S., Jian W., 2022. Decoupling of Sn and W mineralization in a highly fractionated reduced granitic magma province: a case study from the Youjiang basin and Jiangnan tungsten belt. Miner. Deposita 57, 1251-1267.
[109]
Springer W., Seck H.A., 1997. Partial fusion of basic granulites at 5 to 15 kbar implications for the origin of TTG magmas. Contrib. Mineral. Petrol. 127, 30-45.
[110]
Štemprok M., 1990. Solubility of tin, tungsten and molybdenum oxides in felsic magmas. Miner. Deposita 25, 205-212.
[111]
Stepanov A., A. Mavrogenes J., Meffre S., Davidson P., 2014. The key role of mica during igneous concentration of tantalum. Contrib. Mineral. Petrol. 167, 1009.
[112]
Stix J., Gorton M.P., 1990. Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: Effects of composition, temperature, and volatiles. Geochim. Cosmochim. Acta 54, 2697-2708.
[113]
Stock M.J., Humphreys M.C.S., Smith V.C., Isaia R., Brooker R.A., Pyle D.M., 2018. Tracking Volatile Behaviour in Sub-volcanic Plumbing Systems Using Apatite and Glass: Insights into Pre-eruptive Processes at Campi Flegrei, Italy. j.Petrol. 0, 29.
[114]
Sun K.-K., Deng J., Wang Q.-F., Chen B., Xu R., Ma Z.-F., 2023. Formation of Sn-rich granitic magma: a case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China. Miner. Deposita 58, 359-378.
[115]
Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lon. Spec. Publ. 42, 313-345.
[116]
Taylor J.R., Wall V.J., 1992. The behavior of tin in granitoid magmas. Econ. Geol. 87, 403-420.
[117]
Tischendorf G., Förster H.-J., Gottesmann B., 2001. Minor- and trace-element composition of trioctahedral micas: a review. Mineral. mag. 65, 249-276.
[118]
Ulmer P., Kaegi R., Müntener O., 2018. Experimentally Derived Intermediate to Silica-rich Arc Magmas by Fractional and Equilibrium Crystallization at 1·0 GPa: an Evaluation of Phase Relationships, Compositions, Liquid Lines of Descent and Oxygen Fugacity. j.Petrol. 59, 11-58.
[119]
Walshe J.L., Solomon M., Whitford D.J., Sun S.-S., Foden J.D., 2011. THE ROLE OF THE MANTLE IN THE GENESIS OF TIN DEPOSITS AND TIN PROVINCES OF EASTERN AUSTRALIA. Econ. Geol. 106, 297-305.
[120]
Wang Q. et al., 2020a. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: A holistic perspective from the Youjiang Basin. Earth-Sci. Rev. 211, 103405.
[121]
Wang D., Chen Y., Chen W., Sang H., Li H., Lu Y., Chen K., Lin Z., 2004. Dating the Dachang giant tin-polymetallic deposit in Nandan, Guangxi. Acta Geol. Sin., 132-138+146 (in Chinese with English abstract).
[122]
Wang X.-S., Hu R.-Z., Bi X.-W., Leng C.-B., Pan L.-C., Zhu J.-J., Chen Y.-W., 2014. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos 208-209, 202-219.
[123]
Wang L., Jin X., Wang X., Wu X., Liu C., Duan G., 2015. Forming process of lamprophyre from Leidong in Luocheng Northern Guangxi: constrains from geochemistry, geochronology and Sr-Nd-Pb isotopes. Geol. Sci. Technol. Info. 34, 10-19 (in Chinese with English abstract).
[124]
Wang X., Li X.-P., Han Z.-Z., 2018. Zircon ages and geochemistry of amphibolitic rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and their tectonic implications. Precambrian Res. 317, 253-267.
[125]
Wang T., Li G., Wang Q., Santosh M., Zhang Q., Deng J., 2019. Petrogenesis and metallogenic implications of Late Cretaceous I- and S-type granites in Dachang-Kunlunguan ore belt, southwestern South China Block. Ore Geol. Rev. 113, 103079.
[126]
Wang Y., Li G., Wang Q., Santosh M., Chen J., 2020b. Early Paleozoic granitoids from South China: implications for understanding the Wuyi-Yunkai orogen. Int. Geol. Rev. 62, 243-261.
[127]
Wang J., Wang Q., Xu C.-B., Dan W., Xiao Z., Shu C., Wei G., 2022. Cenozoic delamination of the southwestern Yangtze craton owing to densification during subduction and collision. Geology 50, 912-917.
[128]
Wang Q., Zhu D.-C., Zhao Z.-D., Guan Q., Zhang X.-Q., Sui Q.-L., Hu Z.-C., Mo X.-X., 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. j.Asian Earth Sci. 53, 59-66.
[129]
Watson E.B., Green T.H., 1981. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett. 56, 405-421.
[130]
Weinberg R.F., Hasalová P., 2015. Water-fluxed melting of the continental crust: A review. Lithos 212-215, 158-188.
[131]
Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419.
[132]
Wolf M., Romer R.L., Franz L., López-Moro F.J., 2018. Tin in granitic melts: The role of melting temperature and protolith composition. Lithos 310-311, 20-30.
[133]
Woodhead J.A., Rossman G.R., Silver L.T., 1991. The metamictization of zircon: Radiation dose-dependent structural characteristics. Am. Mineral. 76, 74-82.
[134]
Xia X.-P., Cui Z.-X., Li W., Zhang W.-F., Yang Q., Hui H., Lai C.-K., 2019. Zircon water content: reference material development and simultaneous measurement of oxygen isotopes by SIMS. j.Anal. At. Spectrom. 34, 1088-1097.
[135]
Xia X.-P., Meng J., Ma L., Spencer C.J., Cui Z., Zhang W.-F., Yang Q., Zhang L., 2021. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet. Lithos 404-405, 106445.
[136]
Xing K., Shu Q., Lentz D.R., Wang F., 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China. Am. Mineral. 105, 382-396.
[137]
Xing K., Shu Q., Lentz D.R., 2021. Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry. j.Petrol. 62, egab018.
[138]
Xu L., Hu Z., Zhang W., Yang L., Liu Y., Gao S., Luo T., Hu S., 2015a. In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. j.Anal. At. Spectrom. 30, 232-244.
[139]
Xu B., Jiang S.-Y., Wang R., Ma L., Zhao K., Yan X., 2015b. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos 218-219, 54-72.
[140]
Yang L., Deng J., Groves D.I., Wang Q., Zhang L., Wu W., Qin K., Zhang Q., 2020. Recognition of two contrasting structural- and mineralogical-gold mineral systems in the Youjiang basin, China-Vietnam: Orogenic gold in the south and Carlin-type in the north. Geosci. Front. 11, 1477-1494.
[141]
Yang Y.-H., Wu F.-Y., Yang J.-H., Chew D.M., Xie L.-W., Chu Z.-Y., Zhang Y.-B., Huang C., 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem. Geol. 385, 35-55.
[142]
Yang C.-M., Xu Y.-G., Xia X.-P., Gao Y.-Y., Zhang W.-F., Yang Y.-N., Yang Q., Zhang L., 2022a. Raman spectroscopy-based screening of zircon for reliable water content and oxygen isotope measurements. Am. Mineral. 107, 936-945.
[143]
Yang C., Xu Y., Xia X., Yang J., Sun J., Zhang W., Yang Q., Yang Y., 2022b. High Water Contents in Zircons Suggest Water‐Fluxed Crustal Melting During Cratonic Destruction. Geophys. Res. Lett. 49.
[144]
Yu C., Yang Z., Zhou L., Zhang L., Li Z., Zhao M., Zhang J., Chen W., Suo M., 2019. Impact of laser focus on accuracy of U-Pb dating of zircons by LA-ICPMS. Miner. Deposits 38, 21-28 (in Chinese with English abstract).
[145]
Yuan S., Peng J., Hao S., Li H., Geng J., Zhang D., 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geol. Rev. 43, 235-242.
[146]
Yuan S., Williams-Jones A.E., Romer R.L., Zhao P., Mao J., 2019. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Econ. Geol. 114, 1005-1012.
[147]
Yurimoto H., Duke E.F., Papike J.J., Shearer C.K., 1990. Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation?. Geochim. Cosmochim. Acta 54, 2141-2145.
[148]
Zhang X., Guo F., Zhang B., Zhao L., Wu Y., Wang G., Alemayehu M., 2020. Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: records from apatite geochemistry. Contrib. Mineral. Petrol. 175, 35.
[149]
Zhang R., Lehmann B., Seltmann R., Sun W., Li C., 2017a. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology 45, 1095-1098.
[150]
Zhang C., Sun W., Wang J., Zhang L., Sun S., Wu K., 2017b. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta 206, 343-363.
[151]
Zhang P., 2015. Hydrogen diffusion in NAMs: Andradite garnet and zircon (PhD Thesis). University of Science and Technology of China.
[152]
Zhao K., 2018. Petrogenesis of Early Mesozoic peraluminous charnockite in South China: from source partial melting to shollow magma chamber crystallization (Doctor). Nanjing University 1-151 (in Chinese with English abstract).
[153]
Zhao H., Su W., Shen N., Xie P., Cai J., Gan W., 2018a. Fluid inclusion study of the Gaofeng tin-polymetallic deposit in the Dachang ore field, Guangxi, China. Acta Petrol. Sin. 34, 3553-3566 (in Chinese with English abstract).
[154]
Zhao H., Su W., Xie P., Shen N., Cai J., Luo M., Li J., Bao Z., 2018b. Re-Os dating of molybdenite and in-situ Pb isotopes of sulfides from the Lamo Zn-Cu deposit in the Dachang tin-polymetallic ore field, Guangxi, China. Acta Geochim. 37, 384-394.
[155]
Zhao K., Xu X., Erdmann S., 2018c. Thermodynamic modeling for an incrementally fractionated granite magma system: Implications for the origin of igneous charnockite. Earth Planet. Sci. Lett. 499, 230-242.
[156]
Zheng H., 2018. Geochemical characteristics and petrogenesis of igneous rocks in Dachang tin-ploymetallic orefield, Guangxi (Master). Guangxi University 1-63 (in Chinese with English abstract).
[157]
Zhou Y., Li X., Zhen Y., Shen W., He J., Yu P., Niu J., Zeng C., 2017. Geological settings and metallogenesis of qinzhou bay-hangzhou bay orogenic juncture belt, south china. Acta Petrol. Sin. 33, 667-681 (in Chinese with English abstract).
[158]
Zhou L., Wang R., Hou Z., Li C., Zhao H., Li X.-W., Qu W.-J., 2018. Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet. Gondwana Res. 62, 178-197.
[159]
Zong K., Klemd R., Yuan Y., He Z., Guo J., Shi X., Liu Y., Hu Z., Zhang Z., 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 290, 32-48.
PDF(10174 KB)

Accesses

Citations

Detail

Sections
Recommended

/