Hot subduction in the southern Paleo-Asian Ocean: Insights from clinopyroxene chemistry and Sr-Nd-Hf-Pb isotopes of Carboniferous volcanics in West Junggar

Yao Xiao, Xijun Liu, Wenjiao Xiao, Xiao-Han Gong, Hao Wu, Yujia Song, Zhiguo Zhang, Pengde Liu

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101716.

PDF(12890 KB)
Geoscience Frontiers All Journals
PDF(12890 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101716. DOI: 10.1016/j.gsf.2023.101716
Research Paper

Hot subduction in the southern Paleo-Asian Ocean: Insights from clinopyroxene chemistry and Sr-Nd-Hf-Pb isotopes of Carboniferous volcanics in West Junggar

Author information +
History +

Abstract

The chemical evolution and pressure-temperature conditions of subduction zone magmatism along ancient suture zones in orogenic belts can provide important information regarding plate convergence processes in paleo-oceans. Carboniferous magmatism in West Junggar is key to understanding the tectonothermal and subduction history of the Junggar Ocean, which was a branch of the Paleo-Asian Ocean, as well as the accretionary processes in the southwestern Central Asian Orogenic Belt (CAOB). We undertook a geochronological, mineralogical, geochemical, and Sr-Nd-Hf-Pb isotopic study of volcanic rocks from the Baikouquan area of West Junggar. We used these data to determine the petrogenesis, mantle source, and pressure-temperature conditions of these magmas, and further constrain the subduction and tectonic history of the Junggar Ocean. The studied volcanic rocks yielded zircon U-Pb ages of 342-337 Ma and are characterized by enrichments of large-ion lithophile elements (LILEs), and depletions in high-field-strength elements (HFSEs), indicative of an island arc affinity. The volcanic rocks have positive ƐNd(t) (5.83-7.04) and ƐHf(t) (13.47-15.74) values, 87Sr/86Sr(t) ratios of 0.704023-0.705658, and radiogenic 207Pb/204Pb(t) and 208Pb/204Pb(t) ratios at a given 206Pb/204Pb(t) ratio, indicative of a depleted mantle source contaminated by subduction-related materials. Geochemical modeling calculations indicate that ≤1% of a subduction component comprising fluid and sediment melt could have generated the source of the parental melts of the Baikouquan volcanic rocks. Clinopyroxene phenocrysts in the volcanic rocks are classified as high- and low-Ti clinopyroxene, and pressure-temperature calculations suggest the host rocks formed at high temperatures (~1300 ℃) and shallow to moderate depths (<2 GPa). The magma was probably generated by hot and hydrous melting in a mantle wedge in response to subduction of young, hot oceanic lithosphere. The present results, combined with published data, suggest that the Baikouquan volcanic rocks record a transition in tectonic setting from normal cold to anomalous hot subduction of young oceanic lithosphere close to a mid-ocean ridge. This indicates ridge subduction began shortly after 337 Ma. Our results provide new insights into the tectonomagmatic evolution during intra-oceanic subduction prior to ridge subduction.

Keywords

Hot subduction / Sr-Nd-Hf-Pb isotopes / Clinopyroxene chemistry / West Junggar / Central Asian Orogenic Belt

Cite this article

Download citation ▾
Yao Xiao, Xijun Liu, Wenjiao Xiao, Xiao-Han Gong, Hao Wu, Yujia Song, Zhiguo Zhang, Pengde Liu. Hot subduction in the southern Paleo-Asian Ocean: Insights from clinopyroxene chemistry and Sr-Nd-Hf-Pb isotopes of Carboniferous volcanics in West Junggar. Geoscience Frontiers, 2024, 15(1): 101716 https://doi.org/10.1016/j.gsf.2023.101716

CRediT authorship contribution statement

Taimoor Hassan Farooq: Conceptualization, Investigation, Writing – original draft, Software, Writing – review & editing. Shagufta Jabeen: Methodology, Investigation, Writing – original draft. Awais Shakoor: Writing – review & editing. Muhammad Saleem Arif: Writing – review & editing. Nadia Siddique: Methodology, Software. Khuram Shahzad: Writing – review & editing. Muhammad Umair Riaz: Methodology, Investigation. Yong Li: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financially supported by Central South University of Forestry and Technology Research Funding (70702-45200003), and Scientific Research Foundation of Hunan Provincial Education Department (70702-22200007).

References

[1]
Aldanmaz E., 2006. Mineral-Chemical Constraints on the Miocene Calc-alkaline and Shoshonitic Volcanic Rocks of Western Turkey: Disequilibrium Phenocryst Assemblages as Indicators of Magma Storage and Mixing Conditions. Turkish Journal of Earth Sciences 15 (1), 47-73.
[2]
Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102 (1-2), 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7.
[3]
Allègre C.J., Minster J.F., 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 1-25. https://doi.org/10.1016/0012-821X(78)90123-1.
[4]
Altherr R., Topuz G., Siebel W., Şen C., Meyer H.P., Satır M., Lahaye Y., 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the Eastern Pontides (NE Turkey). Lithos 105 (1-2), 149-161. https://doi.org/10.1016/j.lithos.2008.03.001.
[5]
Beccaluva L., Macciotta G., Piccardo G.B, Zeda O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology 77 (3-4), 165-182. https://doi.org/10.1016/0009-2541(89)90073-9.
[6]
Boari E., Avanzinelli R., Melluso L., Giordano G., Mattei M., De Benedetti A.A., Morra V., Conticelli S., 2009. Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bulletin of Volcanology 71, 977-1005. https://doi.org/10.1007/s00445-009-0278-6.
[7]
Buckman S., Aitchison J.C., 2004. Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, NW China. Geological Society, London, Special Publications 226, 101-129. https://doi.org/10.1144/GSL.SP.2004.226.01.06.
[8]
Buslov M.M., Saphonova I.Y., Watanabe T., Obut O.T., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., Smirnova L.V., Kazansky A.Y., 2001. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosciences Journal 5, 203-224. https://doi.org/10.1007/BF02910304.
[9]
Cai K.D, Long X.P., Chen H.Y., Sun M., Xiao W.J., 2018. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB). Journal of Asian Earth Sciences 153, 1-8. https://doi.org/10.1016/j.jseaes.2017.11.019.
[10]
Carracedo J.C., 1999. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. Journal of Volcanology and Geothermal Research 94, 1-19. https://doi.org/10.1016/S0377-0273(99)00095-5.
[11]
Chauvel C., Blichert-Toft J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190 (3-4), 137-151. https://doi.org/10.1016/S0012-821X(01)00379-X.
[12]
Chen J.F., Ma X., Simon A., Du H.Y., Han B.F., Liu J.L., Liu B., 2019. Late Ordovician to early Silurian calc-alkaline magmatism in the Xiemisitai Mountains, northern West Junggar: a response to the subduction of the Junggar-Balkhash Ocean. International Geology Review 61 (16),2000- 2020 (21), https://doi.org/10.1080/00206814.2019.1576148.
[13]
Chen L., Zheng Y.F., Zhao Z.F., 2018. Geochemical insights from clinopyroxene phenocrysts into the effect of magmatic processes on petrogenesis of intermediate volcanics. Lithos 316-317, 137-153. https://doi.org/10.1016/j.lithos.2018.07.014.
[14]
Defant M.J., Drummond M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665. https://doi.org/10.1038/347662a0.
[15]
Faryad S., Cuthbert S., 2020. High-temperature overprint in (U) HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)? Earth-Science Reviews. 202, 103-108. https://doi.org/10.1016/j.earscirev.2020.103108.
[16]
Furnes H., Safonova I., 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geoscience Frontiers 10 (4), 1255-1284. https://doi.org/10.1016/j.gsf.2018.12.007.
[17]
Geng H.Y., Sun M., Yuan C., Xiao W.J., Xian W.S., Zhao G.C., Zhang L.F., Wong K., Wu F.Y., 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology 266 (3-4), 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001.
[18]
Geng H.Y., Sun M., Yuan C., Zhao G.C, Xiao W.J, 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences 42 (5), 854-866. https://doi.org/10.1016/j.jseaes.2011.01.006.
[19]
Gerya T.V., Meilick F., 2011. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology 29, 7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.x.
[20]
Gill J.B., 2012. Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, 286 pp.
[21]
Ginibre C., Wörner G., Kronz A., 2007. Crystal zoning as an archive for magma evolution. Elements 3 (4), 261-266. https://doi.org/10.2113/gselements.3.4.261.
[22]
Godard M., Bosch D., Einaudi F., 2006. A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology 234 (1-2), 58-78. https://doi.org/10.1016/j.chemgeo.2006.04.005.
[23]
Guo L.S., Liu Y.L., Wang Z.H., Song D., Xu F.J., Su L., 2010. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas, western Junggar Acta Petrologica Sinica 26 (2), 471-477. (in Chinese with English abstract).
[24]
Hammer J., Jacob S., Welsch B., Hellebrand E., Sinton J., 2016. Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry. Contributions to mineralogy and petrology 171 (7), 1-23. https://doi.org/10.1007/s00410-015-1212-x.
[25]
Han B.F, Ji J.Q, Song B., Chen L.H., Zhang L., 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): Timing of post-collisional plutonism Acta Petrologica Sinica, 22 (5), 1077-1086. (in Chinese with English abstract).
[26]
Han B.F., Guo Z.J., He G.Q., 2010. Timing of major suture zones in North Xinjiang, China: Constraints from stitching plutons Acta Petrologica Sinica 26 (8), 2233-2246. (in Chinese with English abstract).
[27]
Harrison L.N., Weis D., 2018. The Size and Emergence of Geochemical Heterogeneities in the Hawaiian Mantle Plume Constrained by Sr-Nd-Hf Isotopic Variation Over -47 Million Years. Geochemistry, Geophysics, Geosystems 19, 2823-2842. https://doi.org/10.1029/2017GC007389.
[28]
Hart S.R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753-757. https://doi.org/10.1038/309753a0.
[29]
Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F., 2007. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th Co Discrimination Diagram. Journal of Petrology 48 (12), 2341-2357. https://doi.org/10.1093/petrology/egm062.
[30]
Hickey-Vargas R., Bizimis M., Deschamps A., 2008. Onset of the Indian Ocean isotopic signature in the Philippine Sea Plate: Hf and Pb isotope evidence from Early Cretaceous terranes. Earth and Planetary Science Letters 268, 255-267. https://doi.org/10.1016/j.epsl.2008.01.003.
[31]
Hocking B.D., 2016. Implications of Hf-Nd Isotopes in West Philippine Basin Basalts for the Initiation and Early History of the Izu-Bonin-Mariana Arc. Master’s thesis, scholarcommons.sc.edu/etd/3800.
[32]
Hu J., Liu L., Hermosillo A., Zhou Q, 2016. Simulation of Late Cenozoic South American Flat-Slab Subduction Using Geodynamic Models with Data Assimilation. Earth Planet. Sci. Lett. 438, 1-13. https://doi: 10.1016/j.epsl.2016.01.011.
[33]
Irving A.J., Frey F.A., 1984. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta 48 (6), 1201-1221. https://doi.org/10.1016/0016-7037(84)90056-5.
[34]
Jahn B.M., Wu F.Y., Chen B., 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. International Union of Geological Sciences 23 (2), 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001.
[35]
Kawahata H., Nohara M., Ishizuka H., Hasebe S., Chiba H., 2001. Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. Journal of Geophysical Research: Solid Earth 106 (B6), 11083-11099. https://doi.org/10.1029/2000JB900456.
[36]
Kelemen P.B., 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology 120, 1-19. https://doi.org/10.1007/BF00311004.
[37]
Kelemen P.B., Yogodzinski G.M., Scholl D.W., 2003. Along-strike variation in the Aleutian Island Arc:genesis of high-Mg# andesite and implications for continental crust. In: EilerJ. (Ed.), Inside the Subduction Factory: American Geophysical Union Geophysical Monograph, 138, pp. 223-276, https://doi.org/10.1029/138GM11.
[38]
Kepezhinskas P., McDermott F., Defant M.J., Hochstaedter A., Drummond M.S., Hawkesworth C.J., Koloskov A., Maury R.C., Bellon H., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta 61 (3), 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3.
[39]
Kersting A.B., Arculus R.J., 1994. Pb Systematics of Klyuchevskoy Volcano, Kamchatka and north pacific sediments: implications for magma genesis and crustal recycling in the Kamchatkan Arc. Mineralogical Magazine 136, 133-148.
[40]
Kobayashi K., Nakamura E., 2001. Geochemical Evolution of Akagi Volcano, NE Japan: Implications for Interaction Between Island-arc Magma and Lower Crust, and Generation of Isotopically Various Magmas. Journal of Petrology 42 (12), 2303-2331. https://doi.org/10.1093/petrology/42.12.2303.
[41]
Lee C., King S.D., 2010. Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach. Geology 38, 583-586. https://doi.org/10.1130/G30714.1.
[42]
Lee C.T.A., Luffi P., Plank T., Dalton H., Leeman W.P., 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters 279 (1-2), 20-33. https://doi.org/10.1016/j.epsl.2008.12.020.
[43]
Leeman W.P., Lewis J.F., Evarts R.C., Conrey R.M., Streck M.J., 2005. Petrologic constraints on the thermal structure of the Cascades arc. Journal of Volcanology and Geothermal Research 140 (1-3), 67-105. https://doi.org/10.1016/j.jvolgeores.2004.07.016.
[44]
Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59 (1), 139-154. https://doi.org/10.1016/0012-821X(82)90122-4.
[45]
Li G.Y., Li Y.J., Wang X.C., Yang G.X., Wang R., Xiang K.P., Liu J., Tong L.L., 2016a. Identifying late Carboniferous sanukitoids in Hala’alate Mountain, Northwest China: new constraint on the closing time of remnant ocean basin in West Junggar. International Geology Review 59 (9), 1116-1130. https://doi.org/10.1080/00206814.2016.1193773.
[46]
Li Y.J., Xu Q., Yang G.H., Chao W.D., Liu J., 2016b. Intracontinental “lagged arc volcanic rocks” and its geological significance: Evidence from early Permian lagged arc magmatism in northern Urho area of Western Junggar Earth Science Frontiers 23 (4), 190-199. (in Chinese with English abstract).
[47]
Liotard J.M., Briot D., Boivin P., 1988. Petrological and geochemical relationships between pyroxene megacrysts and associated alkali-basalts from Massif Central (France). Contributions to Mineralogy and Petrology 98, 81-90. https://doi.org/10.1007/BF00371912.
[48]
Liu B., Han B.F., Chen J.F., Ren R., Zheng B., Wang Z.Z., Feng L.X., 2017. Closure time of the Junggar-Balkhash Ocean: Constraints from Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains, West Junggar, NW China. Tectonics 36 (12), 2823-2845. https://doi.org/10.1002/2017TC004606.
[49]
Liu P.D., Liu X.J., Xiao W.J., Zhang Z.G, Song Y.J, Xiao Y., Liu L., Hu R.G., Wang B.H, 2021a. Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction. Journal of Arid Land 13, 1163-1182. https://doi.org/10.1007/s40333-021-0069-2.
[50]
Liu P.D., Liu X.J., Xiao W.J., Zhang Z.G., Xiao Y., Song Y.J., Wu H., 2023. Multiple ridge subduction processes in the southern Altaids: Implications from clinopyroxene chemistry and Sr-Nd-Hf isotopes of late carboniferous Nb-enriched, magnesian diorite-andesites in West Junggar, NW China. Chemical Geology 635, 121600. https://doi.org/10.1016/j.chemgeo.2023.121600.
[51]
Liu X.J., Xu J.F., Castillo P.R., Xiao W.J., Shi Y., Feng Z.H., Guo L., 2014. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd-Pb isotope evidence from ophiolites in Northwest China. Lithos 189, 185-200. https://doi.org/10.1016/j.lithos.2013.08.020.
[52]
Liu X.J., Xu J.F., Castillo P.R., Xiao W.J., Shi Y., Zhang Z.G., Wang X.C., Ao S.J., Wang B.H., Hu R.G., Shi X.F., Yu H., Liu P.D., Song Y.J., 2021b. Long-lived low Th/U Pacific-type isotopic mantle domain: Constraints from Nd and Pb isotopes of the Paleo-Asian Ocean mantle. Earth and Planetary Science Letters 567, 117006. https://doi.org/10.1016/j.epsl.2021.117006.
[53]
Long X., Sun M., Yuan C., Xiao W., Chen H., Zhao Y., Cai K., Li J., 2006. Genesis of Carboniferous volcanic rocks in the eastern Junggar: constraints on the closure of the Junggar Ocean Acta Petrologica Sinica 22 (1), 31-40. (in Chinese with English abstract).
[54]
Ma C., Xiao W.J., Windley B.F., Zhao G.P., Han C.M., Zhang J.E., Luo J., Li C., 2012. Tracing a subducted ridge-transform system in a late Carboniferous accretionary prism of the southern Altaids: Orthogonal sanukitoid dyke swarms in Western Junggar, NW China. Lithos 140-141, 152-165. https://doi.org/10.1016/j.lithos.2012.02.005.
[55]
Mantle G.W., Collins W.J., 2008. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology 36(1): 87-90. https://doi.org/10.1130/G24095A.1.
[56]
McKenzie D., O'nions R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32 (5), 1021-1091. https://doi.org/10.1093/petrology/32.5.1021.
[57]
Morimoto N., 1988. Nomenclature of pyroxenes. Mineralogy and Petrology 39 (1), 55-76. https://doi.org/10.1007/BF01226262.
[58]
Nisbet E.G., Pearce J.A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contrib. Mineral. and Petrol 63, 149-160. https://doi.org/10.1007/BF00398776.
[59]
Peacock S.M., 2020. Advances in the thermal and petrologic modeling of subduction zones. Geosphere 16, 936-952. https://doi.org/10.1130/GES02213.1.
[60]
Pearce J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S. (Ed.) Orogenic Andesites. Wiley, Chichester, U.K., pp.528-548.
[61]
Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 (1-4), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016.
[62]
Pearce J.A., van der Laan S.R., Arculus R.J., Murton B.J., Ishii T., Peate D.W., Parkinson I.J., 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction, Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX 125, 623-659, https://doi.org/10.2973/odp.proc.sr.125.172.1992.
[63]
Pearce J.A., Parkinson I.J., 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society, London, Special Publications 76, 373-403. https://doi.org/10.1144/GSL.SP.1993.076.01.19.
[64]
Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956-983. https://doi.org/10.1093/petrology/25.4.956.
[65]
Pearce J.A., Peate D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences 23, 251-285. http://dx.doi.org/10.1146/annurev.ea.23.050195.001343.
[66]
Pearce J.A., Stern R.J., Bloomer S.H., Fryer P., 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6 (7). https://doi.org/10.1029/2004GC000895.
[67]
Pearce N.J., Westgate J.A., Gatti E., Pattan J.N., Parthiban G., Achyuthan H., 2014. Individual glass shard trace element analyses confirm that all known Toba tephra reported from India is from the c. 75‐ka Youngest Toba eruption. Journal of Quaternary Science 29 (8), 729-734. https://doi.org/10.1002/jqs.2741.
[68]
Plank T., Langmuir C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145 (3-4), 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2.
[69]
Putirka K.D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry 69 (1), 61-120. https://doi.org/10.2138/rmg.2008.69.3.
[70]
Putirka K., Condit C.D., 2003. Cross section of a magma conduit system at the margin of the Colorado Plateau. Geology 31 (8), 701-704. https://doi.org/10.1130/G19550.1.
[71]
Putirka K., Mikaelian H., Ryerson F., Shaw H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist 88 (10), 1542-1554. https://doi.org/10.2138/am-2003-1017.
[72]
Ren R., Han B.F., Xu Z., Zhou Y.Z., Liu B., Zhang L., Chen J.F., Su L., Li J., Li X.H., Li Q.L., 2014. When did the subduction first initiate in the southern Paleo-Asian Ocean: New constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth and Planetary Science Letters 388, 222-236. https://doi.org/10.1016/j.epsl.2013.11.055.
[73]
Reubi O., Blundy J., 2008. Assimilation of plutonic roots, formation of high-K ‘exotic’melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. Journal of Petrology 49 (12), 2221-2243. https://doi.org/10.1093/petrology/egn066.
[74]
Safonova I.Y., Simonov V.A., Buslov M.M., Ota T., Maruyama S., 2008. Neoproterozoic basalts of the Paleo-Asian Ocean (Kurai accretionary zone, Gorny Altai, Russia): geochemistry, petrogenesis, and geodynamics. Russian Geology and Geophysics 49, 254-271. https://doi.org/10.1016/j.rgg.2007.09.011.
[75]
Safonova I.Y., Buslov M.M., Simonov V.A., Izokh A.E., Komiya T., Kurganskaya E.V., Ohno T., 2011. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun’ accretionary complex of Gorny Altai (southwestern Siberia). Russian Geology and Geophysics 52, 421-442. https://doi.org/10.1016/j.rgg.2011.03.005.
[76]
Şengör A.M.C., Natal'in B.A., Burtman V.S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299-307. https://doi.org/10.1038/364299a0.
[77]
Shaw D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34 (2), 237-243. https://doi.org/10.1016/0016-7037(70)90009-8.
[78]
Shen P., Shen Y.C., Liu T.B., Meng L., Dai H.W., Yang Y.H., 2009. Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China. Gondwana Research 16 (2), 227-242. https://doi.org/10.1016/j.gr.2009.04.004.
[79]
Shen P., Pan H.D., Xiao W.J., Li X.H., Dai H.W., Zhu H.P., 2013. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. International Geology Review 55 (16), 1991-2007. https://doi.org/10.1080/00206814.2013.810385.
[80]
Shinjo R., Chung S.L., Kato Y., Kimura M., 1999. Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth 104, 10591-10608. https://doi.org/10.1029/1999JB900040.
[81]
Simonov V.A., Safonova I.Y., Kovyazin S.V., Kotlyarov A.V., 2010. Physico-chemical parameters of Neoproterozoic and Early Cambrian plume magmatism in the Paleo-Asian ocean (data on melt inclusions). Russian Geology and Geophysics 51, 507-520. https://doi.org/10.1016/j.rgg.2010.04.004.
[82]
Sisson V.B., Pavlis T.L., Roeske S.M., Thorkelson D.J., 2003. Introduction: An overview of ridge-trench interactions in modern and ancient settings. Special Paper 371: Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin 371, 1-18, https://doi.org/10.1130/0-8137-2371-X.1.
[83]
Sobolev A.V., Migdisov A.A., Portnyagin M.V., 1996. Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4 (3), 307-317.
[84]
Sobolev A.V., 1997. Problems of Formation and Evolution of Mantle Magmas. Ph.D Thesis, Moscow (in Russian).
[85]
Stracke A., Bizimis M., Salters V.J.M., 2003. Recycling oceanic crust: quantitative constraints. Geochemistry, Geophysics, Geosystems 4 (3), 8003. https://doi.org/10.1029/2001GC000223.
[86]
Straub S.M., Goldstein S.L., Class C., Schmidt A., 2009. Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nature Geosci, 2 (4), 286-289. https://doi.org/10.1038/ngeo471.
[87]
Streck M.J., 2008. Mineral textures and zoning as evidence for open system processes. Reviews in Mineralogy and Geochemistry 69 (1), 595-622. https://doi.org/10.2138/rmg.2008.69.15.
[88]
Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London Special Publications 42 (1), 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
[89]
Tamura Y., Ishizuka O., Stern R.J., Nichols A.R.L., Kawabata H., Hirahara Y., Chang Q., Miyazaki T., Kimura J.I., Embley R.W., Tatsumi Y., 2013. Mission Immiscible: Distinct Subduction Components Generate Two Primary Magmas at Pagan Volcano, Mariana Arc. Journal of Petrology 55 (1), 63-101. https://doi.org/10.1093/petrology/egt061.
[90]
Tang D.M., Qin K.Z., Su B.X., Sakyi P.A., Liu Y.S., Mao Q., Santosh M., Ma Y.G., 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures. Lithos 170-171, 144-163. https://doi.org/10.1016/j.lithos.2013.02.013.
[91]
Tang G.J., Wang Q., Wyman D.A., Li Z.X., Zhao Z.H., Jia X.H., Jiang Z.Q., 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology 277 (3-4), 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012.
[92]
Tang G.J., Wyman D.A., Wang Q., Li J., Li Z.X., Zhao Z.H., Sun W.D., 2012. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329-330, 84-96. https://doi.org/10.1016/j.epsl.2012.02.009.
[93]
Tatsumi Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation?. Annual Review of Earth and Planetary Sciences 34, 467. https://doi:10.1146/annurev.earth.34.031405.125014.
[94]
Tatsumi Y., Kogiso T., 2003. The subduction factory: its role in the evolution of the Earth’s crust and mantle. Geological Society, London, Special Publications 219 (1), 55-80. https://doi.org/10.1144/GSL.SP.2003.219.01.03.
[95]
Thirlwall M.F., Smith T.E., Graham A.M., Theodorou N., Hollings P., Davidson J.P., Arculus R.J., 1994. High Field Strength Element Anomalies in Arc Lavas: Source or Process? Journal of Petrology 35 (3), 819-838. https://doi.org/10.1093/petrology/35.3.819.
[96]
Thorkelson D.J., Taylor R.P., 1989. Cordilleran slab windows. Geology 17, 833-836. https://doi.org/10.1130/0091-7613(1989)017<0833:CSW>2.3.CO;2.
[97]
Tong L.L., Li Y.J., Tian R., Zhang H.W., Wang J.N., Wang R., 2014. Geochemical characteristics and tectonic setting of volcanic rocks from Carboniferous Baogutu Formation, West Junggar Xinjiang Geology 32 (2), 147-152. (in Chinese with English abstract).
[98]
Turner S., Hawkesworth C., Rogers N., Bartlett J., Worthington T., Hergt J., Pearce J., Smith I., 1997. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta 61 (22), 4855-4884. https://doi.org/10.1016/S0016-7037(97)00281-0.
[99]
Vervoort J.D., Blichert-Toft J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63 (3-4), 533-556. https://doi.org/10.1016/S0016-7037(98)00274-9.
[100]
Vervoort J.D., Patchett P.J., Blichert-Toft J., Albarède F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168 (1-2), 79-99. https://doi.org/10.1016/S0012-821X(99)00047-3.
[101]
Vervoort J.D., Plank T., Prytulak J., 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta 75, 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046.
[102]
Wang B., Shu L.S., Cluzel D., Faure M., Charvet J., 2007. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): implication for the tectonic evolution of Western Tianshan. Journal of Asian Earth Sciences 29 (1), 148-159. https://doi.org/10.1016/j.jseaes.2006.02.008.
[103]
Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325-343. https://doi.org/10.1016/0009-2541(77)90057-2.
[104]
Windley B.F., Alexeiev D., Xiao W.J., Kröner A., Badarch G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164 (1), 31-47. https://doi.org/10.1144/0016-76492006-022.
[105]
Windley B.F., Xiao W.J., 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research 61, 73-87. https://doi.org/10.1016/j.gr.2018.05.003.
[106]
Wood D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50 (1), 11-30. https://doi.org/10.1016/0012-821X(80)90116-8.
[107]
Wood B., Blundy J., 1997. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous. Contributions to Mineralogy & Petrology 129 (2), 166-166. https://doi.org/10.1007/s004100050330.
[108]
Workman R.K., Hart S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231 (1-2), 53-72. https://doi.org/10.1016/j.epsl.2004.12.005.
[109]
Xiang K.P., 2015. Carboniferous sedimentary basin analysis and tectonic significance in the Baogutu-Halaalate Mountain, Western Junggar, Xinjiang. M.S. thesis, Chang’an University, 38 pp.
[110]
Xiao Y., Liu X.J., Zhang Z.G., Song Y.J., Liu P.D., Tian H., Song Q., 2023. Junggar Intra-oceanic Arc Magmatism: Constrain from the Geochemistry and Sr-Nd-Hf Isotope Study of Early Carboniferous Baikouquan Volcanic Rocks in West Junggar, NW China Geotectonica et Metallogenia 47 (01), 214-232. (in Chinese with English abstract).
[111]
Xiao W.J., Santosh M., 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research 25 (4), 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008.
[112]
Xiao W.J., Windley B.F., Hao J., Zhai M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22 (6), 1069. https://doi.org/10.1029/2002TC001484.
[113]
Xiao W.J., Han C.M., Yuan C., Sun M., Lin S.F., Chen H.L., Li Z.L., Li J.L., Sun S., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences 32 (2-4), 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008.
[114]
Xu Z., Han B.F., Ren R., Zhou Y.Z., Zhang L., Chen J.F., Su L., Li X.H., Liu D.Y., 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos 132-133, 141-161. https://doi.org/10.1016/j.lithos.2011.11.016.
[115]
Xu Z., Han B.F., Ren R., Zhou Y.Z., Su L., 2013. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: implications for tectonic evolution of the West Junggar. International Geology Review 55 (5), 633-656. https://doi.org/10.1080/00206814.2012.741315.
[116]
Yamasaki T., Maeda J., Mizuta T., 2006. Geochemical evidence in clinopyroxenes from gabbroic sequence for two distinct magmatisms in the Oman ophiolite. Earth and Planetary Science Letters 251 (1-2), 52-65. https://doi.org/10.1016/j.epsl.2006.08.027.
[117]
Yang G.X., Li Y.J., Tong L.L., Li G.Y., Wu L., Wang Z.P., 2016. Petrogenesis and tectonic implications of early Carboniferous alkaline volcanic rocks in Karamay region of West Junggar, Northwest China. International Geology Review 58 (10), 1278-1293. https://doi.org/10.1080/00206814.2016.1149781.
[118]
Yang G.X., Li Y.J., Tong L.L., Wang Z.P., Duan F.H., Xu Q., Li H., 2019a. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences 179, 385-398. https://doi.org/10.1016/j.jseaes.2019.04.011.
[119]
Yang Y.Q., Zhao L., Zheng R.G., Xu Q.Q, 2019b. Evolution of the early Paleozoic Hongguleleng-Balkybey Ocean: Evidence from the Hebukesaier ophiolitic mélange in the northern West Junggar, NW China. Lithos 324-325, 519-536. https://doi.org/10.1016/j.lithos.2018.11.029.
[120]
Yin J.Y., Yuan C., Sun M., Long X.P., Zhao G.C., Wong K.P., Geng H.Y., Cai K.D., 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research 17 (1), 145-152. https://doi.org/10.1016/j.gr.2009.05.011.
[121]
Yin J.Y., Chen W., Xiao W.J., Yuan C., Sun M., Tang G.J., Yu S., Long X.P., Cai K.D, Geng H.Y., Zhang Y., Liu X.Y., 2015. Petrogenesis of Early-Permian sanukitoids from West Junggar, Northwest China: Implications for Late Paleozoic crustal growth in Central Asia. Tectonophysics 662, 385-397. https://doi.org/10.1016/j.tecto.2015.01.005.
[122]
Yogodzinski G.M., Kelemen P.B., 2007. Trace elements in clinopyroxenes from Aleutian xenoliths: Implications for primitive subduction magmatism in an island arc. Earth and Planetary Science Letters 256 (3-4), 617-632. https://doi.org/10.1016/j.epsl.2007.02.015.
[123]
Zhang Z.G., Liu X.J., Xiao W.J., Xu J.F., Shi Y., Gong X.H., Hu R.G., Liu P.D., Song Y.J., Xiao Y., Zhang Z.Q., Li R., Li D.C., 2021. Geochemistry and Sr-Nd-Hf-Pb isotope systematics of late Carboniferous sanukitoids in northern West Junggar, NW China: Implications for initiation of ridge-subduction. Gondwana Research 99, 204-218. https://doi.org/10.1016/j.gr.2021.07.008.
[124]
Zhang C., Santosh M., Liu L.F., Luo Q., Zhang X., Liu D.D., 2018. Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites. Lithos 300-301, 314-329. https://doi.org/10.1016/j.lithos.2017.12.010.
[125]
Zhang X.R., Zhao G.C., Eizenhöfer P.R., Sun M., Han Y.G., Hou W.Z., Liu D.X., Wang B., Liu Q., Xu B., 2015. Latest Carboniferous closure of the Junggar Ocean constrained by geochemical and zircon U-Pb-Hf isotopic data of granitic gneisses from the Central Tianshan block, NW China. Lithos 238, 26-36. https://doi.org/10.1016/j.lithos.2015.09.012.
[126]
Zheng R.G., Zhao L., Yang Y.Q., 2019. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China. Gondwana Research 74, 237-250. https://doi.org/10.1016/j.gr.2019.01.008.
[127]
Zhou T.F., Yuan F., Fan Y., Zhang D.Y., Cooke D., Zhao G.C., 2008. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos 106 (3-4), 191-206. https://doi.org/10.1016/j.lithos.2008.06.014.
[128]
Zhu Y.F., Xu X., 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China Acta Petrologica Sinica, 22 (12), 2833-2842. (in Chinese with English abstract).
PDF(12890 KB)

339

Accesses

0

Citations

Detail

Sections
Recommended

/