Paleo-Mesoarchean sedimentary record in the Dharwar Craton, India: Implications for Archean ocean oxygenation

G. Harshitha, C. Manikyamba, M. Santosh, Cheng-Xue Yang, A. Keshav Krishna, V.V. Sesha Sai, I. Panduranga Reddy

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101701.

PDF(12592 KB)
Geoscience Frontiers All Journals
PDF(12592 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101701. DOI: 10.1016/j.gsf.2023.101701
Research Paper

Paleo-Mesoarchean sedimentary record in the Dharwar Craton, India: Implications for Archean ocean oxygenation

Author information +
History +

Abstract

The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere. Archean chemical sediments of banded Iron and Manganese formations provide important geochemical proxies for these historical shifts in the redox conditions and to trace the ancient sedimentation patterns and protoliths. In this study, we investigate the proto-ore of the Archean Mn-formations of the Sandur, Chitradurga and Shimoga greenstone belts of Dharwar Craton of southern Peninsular India, which is geochemically characterised as quartz arenites, Mn-arenites, Fe-arenites, Mn-argillites and Fe-argillites. The geochemical systematics suggest their deposition in shallow to deeper shelf in the Archean proto-ocean. The detrital zircon U-Pb systematics of Mn arenites and argillites indicate their maximum depositional age of 3230 ±52 Ma representing the oldest onset of sedimentation during the Paleo-Mesoarchean timeframe in the Chitradurga Group of Dharwar Supergroup. The detrital influx proxies suggest variations in sedimentation rates associated with the Archean transgressive-regressive cycles and fluctuating hydrodynamic conditions, together reflecting an increasing trend in the contributions of recycled sediment from Sandur to Chitradurga and Shimoga greenstone belts. The available detrital zircon ages of the Mn arenites and argillites from these greenstone belts indicate a ~ 600 Ma prolonged period of Mn deposition for which high-T hydrothermal fluids from Archean mid-oceanic ridges supplied the manganese. The trace element compositions of the concordant detrital zircons suggest 3.3-3.1 Ga Dharwar basement TTG/granitoid source which is corroborated by the zircon crystallization temperatures of 690-820 ℃. The source-normalised α-dose rates of the detrital zircons signify greater degrees of sediment transport and multi-cycle nature which correspond to the earliest episode of crustal growth in the Indian sub-continent associated with the Mesoarchean Ur supercontinent. The clastic-chemogenic sedimentation attained through concomitant detrital sediment-seawater-metalliferous hydrothermal fluid mixing at an epicontinental passive margin resulted in the deposition of Mn-arenites and argillites closer to the higher Eh shore, while the Fe-rich sediments formed at a relatively deeper shelf characterised by comparatively lower Eh and more alkaline conditions. The comprehensive geochemical and geochronological data of the Archean Mn arenite-argillite sequences reveal the significance of regional episodes of ocean oxygenation at the shallow shelves of Archean oceans prior to great oxygenation event (GOE) that was mediated by the prolific growth of ancient microbiota which transformed the Earth to a more habitable planet.

Keywords

Mn-arenites-argillites / Dharwar Craton / Zircon U-Pb geochronology / Passive margin sediments / Ocean oxygenation

Cite this article

Download citation ▾
G. Harshitha, C. Manikyamba, M. Santosh, Cheng-Xue Yang, A. Keshav Krishna, V.V. Sesha Sai, I. Panduranga Reddy. Paleo-Mesoarchean sedimentary record in the Dharwar Craton, India: Implications for Archean ocean oxygenation. Geoscience Frontiers, 2024, 15(1): 101701 https://doi.org/10.1016/j.gsf.2023.101701

References

[1]
Algeo T.J., Liu J.S., 2020. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 540, 119549.
[2]
Algeo T.J., Tribovillard N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 268, 211-225.
[3]
Alibo D.S., Nozaki Y., 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 63, 363-372.
[4]
Allégre C.J., Rousseau D., 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 19-34.
[5]
Anbar A.D., Duan Y., Lyons T.W., Arnold G.L., Kendall B., Creaser R.A., Kaufman A.J., Gordon G.W., Scott C., Garvin J., Buick R., 2007. A Whiff of Oxygen Before the Great Oxidation Event? Science 317, 1903-1906.
[6]
Angerer T., Hagemann S.G., Danyushevsky L.V., 2012. Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing greenstone belt, Western Australia. Econ. Geol. 107, 599-644.
[7]
Anhaeusser C.R., Wilson J.F., 1981. Southern Africa:the granitic-gneiss greenstone shield. In: HunterD.R. (Ed.), Precambrian of the Southern Hemisphere. Elsevier, Amsterdam, pp. 423-499.
[8]
Baidya S., Giri A., Anand R., 2023. Tectono-magmatic evolution of the Archean Dharwar craton: A synthesis based on the geochemistry and emplacement history of the greenstone belt rocks of the craton. Earth Sci. Rev. 234, 104222.
[9]
Barling J., Anbar A.D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett. 217, 315-329.
[10]
Bau M., 1999. Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. Eur. j.Mineral. 5,257-267.
[11]
Bau M., Dulski P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 77-90.
[12]
Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143, 602-622.
[13]
Belousova E.A., Kostitsyn Y.A., Griffin W.L., Begg G.C., O’Reilly S.Y., Pearson N.J., 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457-466.
[14]
Bhaskar Rao Y.J., Sivaraman T.V., Pantulu G.V.C., Gopalan K., Naqvi S.M., 1992. Rb-Sr ages of late Archean metavolcanics and granites, Dharwar craton, South India and evidence for early Proterozoic thermotectonic event (s). Precambrian Res. 59, 145-170.
[15]
Bhaskar Rao Y.J., Kumar A., Vrevsky A.B., Srinivasan R., Anantha Iyer G.V., 2000. Sm-Nd ages of two meta-anorthosite complexes around Holenarsipur: Constraints on the antiquity of Archaean supracrustal rocks of the Dharwar Craton. j.Earth Sys. Sci. 109, 57-65.
[16]
Bhattacharya H.N., Bhattacharya B., Pal S., Roy A., 2015. Late Archaean tidalites from western margin of Chitradurga greenstone belt, southern India. Precambrian Res. 257, 109-113.
[17]
Bhattacharyya P.K., Bhattacharya H.N., Mukherjee A.D., 1988. The Chitradurga greenstone succession in south India and evolution of the late Archaean basin. Geol. Mag. 125, 507.
[18]
Bindeman I.N., Bekker A., Zakharov D.O., 2016. Oxygen isotope perspective on crustal evolution on early Earth: a record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth Planet. Sci. Lett. 437, 101-13.
[19]
Blöthe M., Wegorzewski A., Mu C., Simon F., Kuhn T., Schippers A., 2015. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. Environ. Sci. Technol. 49,7692-7700.
[20]
Bolhar R., Kamber B.S., Moorbath S., Fedo C.M., Whitehouse M.J., 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 222,43-60.
[21]
Burdige D.J., 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci. Rev. 35, 249-284.
[22]
Caplan M.L., Bustin R.M., 1998. Sedimentology and sequence stratigraphy of Devonian-Carboniferous strata, southern Alberta. Bull. Can. Pet. Geol. 46, 487-514.
[23]
Catling D.C., Zahnle K.J., 2020. The Archean atmosphere. Sci. Adv. 6, 1420.
[24]
Cawood P., Hwakesworht C.J., Dhume B., 2013. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14-32.
[25]
Chadwick, Brian, Ramakrishnan, M., Viswanatha, M.N., 1981. The stratigraphy and structure of the Chitradurga region: an illustration of cover-basement interaction in the late Archaean evolution of the Karnataka craton, Southern India. Precambrian Res. 16, 31-54.
[26]
Chadwick B., Vasudev V., Ahmed N., 1996. The Sandur schist belt and its adjacent plutonic rocks implications for Late Archaean crustal evolution in Karnataka. j.Geol. Soc. India 47, 635-639.
[27]
Chen G., Cheng Q., Lyons T.W., Shen J., Agterberg F., Huang N., Zhao M., 2022. Reconstructing Earth’s atmospheric oxygenation history using machine learning. Nat. Commun. 13, 5862.
[28]
Claiborne L.L., Miller C.F., Flanagan D.M., Clynne M.A., Wooden J.L., 2010. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38, 1011-1014.
[29]
Collier j.S., Sansom V., Ishizuka O., Taylor R.N., Minshull T.A., Whitmarsh R.B., 2008. Age of Seychelles‐India break‐up. Earth Planet. Sci. Lett. 272, 264-277.
[30]
Compston W., Pidgeon R.T., 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766.
[31]
Condie K.C., 1981. Archean Greenstone Belts. Elsevier, Amsterdam.
[32]
Condie K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97-108.
[33]
Condie K.C., 2014. How to make a continent:thirty-five years of TTG research. In: DilekY., FurnesH. (Eds.), Evolution of Archean Crust and Early Life, Modern Approaches to Solid Earth Sciences. Springer Science, Dordrecht, pp. 179-193.
[34]
Crowe S.A., Døssing L.N., Beukes N.J., Bau M., Kruger S.J., Frei R., Canfield D.E., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535-538.
[35]
Czaja A.D., Johnson C.M., Roden E.E., Beard B.L., Voegelin A.R., Nägler T.F., Beukes N.J., Wille M., 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86, 118-137.
[36]
Davranche M., Pourret O., Gruau G., Dia A.,Le Coz-Bouhnik M., 2005. Adsorption of REE(III)-humate complexes onto MnO2: experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochim. Cosmochim. Acta69, 4825-4835.
[37]
Dhiume B., Hawkesworth C.J., Delavault H., Cawood P.A., 2017. Continental growth seen through the sedimentary record. Sed. Geol. 357, 16-32.
[38]
Dhuime B., Hawkesworth C.J., Cawood P.A., Storey C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334-1336.
[39]
Dickinson W.R., Gehrels G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288, 115-125.
[40]
Dimroth E., Imrch L., Rocheleau M., Goulet N., 1982. Evolution of the south-central of the Archean Abitibi belt, Quebec. Part I: stratigraphy and paleogeographic model. Can. j.Earth Sci. 19, 1729-1758.
[41]
Ding K., SeyfriedJr. W.E., Zhang Z., Tivey M.K., VonDamm K.L., Bradley A.M., 2005. The in-situ pH of hydrothermal fluids at mid-ocean ridge. Earth Planet. Sci. Lett. 237,167-174.
[42]
Douville E., Bienvenu P., Charlou J.L., Donval J.P., Fouquet Y., Appriou P.,Gamo T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta63, 627-643.
[43]
Dröllner M., Barham M., Kirkland C.L., 2023. Gaining from loss: Detrital zircon source-normalized α-dose discriminates first- versus multi-cycle grain histories. Earth Planet. Sci. Lett. 579, 117346.
[44]
Drury S.A., 1983. The petrogenesis and setting of Archaean metavolcanics from Karnataka State, South India. Geochim. Cosmochim. Acta 47, 317-329.
[45]
Duan Y., Anbar A.D., Arnold G.L., Lyons T.W., Gordon G.W., Brian K., 2010. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim. Cosmochim. Acta 74, 6655-6668.
[46]
Eigenbrode J.L., Freeman K.H., 2006 Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. 103,15759-15764.
[47]
Eriksson K.A., 1995. Crustal growth, surface processes, and atmospheric evolution on the early Earth. Geol. Soc. Lond. Spec. Pub. 95, 11-25.
[48]
Eriksson P.G., Condie K.C., Tirsgaard H., Mueller W.U., Altermann W., Miall A. D., Aspler L.B., Catuneanu O., Chiarenzelli J.R., 1998. Precambrian clastic sedimentation systems. Sed. Geol. 120, 5-53.
[49]
Fedo C.M., Nesbitt H.W., Young G.M., 1995. Unravelling the effects of K metasomatism in sedimentary rocks and paleosols with implications for palaeoweathering conditions and provenance. Geology 23, 921-924.
[50]
Frei R., Gaucher C., Poulton S.W., Canfield D.E., 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250-254.
[51]
French J.E., Heaman L.M., 2010. Precise U-Pb dating of Paleoprotoerozoic mafic dyke swarms of the Dharwar craton India: implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Res. 183, 416-441.
[52]
Friend C.R.L., Nutman A.P., 1992. SHRIMP U-Pb geochronology of the Closepet granite, and Peninsular gneisses, Karnataka, south India. j.Geol. Soc. India, 38,357-368.
[53]
Fu J.H., Li S.X., Niu X.B., 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 45, 998-1008.
[54]
Giri A., Anand R., Balakrishnan S., Dash J.K., Sarma D.S., 2019. Neoarchean magmatism in Shimoga greenstone belt, India: evidence for subduction-accretion processes in the evolution of the western Dharwar stratigraphy. Lithos 330-331, 177-193.
[55]
Goldberg E.D., Koide M., Schmitt R.A., Smith R.H., 1963. Rare-earth distributions in the marine environment. j.Geophys. Res. 68, 4209-4217.
[56]
Gourcerol B., Thurston P.C., Kontak D.J., Côté-Mantha O., Biczok J., 2016. Depositional setting of Algoma-type banded iron formation. Precambrian Res. 281, 47-79.
[57]
Grimes C.B., Jhon B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghøj K., Schwartz J.J., 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643-646.
[58]
Grimes C.B., Wooden J.L., Cheadle M.J., John B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 170, 46.
[59]
Guitreau M., Mukasa S.B., Loudin L., Krishnan S., 2017. New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Res. 302-33-49.
[60]
Hallberg J.A., Glikson A.Y., 1981. Archean granite-greenstone terrains of W. Australia. In: HunterD.R. (Ed.), Precambrian of the Southern Hemisphere. lsevier, Amsterdam, pp. 33-103.
[61]
Harinadha Babu P., Ponnuswamy M., Krishnamurthy K.V., 1981. Shimoga Belt. In: Swami NathJ., RamakrishnanM. (Eds.), Early Precambrian Supracrustals of Southern Karnataka. Geol. Sur. India Mem. 112, pp. 199-218.
[62]
Harshitha G., Manikyamba C., Sridhar B., Satyanarayanan M., Sarma D.S., 2023. Manganiferous clays of Dharwar Craton, India: Insights on Archean weathering and ore formation processes. Geol. J. 1-21. 10.1002/gj.4828.
[63]
Hawkesworth C., Cawood P., Kemp T., Storey C., and Dhuime B., 2009. A matter of preservation. Science 323, 49-50.
[64]
Hawkesworth C.J., Cawood P.A., Dhuime B., Kemp A.I.S., 2017. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45, 169-198.
[65]
Herron M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. J. Sed. Res. 58, 820-829.
[66]
Hokada T., Horie K., Satish-Kumar M., Ueno Y., Nasheeth A., Mishima K., Shiraishi K., 2013. An appraisal of Archaean supracrustal sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India. Precambrian Res. 227, 99-119.
[67]
Holder R.M., Yakymchuk C., Viete D.R., 2020. Accessory mineral Eu anomalies in suprasolidus rocks: beyond feldspar. Geochem. Geophys. Geosy. 21, e2020GC009052.
[68]
Hoskin P.W.O., Ireland T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627-630.
[69]
Hoskin P.W.O., Schaltegger U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Min. Geochem. 53, 27-62.
[70]
Husson J.M., Peters S.E., 2018. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerging Topics in Life Sciences 2, pp. 125-136.
[71]
Ishwar-Kumar C., Windley B.F., Horie K., Kato T., Hokada T., Itaya T., Yagi K., Gouzu C., Sajeev K., 2013. A Rodinian suture in western India: New insights on India-Madagascar correlations. Precambrian Res. 236, 227-251.
[72]
Ishwar-Kumar C., Sajeev J., Windley B.F., Kusky T.M., Peng P., Ratheesh-Kumar R.T., Huang Y., Zhang Y., Jiang X., Razakamanana T., Yagi K., Itaya T., 2014. Evolution of high-pressure mafic granulites and pelitic gneisses from NE Madagascar: Tectonic implications. Tectonophysics 662, 219-242.
[73]
Jayananda M., Chardon D., Peucat J.-J., Capdevila R., 2006. 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints. Precambrian Res. 150, 1-26.
[74]
Jayananda M., Tsutsumi Y., Miyazaki T., Gireesh R.V., Kapfo K.U., Tushipokla, Hidaka H., amp, Kano T., 2013. Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. j.Asian Earth Sci. 78, 18-38.
[75]
Jayananda M., Kano T., Peucat J.-J., Channabasappa S., 2008. 3.35 komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Res. 162, 160-179.
[76]
Jayananda M., Chardon D., Peucat J.-J., Tushipokla C.M., 2015. Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res. 268, 295-322.
[77]
Jayananda M., Santosh M., Aadhiseshan K.R., 2018. Formation of Archean (3600-2500 Ma) continental crust in the Dharwar Craton, southern India. Earth Sci. Rev. 181, 12-42.
[78]
Jayananda M., Guitreau M., Aadhiseshan K. R., Miyazaki T., Chung S.L., 2023. Origin of the oldest (3600-3200 Ma) cratonic core in the Western Dharwar Craton, Southern India: Implications for evolving tectonics of the Archean Earth. Earth Sci. Rev. 236, 104278.
[79]
Johnson C.M., Beard B.L., Klein C., Beukes N.J. Roden E.E., 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151-169.
[80]
Johnson J.E., Webb S.M., Thomas K., Ono S., Kirschvink J.L., Fischer W.W., 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Nat. Acad. Sci. 110, 11238-11243.
[81]
Jones B., Manning D.A., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 111, 111-129.
[82]
Joshi K.B., Banerji U.S., Dubey C.P., Oliveira E.P., 2022. Detrital zircons in crustal evolution: A perspective from the Indian subcontinent. Lithosphere (Special 8, 3099822.
[83]
Kamber B.S., Greig A., Collerson K.D., 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim. Cosmochim. Acta, 69, 1041-1058.
[84]
Kaufman A.J., Johnson D.T., Farquhar J., Masterson A.L., Lyons T.W., Bates S., Anbar A.D., Arnold G.L., Garvin J., Buick R., 2007. Late Archean Biospheric Oxygenation and Atmospheric Evolution. Science 317, 1900-1903.
[85]
Kawabe I., Ohta A., Ishii S., Tokumura M., Miyauchi K., 1999. REE partitioning between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochem. J. 33, 167-179.
[86]
Kendall B., Reinhard C.T., Lyons T.W., Kaufman A.J., Poulton S.W., Anbar A.D., 2010. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647-652.
[87]
Khelen A.C., Manikyamba C., Tang L., Santosh M., Subramanyam K.S.V., Singh T.D., 2020. Detrital zircon U-Pb geochronology of stromatolitic carbonates from the greenstone belts of Dharwar Craton and Cuddapah basin of Peninsular India. Geosci. Front. 11, 229-242.
[88]
Kirkland C.L., Hartnady M.I.H., Barham M., Olierook H.K.H., Steenfelt A., Hollis J.A., 2021. Widespread reworking of Hadean-to-Eoarchean continents during Earth’s thermal peak. Nat. Commun. 12, 331.
[89]
Krapež B., Srinivasa Sarma D., Ram Mohan M., McNaughton N.J., Rasmussen B., Wilde S.A., 2020. Tectonostratigraphy of the Late Archean Dharwar Supergroup, Dharwar Craton, India: defining a tectonic history from spatially linked but temporally distinct intracontinental and arc-related basins. Earth Sci. Rev. 201, 102966.
[90]
Krishna K., Murthy N., Govil P., 2007. Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. At. Spectrosc. -Norwalk Conn. 28, 202-214.
[91]
Kuleshov V., 2017. Isotope Geochemistry:The origin and formation of manganese rocks and ores. In: MaynardJ.B.(Ed.), Isotope Geochemistry, Elsevier, Amsterdam, Netherlands, 427 pp.
[92]
Kumar A., Bhaskar Rao Y.J., Sivaraman T.V., Gopalan K., 1996. Sm-Nd ages of Archaean metavolcanics of the Dharwar craton, South India. Precambrian Res. 80, 205-216.
[93]
Lancaster P., Dey S., Storey C.D., Mitra A., Bhunia R.K., 2015. Contrasting crustal evolution processes in the Dharwar craton: Insights from detrital zircon U-Pb and Hf isotopes. Gondwana Res. 28, 1361-1372.
[94]
Laurent O., Martin H., Moyen J.F., Doucelance R., 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208-235.
[95]
Learman D., Voelker B., Vazquez-Rodriguez A., Hansel C., 2011. Formation of manganese oxides by bacterially generated superoxide. Nat. Geosci. 4, 95-98.
[96]
Li S.S., Santosh M., Farkas J., Redaa A., Ganguly S., Kim S.W., Zhang C., Gilbert S., Zack T., 2020. Coupled U-Pb and Rb-Sr laser ablation geochronology trace Archean to Proterozoic crustal evolution in the Dharwar Craton, India. Precambrian Res. 343, 105709.
[97]
Liao J., Sun X., Wu Z., Sa R., Guan Y., Lu Y., Li D., Liu Y., Deng Y., Pan Y., 2019. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific. Ore Geol. Rev. 112, 103044.
[98]
Liu X., Zhao Y., Song B., Liu J., Cui J., 2009. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly. Gondwana Res. 16, 342-361.
[99]
Lu Y.J., Loucks R.R., Fiorentini M.L., McCuaig T.C., Evans N.J., Yang Z.M., Hou Z.Q., Kirkland C.L., Parra-Avila L.A., Kobussen A., 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Soc. Econ. Geol. Spec. Pub. 19, 329-347.
[100]
Ludwig K.R., 2003. User’s Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Geochronological Center, Special Publication No. 4, . Berkeley, 25-32.
[101]
Luskin C., Wilson A., Gold D., Hofmann A., 2019. The Pongola Supergroup:Mesoarchaean Deposition Following Kaapvaal Craton Stabilization. In: KrönerA., HofmannA. (Eds.), The Archaean Geology of the Kaapvaal Craton, Southern Africa. Regional Geology Reviews, pp. 225 - 254.
[102]
Maibam B., Goswami J.N., Srinivasan R., 2011. Pb-Pb zircon ages of Archaean metasediments and gneisses from the southern part of the Dharwar craton, southern India: implications for the antiquity of the Eastern Dharwar craton. j.Earth Sys. Sci. 120, 643-61.
[103]
Maibam B., Lenaz D., Foley S., Berndt J., Belousova E., Wangjam M., Goswami J.N., 2021. U-Pb and Hf isotope study of detrital zircon and Cr-spinel in the Banavara quartzite and implications for the evolution of the Dharwar Craton, south India. Geol. Mag. 158, 1651-1682.
[104]
Manikyamba C., Kerrich R., Khanna T.C., Keshav Krishna A., Satyanarayanan M., 2008. Geochemical systematics of komatiite-tholeiite and adakitic-arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India. Lithos 106, 155-172.
[105]
Manikyamba C., Saha A., Santosh M., Ganguly S., Singh M.R., Rao D.S., Lingadevaru M., 2014a. Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: geochemical fingerprints of crustal growth at an active continental margin. Precambrian Res. 252, 1-21.
[106]
Manikyamba C., Ganguly S., Saha A., Santosh M., Rajanikanta Singh M., Subba Rao D.V., 2014b. Continental lithospheric evolution: constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India. j.Asian Earth Sci. 95, 65-80.
[107]
Manikyamba C., Ganguly S., 2020. Annals of Precambrian lithospheric evolution and metallogeny in the Dharwar Craton, India: recent paradigms and perspectives. Proc. Indian Nat. Sci. Acad. 86, 35-54.
[108]
Manikyamba C., Kerrich R., 2006. Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: first cycle volcanogenic sedimentary rocks in an intraoceanic arc-trench complex. Geochim. Cosmochim. Acta 70, 4663-4679.
[109]
Manikyamba C., Kerrich R., 2012. Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci. Front. 3, 225-240.
[110]
Manikyamba C., Naqvi S.M., 1995. Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India - mixing of clastic and chemical processes at a shallow shelf. Precambrian Res. 72, 69-95.
[111]
Manikyamba C., Naqvi S.M., 1997b. Mineralogy and geochemistry of Archean greenstone belt-hosted Mn formations and deposits of the Dharwar Craton: Redox potential of proto-oceans. Geol. Soc. Lond. Spec. Pub. 119, 91-103.
[112]
Manikyamba C., Naqvi S.M., Moeen S., Gnaneshwar Rao T., Balaram V., Ramesh S.L., Reddy G.L.N., 1997. Geochemical heterogeneities of metagraywackes from the Sandur schist belt: implications for active plate margin processes. Precambrian Res. 84, 117-138.
[113]
Manikyamba C., Naqvi S.M., 1997a. Late Archaean mantle fertility: Constraints from metavolcanics of the Sandur schist belt, India. Gondwana Res. 1, 69-89.
[114]
Manikyamba C., Saha A., Ganguly S., Santosh M., Lingadevaru M., Rajanikanta Singh M., Subba Rao D.V., 2014c. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: implications on pyroclastic volcanism and sedimentation in an active continental margin. j.Asian Earth Sci. 96, 269-278.
[115]
Manikyamba C., Ganguly S., Santosh M., Subramanyam K.S.V., 2017. Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India. Gondwana Res. 50, 38-66.
[116]
Manikyamba C., Ganguly S., Santosh M., Tang L., Sindhuja C.S., Pahari A., Singh T.D., Saha A., 2021. Tectonic juxtaposition of plume and subduction derived magmatic sequences in the Bababudan greenstone terrane, western Dharwar Craton, India: Constraining crustal accretion processes in a Neoarchean subduction-collision orogeny. Precambrian Res. 355, 106097.
[117]
Manikyamba C., Sindhuja C.S., Khelen A.C., Pahari A., 2022a. Archean biogeochemical cognizance from Dharwar Craton, India- A review. j.Geol. Soc. India 98, 74-78.
[118]
Manikyamba C., Pahari A., Santosh M., Subramanyam K.S.V., Harshitha Reddy G., 2022b. Geochemistry of basalts in unravelling the mantle processes and crustal evolution: Insights from the greenstone belts of western Dharwar Craton. Geosys. Geoenv. 1, 100070.
[119]
Martin H., Peucat J.J., Sabate P., Cunha J.C., 1997. Crustal evolution in the Early Archean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. Precambrian Res. 82, 35-62.
[120]
McCulloch M.T., Wasserburg G.J., 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200, 1003-1011.
[121]
McLennan S.M., 1993. Weathering and global denudation. j.Geol. 101, 295-303.
[122]
McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In:Processes Controlling the Composition of Clastic Sediments. Geol. Soc. America Spec. Pap. 284,21-40.
[123]
McLennan S.M., 1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes. In: LipinB.R., MacKayG.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineral. Soc. America, pp. 169-200.
[124]
Mitra A., Dey S., Das P., Zong K., Liu Y., 2023. Nucleation and growth of western Dharwar Craton: A Paleoarchean to Mesoarchean evolutionary history recorded in sediment geochemistry and detrital zircon U-Pb-Hf isotopes-trace elements. Lithos 448-449, 107148.
[125]
Mohan M.R., Piercey S.J., Kamber B.S., Sarma D.S., 2013. Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: new geochemical and isotopic constraints. Precambrian Res. 227, 204-226.
[126]
Mohan M.R., McNaughton N.J., Sarma D.S., Rajamanickam M., Fletcher I.R., Wilde S.A., Rasmussen B., Krapež B., Balakrishnan S., 2023. Petrogenesis of Meso-Neoarchean granitoids from the Chitradurga Greenstone Belt: Implications on crustal growth and reworking of the Dharwar Craton, southern India. j.Asian Earth Sci. 242, 105494.
[127]
Mole D.R., Kirkland C.L., Fiorentini M.L., Barnes S.J., Cassidy K.F., Isaac C., Belousova E.A., Hartnady M., Thebaud N., 2019. Time-space evolution of an Archean craton: A Hf-isotope window into continent formation. Earth Sci. Rev. 196,102831.
[128]
Morad S., Al-Ramadan K., Ketzer J.M., Ros L.F.D., 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. Am. Assoc. Pet. Geol. Bull.,94,1267-1309.
[129]
Morel M.L.A., Nebel O., Nebel-Jacobsen Y.J., Miller J.S., Vroon P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231-235.
[130]
Moyen J.F., Nédélec A., Martin H., Jayananda M., 2003. Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. j.Struct. Geol. 25, 611-631.
[131]
Murphy A.E., Sageman B.B., Hollander D.J., Lyons T.W., Brett C.E., 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 15, 280-291.
[132]
Naqvi S.M., Manikyamba C., Rao T.G., Subba Rao D.V., Mohan M.R., Sarma D.S., 2002. Geochemical and isotopic constraints of Neoarchean fossil plume for evolution of volcanic rocks of Sandur greenstone belt, India. j.Geol. Soc. India, 60, 27-56.
[133]
Naqvi S.M., Rana Prathap J.G., 2007. Geochemistry of adakites from Neoarchaean active continental margin of Shimoga schist belt, Western Dharwar Craton, India: implications for the genesis of TTG. Precambrian Res. 156, 32-54.
[134]
Naqvi S.M., Rogers J.J.W., 1987. Precambrian geology of India. Oxford University Press, New York, p.223.
[135]
Nardi L.V.S., Formoso M.L.L., Jarvis K., Oliveira L., Neto A.C.B., 2012. Geochemistry of zircons in the magmatic-hydrothermal F-rich system of Sn-Nb- cryolite mineralized granites from the Pitinga Mine region, Amazonia, Brazil. j.South Am. Earth Sci. 33, 34-42.
[136]
Nasdala L., Hanchar J.M., Kronz A., Whitehouse M.J., 2005. Long-term stability of alpha particle damage in natural zircon. Chem. Geol. 220, 83-103.
[137]
Nasheeth A., Okudaira T., Horie K., Hokada T., Satish-Kumar M., 2016. U-Pb SHRIMP ages of detrital zircons from Hiriyur Formation in Chitradurga greenstone belt and its implication to the Neoarchean evolution of Dharwar craton, South India. j.Geol. Soc. India 87, 43-54.
[138]
Nesbitt H.W., Young G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 48, 1523-1534.
[139]
Nutman A.P., Chadwick B., Ramakrishnan M., Viswanatha M.N., 1992. SHRIMP U-Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, southern India. j.Geol. Soc. of India 39, 367-374.
[140]
Nutman A.P., Chadwick B., Krishna Rao B., Vasudev V.N., 1996. SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur schist belt, Karnataka. j.Geol. Soc. India 47, 153-164.
[141]
Ohta A., Kawabe I., 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2. Geochim. Cosmochim. Acta 65, 695-703.
[142]
Ostrander C.M., Nielsen S.G., Owens J.D., Kendall B., Gordon G.W., Romaniello S.J., Anbar A.D., 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12, 186-191.
[143]
Pahari A., Tang L., Manikyamba C., Santosh M., Subramanyam K.S.V., Ganguly S., 2019. Meso-Neoarchean magmatism and episodic crustal growth in the Kudremukh-Agumbe granite-greenstone belt, western Dharwar Craton, India. Precambrian Res. 323, 16-54.
[144]
Panicker A.G., Mohan M.R., Upadhyay D., Raju B.V., Chauhan H., Chalapathi Rao N.V., 2021. U-Pb zircon age, geochemistry and petrogenesis of Mesoarchean anorthositic rocks from the Holenarsipur Greenstone Belt, Western Dharwar Craton: implications for accretionary tectonics in southern India. Lithos 398-399.
[145]
Patra K., Giri A., Anand R., Balakrishnan S., Dash J.K., 2020. Dharwar stratigraphy revisited: new age constraints on the ‘oldest’ supracrustal rocks of western Dharwar Craton, southern India. Int. Geol. Rev. 1-21.
[146]
Pavlov A.A., Kasting J.F., 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27-41.
[147]
Peng Y., Kusky T., Wang L., Luan Z., Wang C., Liu X., Zhong Y., Evans N.J., 2022. Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise. Nat. Commun. 13, 7821.
[148]
Pettijohn F.J., Potter P.E., Siever R., 1987. Sand and Sandstone. Springer-Verlag, New York, pp. 553.
[149]
Peucat J.J., Bouhallier H., Fanning C.M., Jayananda M., 1995. Age of the Holenarsipur Greenstone Belt, relationships with the surrounding gneisses (Karnataka, South India). j.Geol. 103, 701-710.
[150]
Peucat, Jean Jacques, Jayananda, M., Chardon, D., Capdevila, R., Fanning, C.M., Paquette, J.L., 2013. The lower crust of the Dharwar Craton, Southern India: patchwork of Archean granulitic domains. Precambrian Res. 227, 4-28.
[151]
Planavsky N.J., Asael D., Hofmann A., Reinhard C.T., Lalonde S.V., Knudsen A., Wang X., Ossa F.O., Pecoits E., Smith A.J.B., Beukes N.J., Bekker A., Johnson T.M., Konhauser K.O., Lyons T.W., Rouxel O.J., 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283-286.
[152]
Raju P.V.S., Mazumder R., 2020. Archean sedimentation on Dharwar Craton, India and its implications. Earth Sci. Rev. 202, 102999.
[153]
Ramakrishnan M., Vaidyanadhan R., 2010. Geology of India. Geological Society of India. Bangalore.
[154]
Ramakrishnan M., Viswanatha M.N., Swami Nath J., 1976. Basement-cover relationships of Peninsular Gneiss with high grade schists and greenstone belts of Southern Karnataka. j.Geol. Soc. India 17, 97-111.
[155]
Ramakrishnan M., Venkata Dasu S.P., Kroner A., 1994. Middle Archean age of Sargur Group by single grain zircon dating and geochemical evidence of clastic origin of metaquartzite from J.C. Pura greenstone belt, Karnataka. j.Geol. Soc. India 44, 605-616.
[156]
Ranjan S., Upadhyay D., Abhinay K., Srikantappa C., 2020. Paleoarchean and Neoarchean Tonalite-Trondhjemite-Granodiorite (TTG) and granite magmatism in the Western Dharwar Craton, southern India: Implications for Archean continental growth and geodynamics. Precambrian Res. 340, 105630.
[157]
Ranjan S., Upadhyay D., Srikantappa C., 2022. Eoarchean to Neoarchean crustal evolution of the Western Dharwar Craton, southern India: Clues from U-Pb-Hf isotope composition of detrital zircon. Precambrian Res. 371, 106559.
[158]
Ravindran A., Mezger K., Balakrishnan S., Berndt J., 2021. Hf-Nd isotopes from ultramafic and mafic rocks in the western Dharwar Craton, India, record early Archean mantle heterogeneity. Lithos 404-405, 106491.
[159]
Ravindran A., Mezger K., Balakrishnan S., Berndt J., Ranjan S., Upadhyay D., 2023. Formation of Paleo- to Meso-Archean continental crust in the western Dharwar Craton, India: Constraints from U-Pb zircon ages and Hf-Pb-Sr isotopes of granitoids and sedimentary rocks. Chem. Geol. 615, 121196.
[160]
Ray E., Paul D., Bhutani R., Chakrabarti R., Yang S., 2023. Sm-Nd isotope systematics of Indian shales constrain the growth of continental crust: Implication for supercontinent cycle and mantle plume activity. Lithos 442-442, 107051.
[161]
Rayner N., Stern R.A., Carr S.D., 2005. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib. Mineral. Petrol. 148, 721-734.
[162]
Resentini A., Andò S., Garzanti E., Malusà M.G., Pastore G., Vermeesch P., Chanvry E., Dall’Asta M., 2020. Zircon as a provenance tracer: coupling Raman spectroscopy and U Pb geochronology in source-to-sink studies. Chem. Geol. 555, 119828.
[163]
Rey P.F., Coltice N., 2008. Neoarchean lithospheric strengthening and the coupling of Earth’s geochemical reservoirs. Geology 36, 635-638.
[164]
Rino S., Komiya T., Windley B.F., Katayama I., Motoki A., Hirata T., 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys. Earth Planet. Inter. 14, 369-394.
[165]
Rogers J.J.W., 1988. The Arsikere Granite of southern India: Magmatism and metamorphism in a previously depleted crust. Chem. Geol. 67, 155-163.
[166]
Rogers J.J.W., 1996. A history of continents in the past three billion years. j.Geol. 104, 91-107.
[167]
Rogers J.J.W., Santosh M., 2003. Continents and supercontinents. Oxford University Press, Oxford 289.
[168]
Roig J.Y., Tucker R.D., Delor C., Peters S.G., Théveniaut H., 2012. Carte géologique de la République de Madagascar à 1/1 000 000. Ministère des Mines, PGRM, Antananarivo, République de Madagascar (in French).
[169]
Roy S., 1981. Manganese Deposits. Academic Press, London.
[170]
Roy S., 1988. Manganese metallogenesis: A review. Ore Geol. Rev. 4, 155-170.
[171]
Roy S., 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth Science Rev. 77, 273-305.
[172]
Roy A., Biswas S.K., 1983. Stratigraphy and structure of the Sandur schist belt, Karnataka. j.Geol. Soc. India 24, 19-29.
[173]
Roy A., Ramachandran H.M., Sengupta S., 2020. Interpretation of stratigraphy and structure of the Neoarchaean Dharwar Supergroup of rocks in Chitradurga area, Dharwar Craton. J. Earth Sys. Sci. 129, 98.
[174]
Saha A.K., 1994. Crustal evolution of Singhbhum-North Orissa, Eastern India. Mem. Geol. Soc. India, Bangalore.
[175]
Santosh M., Groves D.I., 2022. Global metallogeny in relation to secular evolution of the Earth and supercontinent cycles. Gondwana Res. 107, 395-422.
[176]
Santosh M., Li S.S., 2018. Anorthosites from an Archean continental arc in the Dharwar Craton, southern India: Implications for terrane assembly and cratonization. Precambrian Res. 308, 126-147.
[177]
Santosh M., Yang Q.-Y., Shaji E., Tsunogae T., Mohan M.R., Satyanarayanan M., 2015. An exotic Mesoarchean microcontinent: The Coorg Block, southern India. Gondwana Res. 27, 165-195.
[178]
Santosh M., Yang Q.Y., Shaji E., Mohan M.R., Tsunogae T., Satyanarayanan M., 2016. Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gondwana Res. 29, 105-135.
[179]
Sarma D.S., McNaughton N.J., Belusova E., Ram Mohan M., Fletcher I.R., 2012. Detrital zircon U-Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the western Dharwar Craton, India. Gondwana Res. 22, 843-854.
[180]
Sawkar R.H., 1976. Geology of the manganese ore deposits of North Kanara district, Karnataka State, India. Geology and Geochemistry of Manganese, 2,pp.279-295.
[181]
Schidlowski M., 1988, A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313.
[182]
Schidlowski M., 1993. The beginning of life on Earth:evidence from the geological record. In: GreenburgJ.M., et al. (Eds.), The Chemistry of Life’s Origins. Kulwar, Dordrecht, pp. 389-414.
[183]
Seshadri T.S., Chaudhuri A., Harinadha Babu P., Chayapathi N., 1981. Chitradurga Belt. In: Swami NathJ., RamakrishnanM. (Eds.), Early Precambrian Supracrustals of Southern Karnataka. Mem. Geol. Surv. India Mem. 112, pp. 163-198.
[184]
Shi G., Wauschkuhn B., Ratschbacher L., Shen C., Fu H., Frölich S., 2023. Zircon-based proxies for source-rock prediction in provenance analysis: A case study using Upper Devonian sandstones, northern South China Block. Sed. Geol. 447, 106377.
[185]
Shields G., Stille P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol. 175, 29-48.
[186]
Shibuya T., Komiya T., Nakamura K., Takai K., Maruyama S., 2010. Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res. 182, 230-238.
[187]
Sindhuja C.S., Manikyamba C., Saha S., Narayanan S., Sridhar B. 2022. Geochemical and carbon isotopic studies of carbonaceous phyllites from Dharwar craton, India - Reconstruction of Precambrian depositional environment. Precambrian Res. 372, 106575.
[188]
Slotznick S.P., Johnson J.E., Rasmussen B., Raub T.D., Webb S.M., Zi A., Kirscvink J.L., Fischer W.W., 2022. Reexamination of 2.5-Ga “whiff” of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190.
[189]
Spencer C.J., 2020. Continuous continental growth as constrained by the sedimentary record. Am. j.Sci. 320, 373-401.
[190]
Spencer C. J., Kirkland C. L., Roberts N. M. W., Evans N. J., Liebmann J., 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geosci. Front. 11,843-853.
[191]
Sreehari L., Toyoshima T., Satish-Kumar M., Takahashi T., Ueda H., 2021. Structural and geochemical evidence for a failed rift crustal evolution model in Western Dharwar Craton, South India. Lithos 388-389, 106020.
[192]
Stankevica K., Klavins M., Vincevica-Gaile Z., Kalnina L., Kaup E., 2020. Accumulation of metals and changes in composition of freshwater lake organic sediments during the Holocene. Chem. Geol. 539, 119502.
[193]
Storey M., Mahoney J.J., Saunders A.D., Duncan R.A., Kelley S.P., Coffin M.F., 1995. Timing of hotspot related volcanism and the breakup of Madagascar and India. Science 267, 852-855.
[194]
Stüeken E.E., Buick R., Anbar A.D., 2015. Selenium isotopes support free O2 in the latest Archean. Geology 43, 259-262.
[195]
Sun S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Pub. 42, 313-345.
[196]
Geological Survey of India, 1981. Geological and Mineral Map of Karnataka and Goa, 1:500,000 Scale, Hyderabad.
[197]
Geological Survey of India, 1998. Geological Map of India, 1:2,000,000 Scale, Hyderabad.
[198]
Swami Nath J., Ramakrishnan M. (Eds.), 1981. Early Precambrian Supracrustals of Southern Karnataka. Geol. Surv. India Mem. 112, pp. 350.
[199]
Tang M., Ji W.Q., Chu X., Wu A.B., Chen C., 2020. Reconstruction crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76-80.
[200]
Taylor P.N., Chadwick B., Moorbath S., Ramakrishnan M., Viswanatha M.N., 1984. Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archean evolution of the Karnataka craton, southern India. Precambrian Res. 23, 349-375.
[201]
Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, pp. 312.
[202]
Tebo B.M., Johnson H.A., McCarthy J.K., Templeton A.S., 2005. Geomicrobiology of manganese (II) oxidation. Trends Microbiol. 13, 421-428.
[203]
Trendall A.F., De Laeter J.R., Nelson D.R., Mukhopadhyay D., 1997. A precise zircon U-Pb age for the base of the BIF of the Mulaingiri Formation, (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton. j.Geol. Soc. India 50, 161-170.
[204]
Tribovillard N., Algeo T.J., Lyons T., Riboulleau A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12-32.
[205]
Tribovillard N., Algeo T.J., Baudin F., Riboulleau A., 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation-applications to Mesozoic paleoceanography. Chem. Geol. 324-325, 46-58.
[206]
Tucker R.D., Ashwal L.D., Handke M.J., Hamilton M.A., LeGrange M., Rambeloson R.A., 1999. U-Pb geochronology and isotope geochemistry of the Archean and Proterozoic rocks of north-central Madagascar. j.Geol. 107, 135-153.
[207]
Tucker R.D., Roig J.-Y., Macey P.H., Delor C., Amelin Y., Armstrong R.A., Rabarimanana M.H., Ralison A.V., 2011. A new geological framework for south-central Madagascar, and its relevance to the "out-of-Africa" hypothesis. Precambrian Res. 185, 109-130.
[208]
Tucker R.D., Roig J.Y., Moine B., Delor C., Peters S.G., 2014. A geological synthesis of the Precambrian shield in Madagascar. j.African Earth Sci. 94, 9-30.
[209]
Van Kranendonk M.J., Smithies R.H., Hickman A.H., Champion D.C., 2007. Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 1-38.
[210]
Verma S.P., Armstrong-Altrin J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sed. Geol. 332, 1-12.
[211]
Wang H., Yang j.H., Zhu Y. S., Huang C., Xu L., Wu S. T., Liu Y., 2022. Archean crustal growth and reworking revealed by combined U-Pb-Hf-O isotope and trace element data of detrital zircons from ancient and modern river sediments of the eastern Kaapvaal Craton. Geochim. Cosmochim. Acta 320, 79-104.
[212]
Watson E.B., Wark D.A., Thomas J.B., 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413.
[213]
Wignall P.B., 1994. Black Shales. Oxford University Press, USA. Wolgemuth, K., Broecker, W.S., 1970. Barium in sea water. Earth Planet. Sci. Lett. 8, 372-378.
[214]
Wille M., Kramers J.D., Nägler T.F., Beukes N.J., Schröder S., Meisel T., Lacassie J.P., Voegelin A.R., 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417-2435.
[215]
Xiong X.H., Xiao J.F., 2011. Geochemical indicators of sedimentary environments-a summary. Earth Environ. 39, 405-414.
[216]
Xu Q.L., Liu B., Ma Y.S., Song X.M., Wang Y.J., Chen Z.X., 2017. Geological and geochemical characterization of lacustrine shale: a case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China. j.Nat. Gas Science Eng. 47, 124-139.
[217]
Yang W.B., Niu H.C., Shan Q., Sun W.D., Zhang H., Li N.B., Jiang Y.H., Yu X.Y., 2014. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr-REE-Nb mineralization. Miner. Deposita 49, 451-470.
[218]
Yang C., Santosh M., Lloyd J.C., Glorie S., Gao P., Yu B., Anilkumar Y., Anoop K.S., Kim S., 2023. The Coorg Block, southern India: Insights from felsic and mafic magmatic suites on Mesoarchean plate tectonics and correlation with supercontinent Ur. Gondwana Res. 118, 1-36.
[219]
Zhang L., Dong D., Qiu Z., Wu C., Zhang Q., Wang Y., Liu D., Deng Ze., Zhou S., Pan S., 2021. Sedimentology and geochemistry of Carboniferous-Permian marine-continental transitional shales in the eastern Ordos Basin, North China. Paleogeogr. Paleoclimatol. Paleoecol. 571, 110389.
[220]
Zhao J.H., Jin Z.J., Jin Z.K., Geng Y.K., Wen X., Yan C.N., 2016. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. Int. j.Coal Geol. 163, 52-71.
[221]
Zou X., Qin K., Han X., Li G., Evans N.J., Li Z., Yang W., 2019. Insight into zircon REE oxy-barometers: a lattice strain model perspective. Earth Planet. Sci. Lett. 506, 87-96.
PDF(12592 KB)

Accesses

Citations

Detail

Sections
Recommended

/