Paleozoic tectonic evolution of the proto-Korean Peninsula along the East Asian continental margin from detrital zircon U-Pb geochronology and Hf isotope geochemistry

Yirang Jang, Sung Won Kim, Vinod O. Samuel, Sanghoon Kwon, Seung-Ik Park, M. Santosh, Keewook Yi

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101700.

PDF(13544 KB)
Geoscience Frontiers All Journals
PDF(13544 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101700. DOI: 10.1016/j.gsf.2023.101700
Research Paper

Paleozoic tectonic evolution of the proto-Korean Peninsula along the East Asian continental margin from detrital zircon U-Pb geochronology and Hf isotope geochemistry

Author information +
History +

Abstract

Detrital zircon geochronology and Hf isotope analysis can be used for inferring provenance characteristics, and to evaluate the tectonic evolution of sedimentary basins and their link with regional orogenesis. The Paleozoic sequences of the Okcheon Belt consist of the Lower Paleozoic Joseon and the Upper Paleozoic Pyeongan supergroups with Middle Paleozoic hiatus locally on top of the Neoproterozoic bimodal volcanic rocks, reflecting an intracontinental rift setting between the two basements (viz. Gyeonggi and Yeongnam massifs) at southern part of the Korean Peninsula. Our detrital zircon U-Pb ages and Lu-Hf isotope results show that all these Paleozoic strata commonly have Paleoproterozoic and Paleozoic zircon ages with rare Meso- to Neoproterozoic ages. The individual zircon populations display following features, allowing estimation of their sedimentary provenances: (i) The Paleoproterozoic zircons (ca. 1.85 Ga and 2.50 Ga) with similar ranges of εHf(t) values are most common in the basement rocks of the Korean Peninsula, and were sourced from both the Gyeonggi and Yeongnam massifs. (ii) The Meso- to Neoproterozoic zircons, preserved only in the Middle to Late Cambrian clastic sedimentary rocks within the carbonate sequences probably reflect proximal provenance. (iii) The youngest Paleozoic zircons of each formation, almost coincident with their deposition ages, suggest presence of syndepositional magmatism, indicating proximal magmatic sources during their deposition. (iv) The Cambrian-Ordovician zircons, from the Lower Paleozoic sequences, but rare in the successive Upper Paleozoic sequences, suggest a provenance change after the hiatus between the two sedimentary successions. (v) The Permian zircons showing different εHf(t) values indicate that detrital sources were varied at that time. The integrated results in our study suggest provenance variability linked to diverse tectonic environments, reflecting prolonged subduction-related crustal evolution of the proto-Korean Peninsula during the Paleozoic.

Keywords

Detrital zircon U-Pb and Hf isotopes / Paleozoic metasedimentary rocks / Okcheon Belt / Taebaeksan zone / Korean Peninsula

Cite this article

Download citation ▾
Yirang Jang, Sung Won Kim, Vinod O. Samuel, Sanghoon Kwon, Seung-Ik Park, M. Santosh, Keewook Yi. Paleozoic tectonic evolution of the proto-Korean Peninsula along the East Asian continental margin from detrital zircon U-Pb geochronology and Hf isotope geochemistry. Geoscience Frontiers, 2024, 15(1): 101700 https://doi.org/10.1016/j.gsf.2023.101700

CRediT authorship contribution statement

Taimoor Hassan Farooq: Conceptualization, Investigation, Writing – original draft, Software, Writing – review & editing. Shagufta Jabeen: Methodology, Investigation, Writing – original draft. Awais Shakoor: Writing – review & editing. Muhammad Saleem Arif: Writing – review & editing. Nadia Siddique: Methodology, Software. Khuram Shahzad: Writing – review & editing. Muhammad Umair Riaz: Methodology, Investigation. Yong Li: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financially supported by Central South University of Forestry and Technology Research Funding (70702-45200003), and Scientific Research Foundation of Hunan Provincial Education Department (70702-22200007).

References

[1]
Amelin Y., Lee D.-C., Halliday A.N., and Pidgeon R.T., 1999. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital grains. Nature 399, 252-255, doi: 10.1038 /20426.
[2]
Amelin Y., Lee D.C., Halliday A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica Et Cosmochimica Acta 64 (24), 4205-4225.
[3]
An F., Zhu Y., Wei S., Lai S., 2017. The zircon U-Pb and Hf isotope constraints on the basement nature and Paleozoic evolution in northern margin of Yili Block, NW China. Gondwana Research 43, 41-54.
[4]
Andersen T., van Niekerk H., Elburg M.A., 2022. Detrital zircon in an active sedimentary recycling system: Challenging the ‘source-to-sink’ approach to zircon-based provenance analysis. Sedimentology 6 (69), 2436-2462.
[5]
Bahlburg H., Vervoort J.D., DuFrane S.A., Carlotto V., Reimann C., Cardenas J., 2011. The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia. Journal of South American Earth Sciences 32, 196-209, doi: 10.1016/j.jsames.2011.07.002.
[6]
Bauer A.M., Reimink J.R., Chacko T., Foley B.J., Shirey S.B., Pearson D.G., 2020. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochemical Perspectives Letters 14, 1-6.
[7]
Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115-140.
[8]
Bouvier A., Vervoort J.D., Patchett J.D., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48-57, doi: 10.1016 /j.epsl.2008.06.010.
[9]
Burrett C., Zaw K., Meffre S., Lai C.K., Khositanont S., Chaodumrong P., Udchachon D., Ekins S., Halpin J., 2014. The configuration of Greater Gondwana—evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Paleozoic and Mesozoic of Southeast Asia and China. Gondwana Research 26, 31-51.
[10]
Cawood P.A., Hawkesworth C.J., Dhuime B., 2012. Detrital zircon record and tectonic setting. Geology 40 (10), 875-878.
[11]
Cheong A.C., Jeong Y.-J., Jo H.J., Sohn Y.K., 2019a. Recurrent Quaternary magma generation at Baekdusan (Changbaishan) volcano: New zircon U-Th ages and Hf isotopic constraints from the Millennium Eruption. Gondwana Research 68, 13-21.
[12]
Cheong A.C., Jo H.J., Jeong Y.-J., Li X.-H., 2019b. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. GSA Bulletin, 131 (3-4), 609-634.
[13]
Cheong C.-S., Kim N., Yi K., Jo H.J., Jeong Y.-J., Kim Y., Koh S.M., Iizuka T., 2015. Recurrent rare earth element mineralization in the northwestern Okcheon Metamorphic Belt, Korea: SHRIMP U-Th-Pb geochronology, Nd isotope geochemistry, and tectonic implications. Ore Geology Reviews 71, 99-115, https://doi.org/10.1016/j.oregeorev.2015.05.012.
[14]
Cho D.-L., 2014. SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication. The Journal of the Petrological Society of Korea 23(3), 197-208 (in Korean with English abstract).
[15]
Cho M., Cheong W., 2016. Comments on “Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: Implications for the Gondwana linkage of the Sino-Korean (North China) Block during the Neoproterozoic-early Cambrian” by Lee et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441 ( 2016) 770-786]. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 606-609.
[16]
Cho D.-L., Lee B.C., Oh C.W., 2020. Petrogenesis of paleoproterozoic (2.02-1.96 Ga) metagranitoids in the southwestern Yeongnam Massif, Korean Peninsula, and their significance for the tectonic history of northeast Asia: Insights from zircon U-Pb-Hf isotope and whole-rock geochemical compositions. Precambr. Res. 340, 105631.
[17]
Cho M., Kim T., Kim H., 2004. SHRIMP U-Pb zircon age of a felsic meta-tuff in the Ogcheon metamorphic belt, Korea: Neoproterozoic ( ca. 750 Ma) volcanism. Journal of the Petrological Society of Korea 13, 119-125 (In Korean with English abstract).
[18]
Cho M., Kim H., Lee Y., Horie K., Hidaka H., 2008. The oldest (ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi Massif. Geosciences Journal 12, 1-6.
[19]
Cho M., Cheong W., Ernst W.G., Yi K., Kim J., 2013. SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt, Korea: evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences 63, 234-249.
[20]
Cho M., Lee Y., Kim T., Cheong W., Kim Y., Lee S.R., 2017. Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview. Geosciences Journal 21, 845-865.
[21]
Cho M., Cheong W., Ernst W.G., Kim Y., Yi K., 2021. U-Pb detrital zircon ages of Cambrian-Ordovician sandstones from the Taebaeksan Basin, Korea: Provenance variability in platform shelf sequences and paleogeographic implications. GSA Bulletin 133 (3-4), 488-504.
[22]
Choi D.K., 1998. The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal 2 (4), 220-234.
[23]
Choi D.K., Chough S.K., 2005. The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal 9 (2), 187-214.
[24]
Choi T., Lee Y.I., Orihashi Y., 2016. Crustal growth history of the Korean Peninsula: Constraints from detrital zircon ages in modern river sediments. Geoscience Frontiers 7 (5), 707-714.
[25]
Chough S.K., Kwon S.-T., Ree J.-H., Choi D.K., 2000. Tectonic and sedimentary evolution of the Korean peninsula - a review and new view. Earth-Science Reviews 52, 175-235.
[26]
Chough S.K., Kwon Y.K., Lee H.S., Woo J., 2022. The Jangsan Formation refined. Geosciences Journal 26, 545-554.
[27]
Chu N.C., Taylor R.N., Chavagnac V., Nesbitt R.W., Boella M., Milton J.A., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567-1574.
[28]
Claoue-Long J.C., Compston W., Roberts J., Fanning C.M., 1995. Two Carboniferous ages:a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: BerggrenW.A., KentD.V., AubryM.P., HardenbolJ. (Eds.), Geochronology Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication 4, 3-21.
[29]
Cluzel D., 1991. Late Palaeozoic to early Mesozoic geodynamic evolution of the Circum-Pacific orogenic belt in South Korea and Southwest Japan. Earth and Planetary Science Letters 108(4), 289-305.
[30]
Cluzel D., Cadet J.-P., Lapierre H., 1990. Geodynamics of the Ogcheon Belt (South Korea). Tectonophysics 183, 41-56.
[31]
Cluzel D., Jolivet L., Cadet J.-P., 1991. Early middle Paleozoic intraplate orogeny in the Ogcheon belt South Korea: a new insight on the Paleozoic buildup of East Asia. Tectonics 10, 1130-1151.
[32]
Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry 53, 469-500.
[33]
Drost K., Gerdes A., Jeffries T., Linnemann U., Storey C., 2011. Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Research 19 (1), 213-231.
[34]
Ernst W.G., Liou J.G., 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology 23, 353-356.
[35]
Gaudette H.E., Hurley P.M., 1973. U-Pb zircon age of Precambrian basement gneiss of south Korea. GSA Bulletin 84, 305-306.
[36]
Gehrels G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences 42,127-149.
[37]
Geological investigation Corps of Taebaeksan Region (GICTR), 1962. Report on the Geology and Mineral Resources of the Taebaeksan Region. Geological Society of Korea, Seoul, pp. 89 (in Korean).
[38]
Griffin W.L., Pearson N.J., Belousova E.A., Jackson S.R., van Achterbergh E., O’Reilly S.Y., Shee S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zirconmegacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133-147.
[39]
Han S., de Jong K., Yi K., 2017. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes. Journal of Asian Earth Sciences 143, 191-217.
[40]
Hawkesworth C.H., Kemp A.I.S., 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226, 144-162.
[41]
He B., Jiao C., Xu Z., Cai Z., Zhang J., Liu S., Li H., 2016. The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NWChina) during the late Early and Middle Paleozoic. Gondwana Research 30, 191-206.
[42]
Howard K.E., Hand M., Barovich K.M., Reid A., Wade B.P., Belousova E.A., 2009. Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chemical Geology 262, 277-292.
[43]
Hu B., Zhai M., Li T., Li T., Peng P., Guo J., Kusky T.M., 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research 22, 828-842.
[44]
Hurley P.M., Fairbrairn H.W., Pinson W.H., Lee J.H., 1973. Middle Precambrian and older apparent age value in basement gneisses of South Korea, and relations with southwest Japan. GSA Bulletin 84, 299-304.
[45]
Iizuka T., Hirata T., 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 121-137.
[46]
Iizuka T., Yamaguchi T., Itano K., Hibiya Y., Suzuki K., 2017. What Hf isotopes in zircon tell us about crust-mantle evolution. Lithos 274-275, 304-327.
[47]
Ingersoll R.V., 2008. Subduction-related sedimentary basins of the U.S.A. Cordillera. In: MiallA.D. (Ed.), The Sedimentary Basins of the United States and Canada. Sedimentary Basins of the World vol. 5. Elsevier, Amsterdam, pp. 395-428.
[48]
Ireland T.R., Williams I.S., 2003. Considerations in zircon geochronology by SIMS: Reviews in Mineralogy and Geochemistry 53, 215-241, doi.org/10.2113/0530215.
[49]
Jang Y., Cheong H.J., 2019. Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt. Economic and Environmental Geology 52(6), 541-554 (in Korean with English abstract).
[50]
Jang Y., Kwon S., Yi K., 2015. Structural style of the Okcheon fold-thrust belt in the Taebaeksan Zone, Korea. Journal of Asian Earth Sciences 105, 140-154.
[51]
Jang Y., Kwon S., Song Y., Kim S.W., Kwon Y.K., Yi K., 2018. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies. Journal of Asian Earth Sciences 157, 198-217.
[52]
Kee W.-S., Lim S.-B., Kim H., Kim B.C., Hwang S.K., Song K.-Y., Kihm Y.-H., 2008. Geological Report of the Yeoncheon Sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, Daejon. pp. 83 (in Korean with English summary).
[53]
Kee W.-S., Kim S.W., Hong P.S., Lee B.C., Cho D.-L., Byun U.H., Ko K., Kwon C.W., Kim H.C., Jang Y., Song K.Y., Koh H.J., Lee H.J., 2019a. 1:1,000,000 Geological Map of Korea. Korea Institute of Geoscience and Mineral Resources.
[54]
Kee W.-S., Kim S.W., Kwon S., Santosh M., Ko K., Jeong Y.J., 2019b. Early Neoproterozoic (ca. 913-895 Ma) arc magmatism along the central-western Korean Peninsula: Implication for the amalgamation of Rodinia. Precambrian Research 335, 105498.
[55]
Kim J.H., 1996. Mesozoic tectonics in Korea. Journal of Southeast Asian Earth Sciences 13, 251-265.
[56]
Kim N., Cheong C.-S., Yi K., Song Y.-S., Park K.-H., Geng J.-Z., Li H.-K., 2014b. Zircon U-Pb geochronological and Hf isotopic constraints on the Precambrian crustal evolution of the north-eastern Yeongnam Massif, Korea. Precambrian Research 242, 1-21.
[57]
Kim H.S., Hwang M.-K., Ree J.-H., Yi K., 2013a. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: Insights from U-Pb dating of detrital zircon. Earth and Planetary Science Letters 368, 204-218.
[58]
Kim H.S., Choh S.-J., Lee J.-H., Kim S.J., 2019a. Sediment grain size does matter: implications of spatiotemporal variations in detrital zircon provenance for early Paleozoic peri-Gondwana reconstructions. International Journal of Earth Sciences 108, 1509-1526.
[59]
Kim S.W., Oh C.W., Ryu I.-C., Williams I.S., Sajeev K., Santosh M., Rajesh V.J., 2006. Geochemical and geochronological characteristics of Neoproterozoic bimodal volcanic rocks of the Okcheon Belt, South Korea and their implications for rifting in Rodinia. The Journal of Geology 114, 717-733, https://doi.org/10.1086/507616.
[60]
Kim S.W., Williams I.S., Kwon S., Oh C.W., 2008. SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research 162, 475-497.
[61]
Kim S.W., Kee W.-S., Lee S.R., Santosh M., Kwon S., 2013b. Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: Implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research 227, 349-367.
[62]
Kim S.W., Kwon S., Santosh M., Cho D.-L., Ryu I.-C., 2014c. Detrital zircon U-Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea. Journal of Asian Earth Sciences 95, 217-227.
[63]
Kim S.W., Kwon S., Yi K., Santosh M., 2014d. Arc magmatism in the Yeongnam Massif, Korean Peninsula: imprints of Columbia and Rodinia supercontinents. Gondwana Research 26, 1009-1027.
[64]
Kim S.W., Park S.-I., Ko K., Lee H.-J., Koh H.J., Kihm Y.H., Lee S.R., 2014e. 1:100,000 Tectonostratigraphic Map of the Hongseong Area, Map 1: Solid Geology Interpretation. Korea Institution of Geoscience and Mineral Resources.
[65]
Kim S.W., Kwon S., Park S.-I., Yi K., Santosh M., Kim H.S., 2017b. Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Research 47, 308-322.
[66]
Kim S.W., Park S.-I., Jang Y., Kwon S., Kim S.J., Santosh M., 2017a. Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: implications for the tectonic history of East Asia. Gondwana Research 50, 195-215.
[67]
Kim S.W., Cho D.-L., Lee S.-B., Kwon S., Park S.-I., Santosh M., Kee W.-S., 2018. Mesoproterozoic magmatic suites from the central-western Korean Peninsula: imprints of Columbia disruption in East Asia. Precambrian Research 306, 155-173.
[68]
Kim S.W., Kwon S., Santosh M., Cho D.-L., Kee W.S., Lee S.-B., Jeong Y.-J., 2019c. Detrital zircon U-Pb and Hf isotope characteristics of the Early Neoproterozoic successions in the central-western Korean Peninsula: implication for the Precambrian tectonic history of East Asia. Precambrian Research 322, 24-41.
[69]
Kim S.W., Kee W.S., Santosh M., Cho D.-L., Hong P.S., Ko K., Lee B.C., Byun W.H., Jang Y., 2020b. Tracing the Precambrian tectonic history of East Asia from Neoproterozoic sedimentation and magmatism in the Korean Peninsula. Earth-Science Reviews 209, 103311.
[70]
Kim S.W., Kwon S., Jeong Y.-J., Kee W.S., Lee B.C., Byun U.H., Ko K., Cho D.-L., H., P.S., Park S.-I., Santosh M., 2021. The Middle Permian to Triassic tectono-magmatic system in the southern Korean Peninsula. Gondwana Research 100, 302-322.
[71]
Kim O.J., Lee H.Y., Lee D.S., Yun S., 1973. The stratigraphy and geologic structures of the Great Limestone Series in South Korea. j.Korean Inst. Min. Geol. 6 (2), 81-114 (in Korean with English abstract).
[72]
Kim M.G., Lee Y.I., 2017. The stratigraphy and correlation of the upper Paleozoic Pyeongan Supergroup of southern Korean Peninsula - A review. Journal of the Geological Society of Korea 53 (2), 321-338 (in Korean with English abstract).
[73]
Kim M.G., Lee Y.I., 2018. The Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Science Reviews 185, 1170-1186.
[74]
Kim M.G., Lee Y.I., Choi T., Orihashi Y., 2019b. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U-Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic - Lower Triassic), Korea. Geological Magazine 156 (3), 471-484.
[75]
Kim M.G., Lee Y.I., Choi T., 2020a. Tectonic Setting of the Eastern Margin of the Sino-Korean Block in the Pennsylvanian: Constraints from Detrital Zircon Ages. Minerals 10, 527, doi: 10.3390/min10060527.
[76]
Kim H.S., Ree J.-H., Kim J., 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences (Geologische Rundschau) 101, 483-498.
[77]
Kim H.S., Seo B., Yi K., 2014a. Medium Temperature and Lower Pressure and tectonic setting of the Pyeongan Supergroup in the Munkyeong Area. The Journal of the Petrological Society of Korea 23 (4), 311-324 (in Korean with English abstract).
[78]
Kwon Y.K., 2012. Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications. Economic and Environmental Geology 45(3), 317-333.
[79]
Kwon Y.K., Chough S.K., Choi D.K., Lee D.J., 2006. Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea. Sedimentary Geology 192, 19-55.
[80]
Kwon S., Sajeev K., Mitra G., Park Y., Kim S.W., Ryu I.-C., 2009. Evidence for Permo-Triassic collision in Far East Asia: the Korean collisional orogen. Earth and Planetary Science Letters 279, 340-349.
[81]
Kwon S., Kim S.W., Santosh M., 2013. Multiple generations of mafic-ultramafic rocks from the Hongseong suture zone, western South Korea: implications for the geodynamic evolution of NE Asia. Lithos 160-161, 68-83.
[82]
Lee K.S., Chang H.-W., Park K.-H., 1998. Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: Age and tectonic implication. Precambrian Research 89, 47-57, https://doi.org/10.1016/S0301-9268(97)00077-6.
[83]
Lee S.R., Cho M., Cheong C.-S., Kim H., Wingate M.T.D., 2003. Age, geochemistry and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research 122, 297-310.
[84]
Lee S.R., Cho K., 2012. Precambrian Crustal Evolution of the Korean Peninsula. The Journal of the Petrological Society of Korea 21(2), 89-112.
[85]
Lee Y., Cho M., Cheong W., Yi K., 2014. A massif-type (1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova 26, 408-416.
[86]
Lee Y., Cho M., Yi K., 2017. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of -1.86 Ga massif-type anorthosite. Journal of Asian Earth Sciences 138, 629-646.
[87]
Lee Y.I., Sheen D.-H., 1998. Detrital modes of the Pyeongan Supergroup (late Carboniferous-early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sedimentary Geology 119 (3), 219-238.
[88]
Lee Y.I., Choi T., Lim H.S., Orihashi Y., 2012. Detrital zircon U-Pb ages of the Jangsan Formation in the northeastern Okcheon belt, Korea and its implications for material source, provenance, and tectonic setting. Sedimentary Geology 282, 256-267.
[89]
Lee Y.I., Choi T., Lim H.S., Orihashi Y., 2016b. Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: implications for the Gondwana linkage of the Sino-Korean (North China) block during the Neoproterozoic-early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 770-786.
[90]
Lee H.S., Chough S.K., 2006. Lithostratigraphy and depositional environments of the Pyeongan Supergroup (Carboniferous-Permian) in the Taebaek area, mid-east Korea. Journal of Asian Earth Sciences 26, 339-352.
[91]
Lee C., Kwon Y.K., Yeo J.M., Kwon Y.J., Han H.-C., 2021. U-Pb ages of detrital zircons in lower Paleozoic quartzites of the Taebaeksan Basin, eastern Sino-Korean Block: sediment provenance response to relative sea-level changes. International Geology Review 63(17), 2129-2145.
[92]
Lee Y.I., Lee J.I., 2003. Paleozoic sedimentation and tectonics in Korea: a review. Island Arc 12, 162-179.
[93]
Lee B.C., Oh C.W., Yi K., 2016a. Geochemistry, zircon U-Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju-Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia. Precambrian Research 283, 169-189.
[94]
Lee B.C., Oh C.W., Cho D.-L., Yi K., 2019a. Paleoproterozoic (2.0-1.97 Ga) subduction related magmatism on the north-central margin of the Yeongnam Massif, Korean Peninsula, and its tectonic implications for reconstruction of the Columbia supercontinent. Gondwana Research 72, 34-53.
[95]
Lee B.Y., Oh C.W., Cho D.-L., Zhai M., Lee B.C., Peng P.,Yi K., 2019b. The Devonian back-arc basin and Triassic arc-continent collision along the Imjingang belt in the Korean Peninsula and their tectonic meaning, Lithos 328-329, 276-296.
[96]
Lee B.C., Oh C.W., Wang X., 2020. Paleoproterozoic (ca. 1.87-1.69 Ga) arc-related tectonothermal events on northcentral Yeongnam Massif, South Korea and its tectonic implications: Insights from metamorphism, geochemistry and geochronology. Precambrian Research 338, 105562.
[97]
Li X.-H., Li Z.-X., Li W.-X., 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Research 25, 1202-1215.
[98]
Li Z., Peng S.-T., Xu C.-W., Han Y.-X., Zhai M.-G., 2009. U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin, Korea. Acta Petrologica Sinica 25 (1), 182-192, (in Chinese with English abstract).
[99]
Lin C.S., Yang H.J., Liu J.Y., Rui Z.F., Cai Z.Z., Li S.T., Yu B.S., 2012. Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea-level change. Basin Research 24, 559-582.
[100]
Linnemann U., Ouzegane K., Drareni A., Hofmann M., Becker S., Gärtner A., Sagawe A., 2011. Sands of West Gondwana: An archive of secular magmatism and plate interactions — A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123 (1-4), 188-203.
[101]
Liu S.F., 1998. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China. Journal of Asian Earth Sciences 16, 369-383.
[102]
Liu Y., Li W., Feng Z., Wen Q., Neubauer F., Liang C., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research 43, 123-148.
[103]
Ludwig K.R., 2009. User's Manual for SQUID 2. Berkeley Geochronology Center Special Publication, Berkeley.
[104]
Ludwig K.R., 2012. Isoplot, A Geochronological Toolkit for Microsoft Excel. 5. Berkeley Geochronology Center Special Publication, pp. 75.
[105]
McKenzie N.R., Hughes N.C., Myrow P.M., Choi D.K., Park T.-Y., 2011. Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology 39 (6), 591-594.
[106]
Metcalfe I., 2006. Paleozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research 9, 24-46.
[107]
Na K.C., Lee D.J., 1973. Preliminary age study of the Gyeonggi metamorphic belt by the Rb-Sr whole rock method. The Journal of Geological Society of Korea 9, 168-174.
[108]
Paces J.B., Miller J.D., 1993. Precise U-Pb ages of the Duluth Complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent rift system. Journal of Geophysical Research 98, 13997-14013.
[109]
Paek R.J., Ju Y.J., 1996. Tectonic division of Korean peninsula. In: Geology of Korea. Foreign Languages Books Publishing House, Pyongyang, pp. 483-507.
[110]
Park S.-I., 2016. Structural and tectonic evolution of the Hongseong area, southwestern Korean Peninsula: Insights from multidisciplinary analyses [Ph.D. thesis]: Seoul, Korea, Yonsei University, 256 p.
[111]
Park S.-W., 2018. Coal Resources of the Republic of Korea. Korea Institution of Geoscience and Mineral Resources, pp. 408.
[112]
Park S.-I., Kim S.W., Kwon S., Santosh M., Ko K., Kee W.-S., 2017. Nature of Late Mesoproterozoic to Middle Neoproterozoic magmatism in the western Gyeonggi massif, Korean Peninsula and its tectonic significance. Gondwana Research 47, 291-307.
[113]
Patchett P.J., Kuovo O., Hedge C.E., Tatsumoto M., 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78, 279-297.
[114]
Patchett P.J., 2003. Provenance and crust-mantle evolution studies based on radiogenic isotopes in sedimentary rocks. In: LentzD.R. (Ed.), Geochemistry of sediments and sedimentary rocks:evolutionary considerations to mineral deposit-forming environments. Geological Association of Canada, pp. 69-77.
[115]
Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J., 2011. Iolite: freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508-2518.
[116]
Ratschbacher L., Franz L., Enkelmann E., Jonckheere R., Porschke A., Hacker B., Dong S., Zhang Y., 2006. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Geological Society of America Special Paper 403, 45-75.
[117]
Ri J.N., Ri J.C., 1990. Geological Construction of Korea 6. Foreign Languages Books Publishing House, Pyongyang, Pyongyang, North Korea, pp. 216.
[118]
Russel W.A., Papanastassiou D.A., Tombrello T.A., 1978. Ca isotope fractionation on the earth and other solar system materials. Geochimica et Cosmochimica Acta 42, 1075-1090.
[119]
Sajeev K., Jeong J., Kwon S., Kee W.-S., Kim S.W., Komiya T., Itaya T., Jung H.-S., Park Y., 2010. High P-T granulite relicts from the Imjingang Belt. South Korea: tectonic significance. Gondwana Research 17, 75-86.
[120]
Scherer E., Whitehouse M., Munker C., 2007. Zircon as a monitor of crustal growth. Elements 3, 19-24.
[121]
Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S., Morris G.A., Nasdala L., Norberg N., Schaltegger U., 2008. Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.
[122]
Sundell K.D., Macdonald F.A, 2022. The tectonic context of hafnium isotopes in zircon. Earth and Planetary Science Letters 584, 117426.
[123]
Suzuki K., Kurihara T., Sato T., Ueda H., Takahashi T., Wilde S.A., Satish-Kumar M., 2023. Detrital zircon U-Pb ages and geochemistry of Devonian-Carboniferous sandstones and volcanic rocks of the Hida Gaien belt, Southwest Japan: Provenance reveals a Gondwanan lineage for the early Paleozoic tectonic evolution of proto-Japan. Gondwana Research 115, 224-255.
[124]
Tang L.J., Qiu H.J., Yun L., Yang Y., Huang T.Z., Wang P.H., Xie D.Q., 2012. Analysis of basin-mountain coupling and transition of the Northern Tarim Basin-Southern Tianshan Orogenic Belt. Earth Science Frontiers 19, 195-204.
[125]
Thomas W.A., 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3 (4), 304-308.
[126]
Vervoort J.D., Blichert-Toft J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533-556, doi: 10.1016/S0016-7037(98)00274-9.
[127]
Vervoort J.D., Patchett P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717-3733, doi.org/10.1016/0016-7037(96)00201-3.
[128]
Vervoort J.D., Patchett P.J., Söderlund U., Baker M., 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry Geophysics Geosystems 5, Q11002. doi.org/10.1029/2004GC000721.
[129]
Williams I.S., Claesson S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphismof high grade paragneisses fromthe Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology 97, 205-217.
[130]
Woo J., Lee H.S., Chough S.K., 2023. Deposition of sandstone (early Cambrian) above the Great Unconformity in the Sino-Korean Block, Gondwana: Control of antecedent topography. Gondwana Research 116, 212-228.
[131]
Wu Y.-B., Zheng Y.-F., 2013. Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research 23, 1402-1428.
[132]
Yengkhom K.S., Lee B.C., Oh C.W., Yi K., 2014. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton. Precambrian Research 240, 37-59.
[133]
Yi K., Lee S., Kwon S., Cheong C.-S., 2014. Polyphase tectono-magmatic episodes as revealed by SHRIMP U-Pb geochronology and microanalysis of zircon and titanite from the central Okcheon belt, Korea. Journal of Asian Earth Sciences 95, 243-253.
[134]
Zhang R.Y., Liou J.G., Ernst W.G., 2009. The Dabie-Sulu continental collision zone: a comprehensive review. Gondwana Research 16, 1-26.
[135]
Zhou Z.-J., Mao S.-D., Chen Y.-J., Santosh M., 2016. U-Pb ages and Lu-Hf isotopes of detrital zircons from the southern Qinling Orogen: implications for Precambrian to Phanerozoic tectonics in central China. Gondwana Research 35, 323-337.
PDF(13544 KB)

Accesses

Citations

Detail

Sections
Recommended

/