Fe-Mn interdiffusion in aluminosilicate garnets

Yanjun Yin, Baohua Zhang, Xinzhuan Guo

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101699.

PDF(2664 KB)
Geoscience Frontiers All Journals
PDF(2664 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101699. DOI: 10.1016/j.gsf.2023.101699
Research Paper

Fe-Mn interdiffusion in aluminosilicate garnets

Author information +
History +

Abstract

Precise determination of cation diffusivity in garnet can provide critical information for quantitatively understanding the timescales and thermodynamics of various geological processes, but very few studies have been performed for Fe-Mn interdiffusion. In this study, Fe-Mn interdiffusion rates in natural single crystals of Mn-bearing garnet with 750 ppm H2O are determined at 6 GPa and 1273-1573 K in a Kawai-type multi-anvil apparatus. Diffusion profiles were acquired by electron microprobe and fitted using Boltzmann-Matano equation. The experimental results show that the Fe-Mn interdiffusion coefficient (DFe-Mn) slightly decreases with increasing XFe. The experimentally determined DFe-Mn in Mn-bearing garnet can be fitted by the Arrhenius equation: DFe-Mn(m2/s)=D0XFenexp(-E*/RT), where E*=(1-XFe)E*Mn+XFeE*Fe, D0 = 8.06-6.04+9.87×10-9 m2/s,E*Mn = 248 ±27 KJ/mol,E*Fe = 226 ±59 KJ/mol, n = -1.36 ±0.51. The comparing the present results with previous experimental data suggest that water can greatly enhance the DFe-Mn in garnet. Our results indicate that the time required for homogenization of the compositional zoning of a garnet is much shorter than previously thought.

Keywords

Fe-Mn interdiffusion / Diffusion coefficient / Garnet / High pressure experiment / Water

Cite this article

Download citation ▾
Yanjun Yin, Baohua Zhang, Xinzhuan Guo. Fe-Mn interdiffusion in aluminosilicate garnets. Geoscience Frontiers, 2024, 15(1): 101699 https://doi.org/10.1016/j.gsf.2023.101699

References

[1]
Baxter E.F., Scherer E.E., 2013. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements 9, 433-438. https://doi.org/10.2113/gselements.9.6.433.
[2]
Bell D.R., Ihinger P.D., Rossman G.R., 1995. Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral. 80, 465-474. https://doi.org/10.2138/am-1995-5-607.
[3]
Borinski S.A., Hoppe U., Chakraborty S., Ganguly J., Bhowmik S.K., 2012. Multicomponent diffusion in garnets I: general theoretical considerations and experimental data for Fe-Mg systems. Contrib. Mineral. Petrol. 164, 571-586. https://doi.org/10.1007/s00410-012-0758-0.
[4]
Chakraborty S., Ganguly J., 1991. Compositional zoning and cation diffusion in garnets. In: Ganguly, j.(Ed.), Diffusion, Atomic Ordering, and Mass Transport: Selected Topics in Geochemistry. Springer US, New York, NY. pp. 120-175.https://doi.org/10.1007/978-1-4613-9019-0_4.
[5]
Chakraborty S., Ganguly J., 1992. Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib. Mineral. Petrol. 111, 74-86. https://doi.org/10.1007/BF00296579.
[6]
Crank J., 1975. The Mathematics of Diffusion (2nd edition). Oxford University Press, London, pp 1-414.
[7]
Creighton S., 2009. A semi-empirical manganese-in-garnet single crystal thermometer. Lithos 112, 177-182. https://doi.org/10.1016/j.lithos.2009.05.011.
[8]
Elphick S.C., Ganguly J., Loomis T.P., 1985. Experimental determination of cation diffusivities in aluminosilicate garnets. Contrib. Mineral. Petrol. 90, 36-44. https://doi.org/10.1007/BF00373040.
[9]
Frost B.R., 1991. Introduction to oxygen fugacity and its petrologic importance. Rev. Mineral. Geochem. 25, 1-9. https://doi.org/10.1515/9781501508684-004.
[10]
Ganguly J., 2002. Diffusion kinetics in minerals: principles and applications to tectono-metamophic processes. EMU Notes in Mineralogy 4, 271-309. https://doi.org/10.1180/EMU-notes.4.9.
[11]
Ganguly J., Bhattacharya A., Chakraborty S., 1988. Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. Am. Mineral. 73, 901-909.
[12]
Ganguly J., Cheng W., Chakraborty S., 1998. Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib. Mineral. Petrol. 131, 171-180. https://doi.org/10.1007/s004100050386.
[13]
Ganguly J., Dasgupta S., Cheng W., Neogi S., 2000. Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet. Sci. Lett. 183, 471-486. https://doi.org/10.1016/S0012-821X(00)00280-6.
[14]
Irifune T., Kawakami K., Arimoto T., Ohfuji H., Kunimoto T., Shinmei T., 2016. Pressure-induced nano-crystallization of silicate garnets from glass. Nature Commun. 7, 13753. https://doi.org/10.1038/ncomms13753.
[15]
Li B., Ge J., Zhang B., 2018. Diffusion in garnet: a review. Acta Geochim. 37, 19-31. https://doi.org/10.1007/s11631-017-0187-x.
[16]
Loomis T.P., 1983. Compositional Zoning of Crystals:A Record of Growth and Reaction History. In: SaxenaS.K. (Ed.), Kinetics and Equilibrium in Mineral Reactions. Springer, New York, pp. 1-60.
[17]
Loomis T.P., Ganguly J., Elphick S.C., 1985. Experimental determination of cation diffusivities in aluminosilicate garnets. Contrib. Mineral. Petrol. 90, 45-51. https://doi.org/10.1007/BF00373040.
[18]
Matano C., 1933. On the relation between the diffusion-coefficients and concentrations of solid metals. Jap. j.Phys. 8, 109-113.
[19]
Mirwald P.W., Massonne H.J., 1980. The low-high quartz and quartz-coesite transition to 40 kbar between 600℃ and 1600℃ and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition. j.Geophys. Res.: Solid Earth 85, 6983-6990. https://doi.org/10.1029/JB085iB12p06983.
[20]
O'Neill, H. S.C., Pownceby, M.I., 1993. Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe- “FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib. Mineral. Petrol. 114, 296-314. https://doi.org/10.1007/BF01046533.
[21]
Paterson M.S., 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull. Minéral. 105, 20-29.
[22]
Perchuk A.L., Burchard M., Schertl H.P., Maresch W.V., Gerya T.V., Bernhardt H.J., Vidal O., 2008. Diffusion of divalent cations in garnet: multi-couple experiments. Contrib. Mineral. Petrol. 157, 573-592. https://doi.org/10.1007/s00410-008-0353-6.
[23]
Schwandt C.S., Cygan R.T., Westrich H.R., 1995. Mg self-diffusion in pyrope garnet. Am. Mineral. 80, 483-490. https://doi.org/10.2138/am-1995-5-609.
[24]
Yamazaki D., Irifune T., 2003. Fe-Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth Planet. Sci. Lett. 216, 301-311. https://doi.org/10.1016/S0012-821X(03)00534-X.
[25]
Zhang Y., 2010. Diffusion in minerals and melts: Theoretical background. Rev. Mineral. Geochem. 72, 5-59. https://doi.org/10.2138/rmg.2010.72.2.
[26]
Zhang B., 2017. An overview of Fe-Mg interdiffusion in mantle minerals. Sur. Geophys. 38, 727-755. https://doi.org/10.1007/s10712-017-9415-5.
[27]
Zhang B., Li B., Zhao C., Yang X., 2019a. Large effect of water on Fe-Mg interdiffusion in garnet. Earth Planet. Sci. Lett. 505, 20-29. https://doi.org/10.1016/j.epsl.2018.10.015.
[28]
Zhang B., Yoshino T., Zhao C., 2019b. The effect of water on Fe-Mg interdiffusion rates in ringwoodite and implications for the electrical conductivity in the mantle transition zone. j.Geophys. Res.: Solid Earth 124, 2510-2524. https://doi.org/10.1029/2018JB016415.
[29]
Zhang B., Zhao C., Yoshino T., 2021. Fe-Mg interdiffusion in wadsleyite and implications for water content of the transition zone. Earth Planet. Sci. Lett. 554, 116672. https://doi.org/10.1016/j.epsl.2020.116672.
PDF(2664 KB)

289

Accesses

0

Citations

Detail

Sections
Recommended

/