The Early-Middle Triassic Supervolcano in the Yangtze Block, South China and associated obstacles to biotic recovery

Haifeng Chen, Hao Zou, M. Santosh, Huawen Cao, Franco Pirajno, Changcheng Huang, Mingcai Hou

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101694.

PDF(8152 KB)
Geoscience Frontiers All Journals
PDF(8152 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101694. DOI: 10.1016/j.gsf.2023.101694
Research Paper

The Early-Middle Triassic Supervolcano in the Yangtze Block, South China and associated obstacles to biotic recovery

Author information +
History +

Abstract

The end-Permian mass extinction was one of the major global crises spanning the entire Early Triassic or longer. Eruptions of volcanos were one of the factors that delayed the biotic recovery after this event. Supervolcano eruptions can cause catastrophic effects on global environment, climate, and life. Here we investigate the tuff layers from Early-Middle Triassic boundary in the Yangtze Block and identify a supervolcano eruption event. The zircon U-Pb ages of the section-Langdai, section-Daijiagou and section-Longmendong tuff samples are 247.1 ±1.9 Ma, 247.6 ±2.0 Ma and 247.7 ±1.7 Ma, respectively. These ages mark the Olenekian-Anisian boundary. The zircon grains from the tuff layers have negative εHf(t) (-15.3 to -0.8), two-stage Hf model (TDM2) ages (1.7 to 2.2 Ga) and display high-δ18O values (mostly > 10‰). Clay minerals and quartz dominate the rock composition. The whole rock compositions show that the tuff layers were derived from magma of intermediate to felsic composition, which formed by the remelting of Paleoproterozoic materials of continental crust. The volcanic eruption site is located in the Jinshajiang-Ailaoshan-Song Ma suture zone in the southwestern margin of the Yangtze Block. A combination of the closure of the Paleo-Tethys Ocean Basin and the collision of the Indochina Block and South China contributed to the eruption, which was a supervolcano eruption under the active continental margin arc settings. We speculate that this supervolcano eruption might have contributed to the delayed biotic recovery after the end-Permian mass extinction.

Keywords

Early-Middle Triassic / Tuff layer / Supervolcano / Yangtze Block / Biotic recovery

Cite this article

Download citation ▾
Haifeng Chen, Hao Zou, M. Santosh, Huawen Cao, Franco Pirajno, Changcheng Huang, Mingcai Hou. The Early-Middle Triassic Supervolcano in the Yangtze Block, South China and associated obstacles to biotic recovery. Geoscience Frontiers, 2024, 15(1): 101694 https://doi.org/10.1016/j.gsf.2023.101694

References

[1]
Algeo T.J., Twitchett R.J., 2010. Anomalous early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023-1026.
[2]
Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I., 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143, 602-622.
[3]
Belousova E.A., Griffin W.L., O’Reilly S.Y., 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for oetrogenetic modelling: Examples from Eastern Australian granitoids. j.Petrol. 47, 329-353.
[4]
Benton M.J., 2003. When life nearly died: the greatest mass extinction of all time. Thames & Hudson.
[5]
Benton M.J., Newell A.J., 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res. 25, 1308-1337.
[6]
Bernasconi S.M., Meier I., Wohlwend S., Brack P., Hochuli P.A., Bläsi H., Wortmann U.G., Ramseyer K., 2017. An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate. Geochim. Cosmochim. Acta 204, 331-349.
[7]
Bindeman I., 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 69, 445-478.
[8]
Brazier S., Sparks R.S.J., Carey S.N., Sigurdsson H., Westgate J.A., 1983. Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301, 115-119.
[9]
Budd D.A., Troll V.R., Deegan F.M., Jolis E.M., Smith V.C., Whitehouse M.J., Harris C., Freda C., Hilton D.R., Halldórsson S.A., Bindeman I.N., 2017. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. Sci. Rep. 7, 1-11.
[10]
Carey S., Sigurdsson H., 1989. The intensity of Plinian eruptions. Bull. Volcanol. 51, 28-40.
[11]
Chen Z.Q., Benton M.J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375-383.
[12]
Chen Z., Tang H.M., Shen M.D., Zhao J.S., 1999. New analysis on the composition of “mung bean rock”. j.Southwest Petrol. Inst. 21, 39-42 (in Chinese with English abstract).
[13]
Chen Z., Lin W., Faure M., Lepvrier C., van Vuong N., van Tich V., 2014. Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block. j.Asian. Earth. Sci. 86, 131-150.
[14]
Chesner C.A., Rose W.I., Deino A., Drake R., Westgate J.A., 1991. Eruptive history of Earth’s largest Quaternary caldera (Toba, Indonesia) clarified. Geology 19, 200-203.
[15]
Christiansen R.L., 2001. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geol. Surv. Prof. Pap. 729.
[16]
Cochelin B., Wang B., Liu J., Lu S., Shu L., Gumiaux C., Chen Y., Song F., 2022. Early Mesozoic Anatexis-Induced Strain Partitioning and Gneiss Doming in the Yunkai Massif, South China: A Response to Contrasted Dynamics of Paleo-Pacific and Paleo-Tethys Subductions? Tectonics 41.
[17]
Deligne N.I., Coles S.G., Sparks R.S.J., 2010. Recurrence rates of large explosive volcanic eruptions. j.Geophys. Res. Solid Earth 115.
[18]
Eiler J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319-364.
[19]
Erwin D.H., 2015. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago-Updated Edition. Princeton University Press.
[20]
Faure M., Lepvrier C., Nguyen V. van Vu, T. van Lin, W., Chen Z., 2014. The South China block-Indochina collision: Where, when, and how? j.Asian. Earth. Sci. 79, 260-274.
[21]
Faure M., Chen Y., Feng Z., Shu L., Xu Z., 2017. Tectonics and geodynamics of South China: An introductory note. j.Asian. Earth. Sci. 141, 1-6.
[22]
Feng M.S., Meng W. bin, Zhang C.G., Qing H.R., Chi G.X., Wang J., Peng Y.W., Wen H.G., Huang H., 2021. Geochronology and geochemistry of the ‘green-bean rock’ (GBR, a potassium-rich felsic tuff) in the western margin of the Yangtze platform, SW China: Significance for the Olenekian-Anisian boundary and the Paleo-Tethys tectonics. Lithos 382-383, 105922.
[23]
Gao P., Zheng Y.F., Zhao Z.F., 2017. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth Sci. Rev. 173, 266-294.
[24]
Gatti E., Oppenheimer C., 2012. Utilization of Distal Tephra Records for Understanding Climatic and Environmental Consequences of the Youngest Toba Tuff. Geophys. Monogr. Ser. 198, 63-74.
[25]
Gorton M.P., Shandl E.S., 2000. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can. Mineral. 38, 1065-1073.
[26]
Grimes C.B., Wooden J.L., Cheadle M.J., John B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. to Mineral. Petrol. 170, 1-26.
[27]
Guan J.Z., Dai K.L., Du Q.L., 1990. Use and genesis of Green-Bean Rocks and its genesis in Emeishan area, Sichuan province. j. Chengdu Coll. Geol. 17, 37-43+127 (in Chinese with English abstract).
[28]
Guan D.D., Zhao F., He B., Wang N.Z., Kong L.L., Wang Z.R., 2017. Geochemical characteristics and genesis of Green-Bean Rocks in Qianxi county, Guizhou Province. Res. Infor. Eng. 32, 46-50 (in Chinese).
[29]
Halpin J.A., Tran H.T., Lai C.K., Meffre S., Crawford A.J., Zaw K., 2016. U-Pb zircon geochronology and geochemistry from NE Vietnam: A “tectonically disputed” territory between the Indochina and South China blocks. Gondwana Res. 34, 254-273.
[30]
Hayashi K.I., Fujisawa H., Holland H.D., Ohmoto H., 1997. Geochemistry of -1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 61, 4115-4137.
[31]
Hoa T.T., Anh T.T., Phuong N.T., Dung P.T., Anh T.V., Izokh A.E., Borisenko A.S., Lan C.Y., Chung S.L., Lo C.H., 2008a. Permo-Triassic intermediate-felsic magmatism of the Truong Son belt, eastern margin of Indochina. Comptes Rendus. Geoscience 340, 112-126.
[32]
Hoa T.T., Izokh A.E., Polyakov G. v, Borisenko A.S., Anh T.T., Balykin P.A., Phuong N.T., Rudnev S.N., van Van V., Nien B.A., 2008b. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russ. Geol. Geophys. 49, 480-491.
[33]
Hoskin P.W.O., Schaltegger U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27-62.
[34]
Huang H., Yang J.H., Du Y.S., Huang H.W., Huang Z.Q., Xie C.X., Hu L.S., 2012. LA-ICPMS U-Pb dating of zircons from tuffs of the Upper Permian-Middle Triassic in Youjiang Basin, Guangxi Province and its geological significance. Earth Sci.: J. China U. Geosci. 37, 125-138 (in Chinese with English abstract).
[35]
Huang C.C., Zou H., Bagas L., Chen H.F., Xiao B., Jiang X.W., Li M., Hu C.H., Yu L.M., 2022. Mid-Neoproterozoic tectonic evolution of the northern margin of the Yangtze Block, South China: New insights from high-temperature magma events. Lithos 420, 106711.
[36]
Jian P., Liu D., Kröner A., Zhang Q., Wang Y., Sun X., Zhang W., 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 113, 767-784.
[37]
Ju P.C., Wang X.L., Wang Z.T., Liu X.F., Zhong J.A., Zhang Z.M., 2020. Characteristics and geological significance of the Triassic Mungbean rocks in the Wenquan Town area, Northern Chongqing. Geoscience 34, 431-449 (in Chinese with English abstract).
[38]
Knoll A.H., Bambach R.K., Payne J.L., Pruss S., Fischer W.W., 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295-313.
[39]
Korte C., Pande P., Kalia P., Kozur H.W., Joachimski M.M., Oberhänsli H., 2010. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. j.Asian Earth Sci. 37, 293-311.
[40]
Lai C.K., Meffre S., Crawford A.J., Zaw K., Xue C.D., Halpin J.A., 2014. The Western Ailaoshan Volcanic Belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Res. 26, 52-74.
[41]
Lau K. v., Maher K., Altiner D., Kelley B.M., Kump L.R., Lehrmann D.J., Silva-Tamayo J.C., Weaver K.L., Yu M., Payne J.L., 2016. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl. Acad. Sci. U S A 113, 2360-2365.
[42]
Leat P.T., Jackson S.E., Thorpe R.S., Stillman C.J., 1986. Geochemistry of bimodal basalt-subalkaline/peralkaline rhyolite provinces within the southern British Caledonides. j.Geol. Soc. London 143, 259-273.
[43]
Lehrmann D.J., Enos P., Payne J.L., Montgomery P., Wei J., Yu Y., Xiao J., Orchard M.J., 2005. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana 33, 149-168.
[44]
Lehrmann D.J., Ramezani J., Bowring S.A., Martin M.W., Montgomery P., Enos P., Payne J.L., Orchard M.J., Wang H., Wei J., 2006. Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology 34, 1053-1056.
[45]
Lehrmann D.J., Payne J.L., Pei D., Enos P., Druke D., Steffen K., Zhang J., Wei J., Orchard M.J., Ellwood B., 2007. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 200-217.
[46]
Lehrmann D.J., Chaikin D.H., Enos P., Minzoni M., Payne J.L., Yu M., Goers A., Wood T., Richter P., Kelley B.M., Li X., Qin Y., Liu L., Lu G., 2015b. Patterns of basin fill in Triassic turbidites of the Nanpanjiang basin: Implications for regional tectonics and impacts on carbonate-platform evolution. Basin Res. 27, 587-612.
[47]
Lehrmann D.J., Stepchinski L., Altiner D., Orchard M.J., Montgomery P., Enos P., Ellwood B.B., Bowring S.A., Ramezani J., Wang H., 2015a. An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guandao section, Nanpanji. j.Asian. Earth Sci. 108, 117-135.
[48]
Li C., Lang X.H., Deng Y.L., Wang X.H., Li Z., Yang Z.Y., 2020. Geochronological and geochemical characteristics of the claystone (Mung Bean Rock) at the bottom of the Leikoupo Formation in the Emeishan Area, Sichuan Basin, China. Bull. Mineral. Petrol. Geochem. 39, 810-825 (in Chinese with English abstract).
[49]
Li W.J., Shi Z., Yin G., Tian Y., Wang Y., Zhang J., 2021. Origin and tectonic implications of the early Middle Triassic tuffs in the western Yangtze Craton: Insight into whole-rock geochemical and zircon U-Pb and Hf isotopic signatures. Gondwana Res. 93, 142-161.
[50]
Lin Y., Zheng M., Zhang Y., Xing E., Redfern S.A.T., Xu J., Zhong J., Niu X., 2020. Mineralogical and geochemical characteristics of triassic lithium-rich K-Bentonite deposits in Xiejiacao section, South China. Minerals 10, 69.
[51]
Lipman P.W., Hullineaux D.R., 1981. The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Surv. Prof. Pap. 1250.
[52]
Liu C., Deng J.F., Liu J.L., Shi Y.L., 2011. Characteristics of volcanic rocks from Late Permian to Early Traissic in Ailaoshan tectono-magmatic belt and implications for tectonic settings. Acta Petrol. Sin. 27, 3590-3602 (in Chinese with English Abstract).
[53]
Liu H., Wang Y., Cawood P.A., Fan W., Cai Y., Xing X., 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Res. 27, 1292-1306.
[54]
Lu Y.F., Meng W.B., Feng M.S., Zhang C.G., Wang J., Wang X., Zhang Y., 2020. Characteristics of the Middle Triassic Mung Beans rock in the Mount Emei Area and their implications for sedimentary environment. Bull. Mineral. Petrol. Geochem. 39, 626-636 (in Chinese with English abstract).
[55]
Ma S.C., Wang D.H., Sun Y., Li C., Zhong H.R., 2019. Geochronology and geochemical characteristics of Lower-Middle Triassic clay rock and their significances for prospecting clay-type lithium deposit. Earth Sci. 44, 427-440 (in Chinese with English Abstract).
[56]
Mason B.G., Pyle D.M., Oppenheimer C., 2004. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735-748.
[57]
Metcalfe I., 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. j.Asian Earth Sci. 66, 1-33.
[58]
Miller C.F., Wark D.A., 2008. Supervolcanoes and their explosive supereruptions. Elements 4, 11-15.
[59]
Minh N.T., 2003. Results of Rb-Sr dating of Ba Na granitic massif (central Vietnam). j.Geol., Ser. A 277, 68-71.
[60]
Mucek A.E., Danišík M., De Silva S.L., Schmitt A.K., Pratomo I., Coble M.A., 2017. Post-supereruption recovery at Toba Caldera. Nat. Commun. 8, 15248.
[61]
Newhall C.G., Self S., 1982. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. j.Geophys. Res. 87, 1231-1238.
[62]
Newhall C., Self S., Robock A., 2018. Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. Geosphere 14, 572-603.
[63]
Oppenheimer C., 2002. Limited global change due to the largest known Quaternary eruption, Toba ≈74 kyr BP?. Quat. Sci. Rev. 21, 1593-1609.
[64]
Orchard M.J., 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93-117.
[65]
Osipov S., Stenchikov G., Tsigaridis K., LeGrande A.N., Bauer S.E., 2020. The role of the SO2 radiative effect in sustaining the volcanic winter and soothing the Toba impact on climate. j.Geophys. Res. Atmos. 125.
[66]
Osipov S., Stenchikov G., Tsigaridis K., LeGrande A.N., Bauer S.E., Fnais M., Lelieveld J., 2021. The Toba supervolcano eruption caused severe tropical stratospheric ozone depletion. Commun. Earth Environ. 2, 71.
[67]
Ovtcharova M., Bucher H., Schaltegger U., Galfetti T., Brayard A., Guex J., 2006. New early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet. Sci. Lett. 243, 463-475.
[68]
Ovtcharova M., Goudemand N., Hammer Ø., Kuang G.D., Cordey F., Galfetti T., Schaltegger U., Bucher H., 2015. Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: the Early Middle Triassic boundary (South China). Earth Sci. Rev. 146, 65-76.
[69]
Paleobiology Database (PBDB).
[70]
Payne J.L., Kump L.R., 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264-277.
[71]
Payne J.L., Lehrmann D.J., Wei J., Orchard M.J., Schrag D.P., Knoll A.H., 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science (1979) 305, 506-509.
[72]
Payne J.L., Summers M., Rego B.L., Altiner D., Wei J., Yu M., Lehrmann D.J., 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37, 409-425.
[73]
Pearce J.A., Gale G.H., 1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geol. Soc. Spec. Publ. 7, 14-24.
[74]
Peng Y., Zheng M., Zhang Y., Xing E., Gui B., Zuo F., 2023. Geochronology and geochemistry of lithium-rich tuffs in the Sichuan basin, western Yangtze: Implication for the magmatic origin and final closure of eastern Paleo-Tethys. Geosci. Front. 14, 101480.
[75]
Potter S.H., Scott B.J., Jolly G.E., Johnston D.M., Neall V.E., 2015. A catalogue of caldera unrest at Taupo Volcanic Centre, New Zealand, using the Volcanic Unrest Index (VUI). Bull. Volcanol. 77, 1-28.
[76]
Qin X.F., Wang Z.Q., Zhang Y.L., Pan L.Z., Hu G.A., Zhou F.S., 2011. Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrol. Sin. 27, 794-808 (in Chinese with English abstract).
[77]
Raible C.C., Brönnimann S., Auchmann R., Brohan P., Frölicher T.L., Graf H.F., Jones P., Luterbacher J., Muthers S., Neukom R., Robock A., Self S., Sudrajat A., Timmreck C., Wegmann M., 2016. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdiscip. Rev. Clim. Change 7, 569-589.
[78]
Rampino M.R., 2002. Supereruptions as a threat to civilizations on earth-like planets. Icarus 156, 562-569.
[79]
Ren G.M., Zhu T.X., Pang W.H., Wang L.Q., Jin C.H., Lu J.Y., Wen J., Zhang P., Zhou Y., 2019. Zircon U-Pb dating for the Olenekian-Anisian boundary in northwestern Guizhou Province and adjacent area, and its implications for biological recovery. Acta Geol. Sin. 093, 2770-2784 (in Chinese with English abstract).
[80]
Robock A., 1981. The Mount St. Helens volcanic eruption of 18 May 1980: Minimal climatic effect. Science 212, 1383-1384.
[81]
Roger F., Maluski H., Lepvrier C., Van T.V., Paquette J.-L., 2012. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam-Geodynamical implications. j.Asian. Earth. Sci. 48, 72-82.
[82]
Sarna-Wojcicki A.M., Shipley S., Waitt R.B., Dzurisin D., Wood S.H., 1981. Areal distribution, thickness, mass, volume and grain size of air- fall ash from the six major eruptions (of Mount St. Helens) of 1980. U.S. Geol. Surv. prof. pap. 1250.
[83]
Segschneider J., Beitsch A., Timmreck C., Brovkin V., Ilyina T., Jungclaus J., Lorenz S.J., Six K.D., Zanchettin D., 2013. Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations. Biogeosciences 10, 669-687.
[84]
Self S., 2006. The effects and consequences of very large explosive volcanic eruptions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, 2073-2097.
[85]
Shen S., Crowley J.L., Wang Y., Bowring S.A., Erwin D.H., Sadler P.M., Cao C., Rothman D.H., Henderson C.M., Ramezani J., Zhang H., Shen Y., Wang X., 2011. Calibrating the end-Permian mass extinction. Science (1979) 334, 1367-1373.
[86]
Song H.Y., Tong J., Algeo T.J., Song H.J., Qiu H., Zhu Y., Tian L., Bates S., Lyons T.W., Luo G., Kump L.R., 2014. Early Triassic seawater sulfate drawdown. Geochim. Cosmochim. Acta 128, 95-113.
[87]
Song H.J., Wignall P.B., Tong J., Bond D.P.G., Song, Huyue Lai, X., Zhang K., Wang H., Chen Y., 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353-354, 12-21.
[88]
Sparks S., Self S., Grattan J., Oppenheimer C., Pyle D.M., Rymer H., 2005. Super-eruptions: Global effects and future threats: Report of a Geological Society of London Working Group. The Geol. Soc. London.
[89]
Spencer C.J., Kirkland C.L., Taylor R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581-589.
[90]
Spencer C.J., Roberts N.M.W., Santosh M., 2017. Growth, destruction, and preservation of Earth’s continental crust. Earth Sci. Rev. 172, 87-106.
[91]
Spencer C.J., Partin C.A., Kirkland C.L., Raub T.D., Liebmann J., Stern R.A., 2019. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. Geochim. Cosmochim. Acta 257, 16-25.
[92]
Spencer C.J., Cavosie A.J., Morrell T.R., Lu G.M., Liebmann J., Roberts N.M.W., 2022. Disparities in oxygen isotopes of detrital and igneous zircon identify erosional bias in crustal rock record. Earth Planet. Sci. Lett. 577, 117248.
[93]
Stanley S.M., 2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. U S A 113, E6325-E6334.
[94]
Sun Y., Gao Y., Wang D.H., Dai H.Z., Gu W.S., Li J., Zhang L.H., 2017. Zircon U-Pb Dating of 'Mung Bean Rock' in the Tongliang Area, Chongqing and Its Geological Significance. Rock and Mineral Analysis 36, 649-658 (in Chinese with English abstract).
[95]
Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313-345.
[96]
Sun Y., Wang D.H., Gao Y., Han J.Y., Ma S.C., Fan X.T., Gu W.S., Zhang L.H., 2018. Geochemical characteristics of lithium-rich mung bean rocks in Tongliang County, Chongqing. Acta Petrol. Mineral. 37, 395-403 (in Chinese with English abstract).
[97]
Tan M., Zhao B., Zhou B.Y., Zhang Z.S., 2016. Geochemical characteristics and genesis of T/P boundary clay and event clay in Dafang area, Guizhou Province. Geol. Bull. China 35, 979-988 (in Chinese with English abstract).
[98]
Taylor H.P., 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet. Sci. Lett. 47, 243-254.
[99]
Timmreck C., Graf H.F., Lorenz S.J., Niemeier U., Zanchettin D., Matei D., Jungclaus J.H., Crowley T.J., 2010. Aerosol size confines climate response to volcanic super-eruptions. Geophys. Res. Lett. 37.
[100]
Tong J., Zhang S., Zuo J., Xiong X., 2007a. Events during Early Triassic recovery from the end-Permian extinction. Glob. Planet. Change 55, 66-80.
[101]
Tong J., Zuo J., Chen Z.Q., 2007b. Early Triassic carbon isotope excursions from South China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol. j.42, 371-389.
[102]
Troch J., Ellis B.S., Harris C., Bachmann O., Bindeman I.N., 2020. Low-δ18O silicic magmas on Earth: A review. Earth Sci. Rev. 208, 103299.
[103]
Valley J.W., Lackey J.S., Cavosie A.J., Clechenko C.C., Spicuzza M.J., Basei M.A.S., Bindeman I.N., Ferreira V.P., Sial A.N., King E.M., 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. to Mineral. Petrol. 150, 561-580.
[104]
Wang Y., Qian X., Cawood P.A., Liu H., Feng Q., Zhao G., Zhang Y., He H., Zhang P., 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth Sci. Rev. 186, 195-230.
[105]
Wang B.D., Wang L., Chen J., Yin F., Wang D., Zhang W., Chen L., Liu H., 2014. Triassic three-stage collision in the Paleo-Tethys: Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China. Gondwana Res. 26, 475-491.
[106]
Wang Y.J., Wang Y., Zhang Y., Cawood P.A., Qian X., Gan C., Zhang F., Zhang P., 2021. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks. J. Asian Earth Sci. 206, 104648.
[107]
Wang Y.J., Wang B., Li M., Cao S., Wang H., Pan S., Guo J., Ma D., Song F., Cao T., Safonova I.Y., Zhong L., Ni X., 2022. New constraints on volcanism during Ordovician-Silurian transition: Insights from marine bentonites in northern Yili Block (NW China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 600, 111073.
[108]
Wilson C.J.N., 2001. The 26.5 ka Oruanui eruption, New Zealand: An introduction and overview. j.Volcanol. Geotherm. Res. 112, 133-174.
[109]
Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325-343.
[110]
Wu Y., Chu D., Tong J., Song H.J., Dal Corso J., Wignall P.B., Song H.Y., Du Y., Cui Y., 2021. Six-fold increase of atmospheric pCO 2 during the Permian-Triassic mass extinction. Nat. Commun. 12, 1-8.
[111]
Wu F.Y., Li X.H., Zheng Y.F., Gao S., 2007. Lu-Hf isotopic systematics and thier applications in petrology. Acta Petrol. Sin. 23, 185-220.
[112]
Xiang K.P., An Y.Y., He Y.Z., Zhao L., Yi C.X., Liu K.Y., Zhang H.S., Huang Y., Pan Y.J., Deng X.J., 2019. Provenance of the volcanic ash in the bottom of Middle Triassic, southwest margin of the South China plate: a case study of the tuff in Gannan region, Zhebao, Youjiang basin. Geol. Rev. 65, 319-334 (in Chinese with English abstract).
[113]
Xiao J.F., Hu R., 2005. Sedimentary-volcanic tuffs formed during the early Middle Triassic volcanic event in Guizhou Province and their stratigraphic significance. Chinese j.Geochem. 24, 338-344.
[114]
Xie S.W., Wang F., Bucholz C.E., Liu F.L., Wang P.Z., Bao Z.M., Liu D.Y., 2022. Whole-rock geochemistry and zircon O-Hf isotope compositions of ca. 2.35 Ga strongly peraluminous granites: Implications for increase in zircon δ18O values during the Paleoproterozoic. Geochim. Cosmochim. Acta 332, 186-202.
[115]
Xie T., Zhou C.Y., Zhang Q.Y., Hu S.X., Hiang J.Y., Wen W., Cong F., 2013. Zircon U-Pb age for the tuff before the Luoping Biota and its geological implication. Geol. Rev. 59, 159-164 (in Chinese with English abstract).
[116]
Xin D., Yang T.N., Liang M.J., Xue C.D., Han X., Liao C., Tang J., 2018. Syn-subduction crustal shortening produced a magmatic flare-up in middle Sanjiang orogenic belt, southeastern Tibet Plateau: Evidence from geochronology, geochemistry, and structural geology. Gondwana Res. 62, 93-111.
[117]
Xu J., Xia X., Huang C., Cai K., Yin C., Lai C.K., 2019a. Changes of provenance of Permian and Triassic sedimentary rocks from the Ailaoshan suture zone (SW China) with implications for the closure of the eastern Paleotethys. j.Asian Earth Sci. 170, 234-248.
[118]
Xu J., Xia X.P., Lai C., Long X., Huang C., 2019b. When Did the Paleotethys Ailaoshan Ocean Close: New insights from detrital zircon U-Pb age and Hf isotopes. Tectonics 38, 1798-1823.
[119]
Yang J.H., Cawood P.A., Du Y.S., Huang H., Hu L.S., 2012a. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 574, 105-117.
[120]
Yang J.H., Cawood P.A., Du Y.S., Huang H., Huang H.W., Tao P., 2012b. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sediment. Geol. 261, 120-131.
[121]
Yang T.N., Ding Y., Zhang H.R., Fan J.W., Liang M.J., Wang X.H., 2014. Two-phase subduction and subsequent collision defines the paleotethyan tectonics of the southeastern Tibetan Plateau: Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China. Geol. Soc. Am. Bull. 126, 1654-1682.
[122]
Yang T.N., Xue C.D., Xin D., Liang M.J., Liao C., 2019. Paleotethyan tectonic evolution of the Sanjiang Orogenic Belt, SW China: Temporal and spatial distribution pattern of arc-like igneous rocks. Acta Petrol. Sin. 35, 1324-1340 (in Chinese with English abstract).
[123]
Zhang F., Romaniello S.J., Algeo T.J., Lau K. v., Clapham M.E., Richoz S., Herrmann A.D., Smith H., Horacek M., Anbar A.D., 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, 1-10.
[124]
Zhang G., Zhang X., Hu D., Li D., Algeo T.J., Farquhar J., Henderson C.M., Qin L., Shen M., Shen D., 2017. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc. Natl. Acad. Sci. U.S.A. 114, 1806-1810.
[125]
Zhao F., He B., Zhang Z.X., Wang N.Z., Sun P.Y., 2019. Mineralogical characteristics of mung bean rock of the Middle Triassic Guanling Formation at Dazhai area in Qianxi County, Guizhou. Mineral Resour. Geol. 033, 642-649 (in Chinese with English abstract).
[126]
Zhao W., Sun C., Guo Z., 2022. Reawaking of Tonga volcano. The Innovation 3, 100218.
[127]
Zheng L.D., Yao J.X., Tong Y.B., Song B., Wang L.T., Yang Z.N., 2010. Zircon U-Pb dating for the boundary of Olenekian-Anisian at Wangmo, Guizhou Province. Acta Geol. Sin. 84, 1112-1117 (in Chinese with English abstract).
[128]
Zi J.W., Cawood P.A., Fan W.M., Tohver E., Wang Y.J., McCuaig T.C., 2012a. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos 140-141, 166-182.
[129]
Zi J.W., Cawood P.A., Fan W.M., Wang Y.J., Tohver E., McCuaig T.C., Peng T.P., 2012b. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos 144-145.
[130]
Zou H., Li Q.L., Bagas L., Wang X.C., Chen A.Q., Li X.H., 2021. A Neoproterozoic low-δ18O magmatic ring around South China: Implications for configuration and breakup of Rodinia supercontinent. Earth Planet. Sci. Lett. 575, 117196.
PDF(8152 KB)

309

Accesses

2

Citations

Detail

Sections
Recommended

/