Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 2. Trace element compositions of melts and minerals

Stephen F. Foley, Isra S. Ezad

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101692.

PDF(5480 KB)
Geoscience Frontiers All Journals
PDF(5480 KB)
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (1) : 101692. DOI: 10.1016/j.gsf.2023.101692
Research Paper

Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 2. Trace element compositions of melts and minerals

Author information +
History +

Abstract

The trace element compositions of melts and minerals from high-pressure experiments on hydrous pyroxenites containing K-richterite are presented. The experiments used mixtures of a third each of the natural minerals clinopyroxene, phlogopite and K-richterite, some with the addition of 5% of an accessory phase ilmenite, rutile or apatite. Although the major element compositions of melts resemble natural lamproites, the trace element contents of most trace elements from the three-mineral mixture are much lower than in lamproites. Apatite is required in the source to provide high abundances of the rare earth elements, and either rutile and/or ilmenite is required to provide the high field strength elements Ti, Nb, Ta, Zr and Hf. Phlogopite controls the high levels of Rb, Cs and Ba.Since abundances of trace elements in the various starting mixtures vary strongly because of the use of natural minerals, we calculated mineral/melt partition coefficients (DMin/melt) using mineral modes and melting reactions and present trace element patterns for different degrees of partial melting of hydrous pyroxenites. Rb, Cs and Ba are compatible in phlogopite and the partition coefficient ratio phlogopite/K-richterite is high for Ba (136) and Rb (12). All melts have low contents of most of the first row transition elements, particularly Ni and Cu ((0.1-0.01)×primitive mantle). Nickel has high DMin/melt for all the major minerals (12 for K-richterite, 9.2 for phlogopite and 5.6 for Cpx) and so behaves at least as compatibly as in melting of peridotites. Fluorine/chlorine ratios in melts are high and DMin/melt for fluorine decreases in the order apatite (2.2) > phlogopite (1.5) > K-richterite (0.87). The requirement for apatite and at least one Ti-oxide in the source of natural lamproites holds for mica pyroxenites that lack K-richterite. The results are used to model isotopic ageing in hydrous pyroxenite source rocks: phlogopite controls Sr isotopes, so that lamproites with relatively low 87Sr/86Sr must come from phlogopite-poor source rocks, probably dominated by Cpx and K-richterite. At high pressures (>4 GPa), peritectic Cpx holds back Na, explaining the high K2O/Na2O of lamproites.

Keywords

Hydrous pyroxenite / Lamproite / Trace elements / Phlogopite / K-richterite / Apatite

Cite this article

Download citation ▾
Stephen F. Foley, Isra S. Ezad. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 2. Trace element compositions of melts and minerals. Geoscience Frontiers, 2024, 15(1): 101692 https://doi.org/10.1016/j.gsf.2023.101692

References

[1]
Adam J., Green T.H. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: experimental results and the investigation of controls on partitioning behaviour. Contrib. Mineral. Petrol. 152, 1-17.
[2]
Andronikov A.V., Foley S.F., 2001. Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area. Chem. Geol. 175, 291-305.
[3]
Aoki K., Ishikawa K., Kanisawa S., 1981. Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic applications. Contrib. Mineral. Petrol. 76, 53-59.
[4]
Avanzinelli R., Lustrino M., Mattei M., Melluso L., Conticelli S. 2007. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113, 213-227.
[5]
Badal J., Carlson R.W., Frost C.D., Hearn B.C., Eby G.N., 2014. Continent-scale linearity of kimberlite-carbonatite magmatism, mid-continent North America. Earth Planet. Sci. Lett. 403, 1-14.
[6]
Barton M., Hamilton D.L., 1982. Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineral. Mag. 45, 267-278.
[7]
Becerra-Torres E., Melekhova E., Blundy J.D., Brooker R.A., 2020. Experimental evidence for decompression melting of metasomatized mantle beneath the Colima Graben, Mexico. Contrib. Mineral. Petrol. 175, 101.
[8]
Becker M., Le Roux A.P., 2006. Geochemistry of South African on- and off-craton Group I and Group II kimberlites: petrogenesis and source region evolution. j.Petrol. 47, 673-703.
[9]
Beswick A.E., Carmichael I.S.E., 1978. Constraints on mantle source compositions imposed by phosphorus and the rare-earth elements. Contrib. Mineral. Petrol. 67, 317-330.
[10]
Brenan J.M., 1993. Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: implications for the F and Cl content of high P-T fluids. Earth Planet. Sci. Lett. 117, 251-263.
[11]
Brey G.P., Weber R., Nickel K.G., 1990. Calibration of a belt apparatus to 1800℃ ad 6 GPa. j.Geophys. Res. 95, 15603-15610.
[12]
Brumm R., 1998. Die experimentelle Bestimmung von Amphibol/Schmelze-Verteilungskoeffizienten in lamproitischen und lamprophyrischen Systemen. Dr. rer. nat. thesis, University of Göttingen, 132 pp. (in German).
[13]
Carlson R.W., Irving A.J., 1994. Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Carton. Earth Planet. Sci. Lett. 126, 47-472.
[14]
Cannao E., Tiepolo M., Borghini G., Langone A., Fumagalli P., 2022. The influence of oxygen fugacity and chlorine on amphibole-liquid trace element partitioning at upper-mantle conditions. Eur. j.Mineral. 34, 35-57.
[15]
Carlson R.W., Araujo A.L.N., Junqueira-Brod T.C., Gaspar J.C., Brod J.A., Petrinovic I.A., Hollanda M.H.B.M., Pimentel M.M., Sichel S., 2007. Chemical and isotopic relationships between peridotite xenoliths and mafic-ultrapotassic rocks from southern Brazil. Chem. Geol. 242, 415-434.
[16]
Chakrabarti R., Basu A.R., Paul Dalim K., 2007. Nd-Sr-Hf-Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: subducted komatiite in the source. Chem. Geol. 236, 291-302.
[17]
Chalapathi-Rao N.V., Gibson S.A., Pyle D.M., Dickin A.P., Day J.A, 2005. Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dhawar Craton, southern India: a reply. j.Petrol. 46, 1081-1084.
[18]
Chalapathi-Rao N.V., Atiullah, Burgess R., Nanda P., Choudhary A.K., Sahoo S., Lehmann B., Chahong N., 2016. Petrology, 40Ar/39Ar age, Sr-Nd systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India. Mineral. Petrol. 110, 269-293.
[19]
Chevychelov V.Y., Botcharnikov R.E., Holtz F., 2008. Experimental study of fluorine and chlorine contents in mica (biotite) and their partitioning between mica, phonolite melt, and fluid. Geochem. Internnat. 46, 1081-1089.
[20]
Choi E., Fiorentini M.L., Giuliani A., Foley S.F., Maas R., Graham S., 2021. Petrogenesis of Proterozoic alkaline ultramafic rocks in the Yilgarn Craton, Western Australia. Gondwana Res. 93, 197-217.
[21]
Coe N., Le Roux A.P., Gurney J.J., Pearson D.G., Nowell G.M., 2008. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole-rock geochemistry. Contrib. Mineral. Petrol. 156, 627-652.
[22]
Collerson K.D., McCulloch M.Y., 1983. Nd and Sr isotope geochemistry of leucite-bearing lavas from Gaussberg, Eats Antarctica. In: OlivierR.L., JamesP.R., JagoJ.B. (Eds.), Antarctic Earth Science. Australian Academy of Science, pp. 676-680.
[23]
Conticelli S., Guarnieri L., Farinelli A., Mattei M., Avanzinelli R., Bianchini G,., Boari E., Tommasini S., Tiepolo M., Prelević D., Venturelli G., 2009. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the western Mediterranean region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 68-92.
[24]
Contini S., Venturelli G., Toscani L., Capedri S., Barbieri M., 1993. Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain. Mineral. Mag. 57, 203-216.
[25]
Dalpé C., Baker D.R., 2000. Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib. Mineral. Petrol. 140, 233-250.
[26]
Davies G.R., Lloyd F.E., 1989. In: (Ross, j.(Ed.). In: Kimberlites and related rocks, 2. Blackwell, Melbourne, pp. 784-794.
[27]
Davies G.R., Stolz A.J., Mahotkin I.L, Nowell G.M., Pearson D.G., 2006. Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of the Aldan Shield lamproites. j.Petrol. 47, 1119-1148.
[28]
Dawson J.B., 1987. The kimberlite clan:relationship with olivine and leucite lamproites, and inferences for upper mantle metasomatism. In: FittonJ.G., UptonB.G.j.(Eds), Alkaline Igneous Rocks. Geological Society of London Special Publication 30, 95-101.
[29]
Dawson J.B., Smith J.V., 1977. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 44, 309-323.
[30]
Delaney J.S., Smith J.V., Carswell D.A., Dawson J.B., 1980. Chemistry of micas from kimberlites and xenoliths - II. Primary- and secondary-textured micas from peridotite xenoliths. Geochim. Cosmochim. Acta 44, 857-872.
[31]
Duggen S., Hoernle K.A., van den Bogaard P., Garbe-Schönberg D., 2005. Post-collisional transition from subduction to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. j.Petrol. 46, 1155-1201.
[32]
Duke J.M., 1976. Distribution of the period four transition elements among olivine, calcic pyroxene and mafic silicate liquid: experimental results. j.Petrol. 17, 499-521.
[33]
Edgar A.D., Arima M., 1985. Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high pressure experiments: implication for halogen reservoirs in source regions. Am. Mineral. 70, 529-536.
[34]
Edgar A.D., Charbonneau H.E., 1991. Fluorine-bearing phases in lamproites. Mineral. Petrol. 44, 125-149.
[35]
Edgar A.D., Pizzolato L.A., 1995. An experimental study of partitioning of fluorine between K-richterite, apatite, phlogopite, and melt at 20 kbar. Contrib. Mineral. Petrol. 121, 247-257.
[36]
Edgar A.D., Lloyd F.E., Vujadinovic D., 1994. The role of fluorine in the evolution of ultrapotassic magmas. Mineral. Petrol. 51, 173-193.
[37]
Edgar A.D., Pizzolato L.A., Sheen J., 1996. Fluorine in igneous rocks with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral. Mag. 70, 243-257.
[38]
Elkins-Tanton L.T., Grove T.L., 2003. Evidence for deep melting of hydrous metasomatized mantle: Pliocene high-potassium magmas from the Sierra Nevadas. j.Geophys. Res. 108 (B7), 2350.
[39]
Erlank A.J., Rickard R.S., 1973. Potassic richterite-bearing peridotites from kimberlite and the evidence they provide for upper mantle metasomatism. First Kimberlite Conf. Ext. Abs., pp. 104-106.
[40]
Ersoy Y., Palmer M.R., Uysal I.T., Gündogan I., 2014. Geochemistry and petrology of the early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. j.Volcanol. Geotherm. Res. 283, 143-158.
[41]
Ezad I.S., Foley S.F., 2022a. Trace element partitioning between phlogopite, apatite, amphibole and silicate melts in high-pressure experiments. Goldschmidt2022 Abstract, Honolulu.
[42]
Ezad I.S., Foley S.F., 2022b. Experimental partitioning of fluorine and barium in lamproites. Am. Mineral. 107, 2008-2019.
[43]
Ezad I.S., Shcheka S.S., Buhre S., Buhre A., Gorojovsky L.R., Shea J.J., Förster M.W., Foley S.F., 2023. Rapid quench piston-cylinder apparatus: an improved design for the recovery of volatile-rich geological glasses from experiments at 0.5-2.5 GPa. Review of Scientific Instruments 94, 055107.
[44]
Faul U.H., 1997. Permeability of partially molten upper mantle rocks from experiments and percolation theory. j.Geophys. Res. 102, 10299-10311.
[45]
Faul U.H., 2001. Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920-923.
[46]
Fitzpayne A., Giuliani A., Hergt J., Phillips D., Janney P., 2018a. New geochemical constraints on the origins of MARID and PIC rocks: implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 318-319, 478-493.
[47]
Fitzpayne A., Giuliani A., Phillips D., Hergt J., Woodhead J.D., Farquhar J., Fiorentini M., Drysdale R.N., 2018b. Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineral. Petrol. 112 (Supplement 1), S71-S84.
[48]
Flemetakis S., Klemme S., Stracke A., Genske F., Berndt J., Rohrbach A., 2020. Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments. Lithos 380-381, 105859.
[49]
Foley S.F., 1989a. The genesis of lamproitic magmas in a reduced, fluorine-rich mantle. In: RossJ. (Ed.), Kimberlites and related rocks, Vol. 1. Blackwell, Melbourne, pp. 616-632.
[50]
Foley S.F., 1989b. Experimental constraints on phlogopite chemistry in lamproites: 1. The effect of water activity and oxygen fugacity. Eur. j.Mineral. 1, 411-426.
[51]
Foley S.F., 1990. A review and assessment of experiments on kimberlites, lamproites and lamprophyres as a guide to their origin. Proc. Indian Acad. Sci. 99, 57-80.
[52]
Foley S., 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435-453.
[53]
Foley S., 1993. An experimental study of olivine lamproite - first results from the diamond stability field. Geochim. Cosmochim. Acta 57, 483-489.
[54]
Foley S.F., Andronikov A.V., Melzer S., 2002. Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineralogy and Petrology 74, 361-384.
[55]
Foley S.F., Barth M.G., Jenner G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta 64, 933-938.
[56]
Foley S.F., Ezad I.S., Shu C., Ramokgaba L., Wang C.Y., Phillips M.J.M., Manselle P., 2023. Recommended trace element partitioning data for melting of hydrous pyroxenites and glimmerites. Goldschmidt 2023 Abstract 15670.
[57]
Foley S.F., Jenner G.A., 2004. Trace element partitioning in lamproitic magmas — the Gaussberg olivine leucitite. Lithos 75, 19-38.
[58]
Foley S.F., Pertermann M., 2021. Dynamic metasomatism experiments investigating the interaction between migrating potassic melt and garnet peridotite. Geosciences 11, 432.
[59]
Foley S.F., Wheller G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates. Chem. Geol. 85, 1-18.
[60]
Foley S.F., Ezad I.S., van der Laan S.R., Pertermann M., 2022. Melting of hydrous pyroxenite assemblages with alkali amphiboles in the continental mantle lithosphere. Part 1: melting relations and major element compositions of melts. Geosci. Front. 13, 101280.
[61]
Fraser K.J., Hawkesworth C.J., 1992. The petrogenesis of Group II ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos 28, 327-245.
[62]
Fraser K.J., Hawkesworth C.J., Erlank A.J., Mitchell R.H., Scott-Smith B.H., 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 76, 57-70.
[63]
Funk S.P., Luth R.W., 2013. Melting phase relations of a mica-clinopyroxenite from the Milk River area, southern Alberta, Canada. Contrib. Mineral. Petrol. 166, 393-409.
[64]
Giuliani A., Phillips D., Woodhead J.D., Kamenetsky V.S., Fiorentini M.L., Maas R., Soltys A., Armstrong R.A., 2015. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle? Nat. Comm. 6, 6837.
[65]
Grassi D., Schmidt M.W., Günther D., 2012. Element partitioning during carbonated metapelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327-328, 84-96.
[66]
Green D.H., 1976. Experimental testing of “equilibrium” partial melting of peridotite under water-saturated, high-pressure conditions. Can. Mineral. 14, 255-268.
[67]
Green T.H., Blundy J.D., Adam J., Yaxley G.M., 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200 ℃. Lithos 53, 165-187.
[68]
Gupta A.K., LeMaitre R.W., Haukka M.T., Yagi K., 1983. Geochemical studies on the carbonated apatite glimmerites from Damodar Valley, India. Proceedings of the Japanese Academy, Series B, 59, 113-116.
[69]
Hart S.R., Dunn T., 1993. Experimental Cpx/melt partitioning study of 24 trace elements. Contrib. Mineral. Petrol. 113, 1-8.
[70]
Hecker J.G., Marks M.A.W., Wenzel T., Markl G., 2020. Halogens in amphibole and mica from mantle xenoliths: implications for the halogen distribution and halogen budget of the metasomatized continental lithosphere. Am. Mineral. 105, 781-794.
[71]
Hirose K., Kushiro I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114, 477-489.
[72]
Howarth G.H., Giuliani A., 2020. Contrasting types of micaceous kimberlite-lamproite magmatism from the Man Craton (West Africa): new insights from petrography and mineral chemistry. Lithos 362-363, 105483.
[73]
Irifune T., Ringwood A.E., Hibberson W.O., 1994. Subduction of continental crust and terrigenous pelagic sediments - a experimental study. Earth Planet. Sci. Lett. 126, 351-368.
[74]
Jaques A.L., Lewis J.D., Smith C.B., 1986. The kimberlites and lamproites of Western Australia. Geol. Surv. W. Australia Bull. 132, 268 pp.
[75]
Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther D., Enzweiler J., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397-429.
[76]
Johannes W., Bell P.M., Boettcher A.L., Chapman D.W., Newton R.C., Seifert F., 1971. An interlaboratory comparison of piston-cylinder pressure calibration using the albite breakdown reaction. Contrib. Mineral. Petrol. 32, 24-38.
[77]
Johnson K.T.M., 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol. 133, 60-68.
[78]
Kargin, A.V., Nosova, A.A., Larionova, Y.O., Kononova, V.A., Borisovsky, S.E., Kovalchuk, E.V., Griboedova, I.G., 2014. Mesoproterozoic orangeites (Kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr-Nd isotope composition. Petrology 22, 151-183.
[79]
Klemme S., Blundy J.D., Wood B.J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta 66, 3109-3123.
[80]
Klemme S., Prowatke S., Hametner K., Günther D., 2005. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim. Cosmochim. Acta 69, 2361-2371.
[81]
Kulleriud K., Zozulya D.R., Bergh S., Hansen H., Ravna E.J.K., 2011. Geochemistry and tectonic setting of a lamproite dyke in Kvaloya, North Norway. Lithos 126, 278-289.
[82]
Le Roux V., Dasgupta R., Lee C.T.A., 2011. Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth Planet. Sci. Lett. 307, 395-408.
[83]
Lloyd F.E., Arima M., Edgar A.D., 1985. Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib. Mineral. Petrol. 91, 321-329.
[84]
Matson D.W., Muenow D.W., Garcia M.O., 1986. Volatile contents of phlogopite micas from South African kimberlite. Contrib. Mineral. Petrol. 93, 399-408.
[85]
McCulloch M.T., Jaques A.L., Nelson D.R., Lewis J.D., 1983. Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302, 400-403.
[86]
McDade P., Blundy J.D., Wood B.J., 2003. Trace element partitioning on the Tinaquillo lherzolite solidus at 1.5 GPa. Phys. Earth Planet. Int. 139, 129-147.
[87]
McDonough W.F., Sun S.S., 1995 The composition of the Earth. Chem. Geol. 120, 223-253.
[88]
McKenzie D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 95, 53-72.
[89]
Mirnejad H., Bell K., 2006. Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions. j.Petrol. 47, 2463-2489.
[90]
Mitchell R.H., 1995. Melting experiments on a sanidine phlogopite lamproite at 4-7 GPa and their bearing on the sources of lamproitic magmas. j.Petrol. 36, 1455-1474.
[91]
Mitchell R.H., Edgar A.D., 2002. Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Mineral. Petrol. 74, 115-128.
[92]
Murphy D.T., Collerson K.D., Kamber B.S., 2002. Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archean subducted sediments. j.Petrol. 43, 981-1001.
[93]
Nandedkar R.H., Hurliman N., Ulmer P., Müntener O., 2016. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib. Mineral. Petrol. 171 (8-9), 71.
[94]
Ngwenya N.S., Tappe S., 2021. Diamondiferous lamproites of the Luangwa Rift in central Africa and links to remobilized cratonic lithosphere. Chem. Geol. 568, 120019.
[95]
Novella D., Frost D.J., 2014. The composition of hydrous partial melts of garnet peridotite at 6 GPa: implications for the origin of Group II kimberlites. j.Petrol. 55, 2097-2124.
[96]
O’Reilly, S.Y., Griffin, W.L., 2000. Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232.
[97]
Oxburgh E.R., 1964. Petrological evidence for the presence of amphibole in the upper mantle and its petrogenetic and geophysical implications. Geol. Mag. 101, 1-19.
[98]
Palmer M.R., Ersoy E.Y., Akal C., Uysal I., Genc S.C., Banks L.A., Cooper M.J., Milton J.A., Zhao K.D., 2019. A short, sharp pulse of potassium-rich volcanism during continental collision and subduction. Geology 47, 1079-1082.
[99]
Patiño-Douce A.E., Roden M.F., Chaumba J., Fleisher C., Yogodzinski G., 2011. Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chem. Geol. 288, 14-31.
[100]
Pearson D.G., Woodhead J.D., Janney P.E., 2019. Kimberlites as geochemical probes of Earth’s mantle. Elements 15, 387-392.
[101]
Perez-Valera L.A., Rosenbaum G., Sanchez-Gomez M., Azor A., Fernandez-Soler J., Perez-Valera F., Vasconcelos P.M.P., 2013. Age distribution of lamproites along the Socovos fault (southeastern Spain) and translithospheric scale tearing. Lithos 180-181, 252-263.
[102]
Pintér Z., Foley S.F., Yaxley G.M., 2022. Diamonds, dunites, and metasomatic rocks formed by melt/rock reaction in craton roots. Communications Earth and Environment 3, 296.
[103]
Prelević D., Foley S.F., 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions from lamproites. Earth Planet. Sci. Lett. 256, 120-135.
[104]
Prelević D., Foley S.F., Romer R.L., Cvetković V., Downes H., 2005. Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. j.Petrol. 46, 1443-1487.
[105]
Prelević D., Foley S.F., Cvetković V., 2007. A review of petrogenesis of Mediterranean Tertiary lamproites: a perspective from the Serbian ultrapotassic province. Geol. Soc. Am. Spec. Paper 418, 113-129.
[106]
Prelević D., Akal C., Foley S.F., Romer R.L., Stracke A., van den Bogaard P., 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. j.Petrol. 53, 1019-1055.
[107]
Prelević D., Jacob D.E., Foley S.F., 2013. Recycling plus: a new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth Planet. Sci. Lett. 362, 187-197.
[108]
Rosenthal A., Foley S.F., Pearson D.G., Nowell G.M., Tappe S., 2009. Magmatic evolution at the propagating tip of a continental rift - a geochemical study of primitive alkaline volcanic rocks of the western branch of the East African Rift. Earth Planet. Sci. Lett. 284, 236-248.
[109]
Safonov O.G., Butvina V.G., 2009. Interaction of model peridotite with H2O-KCl fluid: experiment at 1.9 GPa and its implications for upper mantle metasomatism. Petrology 21, 599-615.
[110]
Schmidt K.H., Bottazzi P., Vannucci R., Mengel K., 1999. Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet. Sci. Lett. 168, 287-299.
[111]
Schwab B.E., Johnston A.D., 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. j.Petrol. 42, 1789-1811.
[112]
Smith C.B., Gurney J.J., Skinner E.M.W., Clement C.R., Ebrahim N., 1985. Geochemical character of southern African kimberlites: a new approach based on isotopic constraints. Transactions of the Geological Society of South Africa 88, 267-280.
[113]
Smith C.B., Clark T.CV., Barton E.S., Bristow J.W., 1994. Emplacement ages of kimberlite occurrences in the Prieska region, southwest border of Kaapvaal Craton, South Africa. Chem. Geol. 113, 149-169.
[114]
Smith J.V., Delaney J.S., Hervig R.L., Dawson J.B., 1981. Storage of F and Cl in the upper mantle: geochemical implications. Lithos 14, 133-147.
[115]
Suzuki. T., Hirata T., Yokoyama T.D., Imai T., Takahashi E., 2012. Pressure effect on element partitioning between minerals and silicate melt: melting experiments on basalt up to 20 GPa. Phys. Earth Planet. Inter. 208, 59-73.
[116]
Sweeney R.J., Thompson A.B., Ulmer P., 1993. Phase relations of a natural MARID composition and implications for MARID genesis, lithsopheric melting and mantle metasomatism. Contrib. Mineral. Petrol. 115, 225-241.
[117]
Tadulkar D., Pandey A., Chalapathi-Rao N.V., Kumar A., Pandit D., Belyatsky B.V., Lehmann B., 2018. Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, eastern Dhawar Craton, southern India: evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent. Contrib. Mineral. Petrol. 173, 67.
[118]
Takahashi E., Irvine T.N., 1981. Stoichiometric control of crystal/liquid single-component partition coefficients. Geochim. Cosmochim. Acta 45, 1181-1185.
[119]
Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. j.Petrol. 47, 1261-1315.
[120]
Tappe S., Foley S.F., Stracke A., Romer R.L., Kjarsgaard B.A., Heaman L.M., Joyce N., 2007. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 256, 433-454.
[121]
Tiepolo M., Zanetti A., Oberti R., Brumm R., Foley S., Vannucci R., 2003. Trace-element partitioning between synthetic potassic richterites and silicate melts, and contrasts with the partitioning behaviour of pargasites and kaersutites. Eur. j.Mineral. 15, 329-340.
[122]
Tiepolo M., Vannucci R., Foley S., Oberti R., Zanetti A., 2007. Trace element partitioning between amphibole and silicate melt. Rev. Mineral. Geochem. 67, 417-452.
[123]
Venturelli G., Capedri S., Di Battistini G., Crawford A.J., Kogarko L.N., Celestini S., 1984. The ultrapotassic rocks from southeastern Spain. Lithos 17, 37-54.
[124]
Venturelli G., Capedri S., Barbieri M., Toscani L., Salvioli Mariani E., Zerbi M., 1991. The Jumilla lamproite revisited: a petrological oddity. Eur. j.Mineral. 3, 123-145.
[125]
Veter M., Foley S.F., Alard O., submitted for publication. Reconstruction of the continental mantle composition from xenolith minerals from Mount Gambier, southeastern Australia. Chem. Geol.
[126]
Vukadinovic D., Edgar A.D., 1993. Phase relations in the phlogopite-apatite system at 20 kbar; implications for the role of fluorine in mantle melting. Contrib. Mineral. Petrol. 114, 247-254.
[127]
Wagner C., Deloule E., Mokhtari A., 1996. Richterite-bearing peridotites and MARID-type inclusions in lavas from North eastern Morocco: mineralogy and D/H isotopic studies. Contrib. Mineral. Petrol. 124, 406-421.
[128]
Wang Y., Foley S.F., Buhre S., Soldner J., Xu Y., 2021. Origin of potassic post-collisional volcanic rocks in young, shallow, blueschist-rich lithosphere. Science Advances 7, eabc0291.
[129]
Wasylenki L.E., Baker M.B., Kent A.J.R., Stolper E.M., 2003. Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. j.Petrol. 44, 1163-1191.
[130]
Waters F.G., 1987. A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite. Contrib. Mineral. Petrol. 95, 523-533.
[131]
Williams H.M., Turner S.P., Pearce J.A., Kelley S.P., Harris N.B.W., 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and Northern Tibet from geochemical variations and inverse trace element modelling. j.Petrol. 45, 555-607.
[132]
Yu K.Z., Liu Y.S., Foley S.F., Hu Z., Zong K., Chen C.F., Shu C., 2021. Reconstruction of primary alkaline magma composition from mineral archives: decipher mantle metasomatism by carbonated sediment. Chem. Geol. 577, 120279.
[133]
Zack T., Brumm R., 1998. Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/clinopyroxene partitioning in garnet pyroxenites. Int. Kimberlite Conf. Ext. Abs. 7, 986-988.
PDF(5480 KB)

Accesses

Citations

Detail

Sections
Recommended

/