Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis

Kamel. Si Mohammed, Ugur Korkut Pata

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101683.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101683. DOI: 10.1016/j.gsf.2023.101683

Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis

Author information +
History +

Abstract

Natural resources, climate change, and sustainable development are critical and simultaneously interrelated issues. This study investigates the interdependence between raw minerals material and sea level rise, considering the role of economic performance and material footprint employing wavelet locale multiple correlations from 1970 to 2019. The results provide strong evidence for cross-correlation of climate change with mineral resources, economic output, and domestic material consumption (biomass-fossil, metal, and non-metal) localized at the high frequency-time domain. However, the outcomes provide weak evidence for the association between bivariate time series at low frequency, which is a limitation in the short term. Based on the results, policymakers should implement effective environmental taxes and invest in cutting-edge technologies to optimize clean energy and mineral resources in a sustainable manner.

Keywords

Mineral resources / Sea level rise / Material footprint / Wavelet multiple correlation

Cite this article

Download citation ▾
Kamel. Si Mohammed, Ugur Korkut Pata. Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis. Geoscience Frontiers, 2024, 15(3): 101683 https://doi.org/10.1016/j.gsf.2023.101683

CRediT authorship contribution statement

Sudipto Bhattacharjee: Writing – original draft, Visualization, Validation, Software, Methodology, Formal analysis, Data curation, Conceptualization. Sanjay Kumar Prajapati: Visualization, Resources, Methodology. Uma Shankar: Writing – review & editing, Validation, Supervision. O.P. Mishra: Writing – review & editing, Validation, Supervision, Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Sudipto Bhattacharjee highly acknowledges IITM-Desk for fellowship support under the Ministry of Earth Sciences Research Fellowship Programme (MRFP). He extends his gratitude to Dr. R.S. Chatterjee (IIRS Dehradun), Mr. Tamal Samaddar (former MTech student, IIRS Dehradun), and Mr. Ravikant (Research Associate, National Center for Seismology, New Delhi) for sharing remote sensing knowledge and time-to-time advice. The authors thank the National Center for Seismology for providing waveform data and other necessary infrastructural support and computational facilities and supervision of the entire research for completion of this research work.

References

A.O. Acheampong, M. Shahbaz, J. Dzator, Z. Jiao. Effects of income inequality and governance on energy poverty alleviation: Implications for sustainable development policy. Util. Policy, 78 (2022), Article 101403,
CrossRef Google scholar
O.B. Adekoya, G.E. Ajayi, M. Suhrab, J.A. Oliyide. How critical are resource rents, agriculture, growth, and renewable energy to environmental degradation in the resource-rich African countries? The role of institutional quality. Energy Policy, 164 (2022), Article 112888,
CrossRef Google scholar
S.A. Aladejare. Natural resource rents, globalisation and environmental degradation: new insight from 5 richest African economies. Resour. Policy, 78 (2022), Article 102909,
CrossRef Google scholar
M.A. Alam, R. Sepúlveda. Environmental degradation through mining for energy resources: the case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci., 3 (2022), pp. 182-190,
CrossRef Google scholar
H.F. Ali, S.M. Ghoneim. Satellite-based silica mapping as an essential mineral for clean energy transition: remote sensing mineral exploration as a climate change adaptation approach. J. African Earth Sci., 196 (2022), Article 104683,
CrossRef Google scholar
H. Alqaralleh, A. Canepa. The role of precious metals in portfolio diversification during the Covid19 pandemic: a wavelet-based quantile approach. Resour. Policy, 75 (2022), Article 102532,
CrossRef Google scholar
M. Amin, S. Zhou, A. Safi. The nexus between consumption-based carbon emissions, trade, eco-innovation, and energy productivity: empirical evidence from N-11 economies. Environ. Sci. Pollut. Res., 29 (2022), pp. 39239-39248,
CrossRef Google scholar
M.A. Ansari. Re-visiting the Environmental Kuznets curve for ASEAN: a comparison between ecological footprint and carbon dioxide emissions. Renew. Sustain. Energy Rev., 168 (2022), Article 112867,
CrossRef Google scholar
M. Azadi, S.A. Northey, S.H. Ali, M. Edraki. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci., 13 (2020), pp. 100-104,
CrossRef Google scholar
R.A. Badeeb, H.H. Lean, M. Shahbaz. Are too many natural resources to blame for the shape of the Environmental Kuznets Curve in resource-based economies?. Resour. Policy, 68 (2020), Article 101694,
CrossRef Google scholar
V. Balaram. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front., 10 (2019), pp. 1285-1303,
CrossRef Google scholar
B. Ballinger, M. Stringer, R. Diego, B.K. Schmeda-Lopez, B. Parkinson, C. Greig, S. Smart. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy, 255 (2019), Article 113844,
CrossRef Google scholar
D. Balsalobre-Lorente, L. Ibáñez-Luzón, M. Usman, M. Shahbaz. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew. Energy, 185 (2022), pp. 1441-1455,
CrossRef Google scholar
L.J. Belmonte-Ureña, J.A. Plaza-Úbeda, D. Vazquez-Brust, N. Yakovleva. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: a global analysis and future agenda. Ecol. Econ., 185 (2021), Article 107050,
CrossRef Google scholar
Broock, W.A., Scheinkman, J.A., Dechert, W.D., LeBaron, B., 1996. A test for independence based on the correlation dimension. Econom. Rev. 15(3), 197–235.
Caldwell, P.C., Merrifield, M.A., Thompson, P.R., 2015, Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.7289/V5V40S7W.
G. Calvo, A. Valero. Strategic mineral resources: availability and future estimations for the renewable energy sector. Environ. Dev., 41 (2022), Article 100640,
CrossRef Google scholar
C. Caminade, K.M. McIntyre, A.E. Jones. Impact of recent and future climate change on vector-borne diseases. Ann. N.Y Acad. Sci., 1436 (2019), pp. 157-173,
CrossRef Google scholar
A. Cazenave, W. Llovel. Contemporary sea level rise. Ann. Rev. Mar. Sci., 2 (2010), pp. 145-173,
CrossRef Google scholar
X. Chen, F. Zhou, D. Hu, G. Yi, W. Cao. An improved evaluation method to assess the coordination between mineral resource exploitation, economic development, and environmental protection. Ecol. Indic., 138 (2022), Article 108808,
CrossRef Google scholar
L. Cheng, J. Abraham, K.E. Trenberth, J. Fasullo, T. Boyer, R. Locarnini, B. Zhang, F. Yu, L. Wan, X. Chen, X. Song, Y. Liu, M.E. Mann, F. Reseghetti, S. Simoncelli, V. Gouretski, G. Chen, A. Mishonov, J. Reagan, J. Zhu. Upper ocean temperatures hit record high in 2020. Adv. Atmos. Sci., 38 (2021), pp. 523-530,
CrossRef Google scholar
J.A. Church, N.J. White, T. Aarup, W.S. Wilson, P.L. Woodworth, C.M. Domingues, J.R. Hunter, K. Lambeck. Understanding global sea levels: past, present and future. Sustain. Sci., 3 (2008), pp. 9-22,
CrossRef Google scholar
V. Dagar, M.K. Khan, R. Alvarado, A. Rehman, M. Irfan, O.B. Adekoya, S. Fahad. Impact of renewable energy consumption, financial development and natural resources on environmental degradation in OECD countries with dynamic panel data. Environ. Sci. Pollut. Res., 29 (2022), pp. 18202-18212,
CrossRef Google scholar
J.A. Dallas, S. Raval, S. Saydam, A.G. Dempster. Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronaut., 186 (2021), pp. 74-86,
CrossRef Google scholar
Danish, Baloch, M.A., Mahmood, N., Zhang, J.W., 2019. Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci. Total Environ. 678, 632–638. https://doi.org/10.1016/j.scitotenv.2019.05.028.
A. Dogan, U.K. Pata. The role of ICT, R&D spending and renewable energy consumption on environmental quality: testing the LCC hypothesis for G7 countries. J. Clean. Prod., 380 (2022), Article 135038,
CrossRef Google scholar
C. Garcia-Soto, L. Cheng, L. Caesar, S. Schmidtko, E.B. Jewett, A. Cheripka, I. Rigor, A. Caballero, S. Chiba, J.C. Báez, T. Zielinski, J.P. Abraham. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circula). Front. Mar. Sci., 8 (2021),
CrossRef Google scholar
B. Guloglu, A.E. Caglar, U.K. Pata. . Analyzing the determinants of the load capacity factor in OECD countries: Evidence from advanced quantile panel data methods. Gondwana Res., 118 (2023), pp. 92-104,
CrossRef Google scholar
S.M. Hayes, E.A. McCullough. Critical minerals: a review of elemental trends in comprehensive criticality studies. Resour. Policy, 59 (2018), pp. 192-199,
CrossRef Google scholar
Q. He, M.D. Bertness, J.F. Bruno, B. Li, G. Chen, T.C. Coverdale, A.H. Altieri, J. Bai, T. Sun, S.C. Pennings, J. Liu, P.R. Ehrlich, B. Cui. Economic development and coastal ecosystem change in China. Sci. Rep., 4 (2014), pp. 1-9,
CrossRef Google scholar
L. He, X. Zhang, Y. Yan. Heterogeneity of the Environmental Kuznets Curve across Chinese cities: how to dance with ‘shackles’?. Ecol. Indic., 130 (2021), Article 108128,
CrossRef Google scholar
K. Hund, D. La Porta, T. Fabregas, T. Laing, J. Drexhage. Minerals for climate action: the mineral intensity of the clean energy transition. WORLD Bank Publ., 110 (2020)
J. Hussain, A. Khan, K. Zhou. The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: a cross-country analysis. Energy, 199 (2020), Article 117409,
CrossRef Google scholar
M. Ibrahim, M. Foglia, U. Shahzad, Z. Fareed. Technological forecasting & social change green innovation, resource price and carbon emissions during the COVID-19 times: new findings from wavelet local multiple correlation analysis. Technol. Forecast. Soc. Chang., 184 (2022), Article 121957,
CrossRef Google scholar
International Monetary Fund, 2023. International Financial Statistics. https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b (accessed 10 February 2023).
International Resource Panel, 2023. https://www.resourcepanel.org/data-resources (accessed 20 February 2023).
IPCC, 2019. https://www.ipcc.ch/2019/ (accessed 24 June 2023).
X. Jin, Z. Ahmed, U.K. Pata, M.T. Kartal, S. Erdogan. Do investments in green energy, energy efficiency, and nuclear energy R&D improve the load capacity factor?. An augmented ARDL approach. Geosci. Front., 101646 (2023),
CrossRef Google scholar
I.M. Jiskani, B.M. Moreno-Cabezali, A. Ur Rehman, J.M. Fernandez-Crehuet, S. Uddin. Implications to secure mineral supply for clean energy technologies for developing countries: A fuzzy based risk analysis for mining projects. J. Clean. Prod., 358 (2022), Article 132055,
CrossRef Google scholar
B. Jones, V. Nguyen-Tien, R.J.R. Elliott. The electric vehicle revolution: critical material supply chains, trade and development. WORLD Econ., 46 (1) (2023), pp. 2-26,
CrossRef Google scholar
A.A. Khan. Why would sea-level rise for global warming and polar ice-melt?. Geosci. Front., 10 (2019), pp. 481-494,
CrossRef Google scholar
I. Khan, F. Hou, H.P. Le. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ., 754 (2021), Article 142222,
CrossRef Google scholar
H. Kreinin, E. Aigner. From “Decent work and economic growth” to “Sustainable work and economic degrowth”: a new framework for SDG 8. Empirica, 49 (2022), pp. 281-311,
CrossRef Google scholar
Z. Liu, Z. Deng, S.J. Davis, C. Giron, P. Ciais. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ., 3 (2022), pp. 217-219,
CrossRef Google scholar
M. Liu, Z. Chen, J.K. Sowah Jr., Z. Ahmed, D. Kirikkaleli. The dynamic impact of energy productivity and economic growth on environmental sustainability in South European countries. Gondwana Res, 115 (2023), pp. 116-127
G. Liu, Z. Zhao, A. Ghahreman. Novel approaches for lithium extraction from salt-lake brines: a review. Hydrometall., 187 (2019), pp. 81-100,
CrossRef Google scholar
M. Marschalko, I. Yilmaz, M. Bednárik, K. Kubečka, T. Bouchal, J. Závada. Subsidence map of underground mining influence for urban planning: an example from the Czech Republic. Q. J. Eng. Geol. Hydrogeol., 45 (2012), pp. 231-241,
CrossRef Google scholar
Masson-Delmott, V., Shukla, P.R., Zhai, P., Pörtner, H.-O., Skea, J., Roberts, D., 2021. Global warming of 1.5°C, An IPCC Special Report. https://doi.org/10.1038/291285a0.
C. McMichael, S. Dasgupta, S. Ayeb-Karlsson, I. Kelman. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett., 15 (12) (2020), Article 123005,
CrossRef Google scholar
M. Murshed, M. Haseeb, M.S. Alam. The Environmental Kuznets Curve hypothesis for carbon and ecological footprints in South Asia: the role of renewable energy. GeoJournal, 87 (2022), pp. 2345-2372,
CrossRef Google scholar
R.S. Nerem, B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, G.T. Mitchum. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. U. S. A., 115 (2018), pp. 2022-2025,
CrossRef Google scholar
M.O. Oyebanji, D. Kirikkaleli. Energy productivity and environmental deregulation: the case of Greece. Environ. Sci. Pollut. Res., 29 (2022), pp. 82772-82784,
CrossRef Google scholar
U.K. Pata, H.M. Ertugrul. Do the Kyoto protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis. Resour. Policy, 81 (2023), Article 103352,
CrossRef Google scholar
U.K. Pata, M.T. Kartal. Impact of nuclear and renewable energy sources on environment quality: testing the EKC and LCC hypotheses for South Korea. Nucl. Eng. Technol., 55 (2) (2023), pp. 587-594,
CrossRef Google scholar
U.K. Pata, F. Shahzad, Z. Fareed, M.A. Rehman. Revisiting the EKC hypothesis with export diversification and ecological footprint pressure index for India: a RALS-Fourier cointegration test. Front. Environ. Sci., 10 (2022), Article 886515,
CrossRef Google scholar
J.M. Polanco-Martínez, J. Fernández-Macho, M. Medina-Elizalde. Dynamic wavelet correlation analysis for multivariate climate time series. Sci. Rep., 10 (1) (2020), p. 21277,
CrossRef Google scholar
P. Roy, S.C. Pal, R. Chakrabortty, I. Chowdhuri, A. Saha, M. Shit. Effects of climate change and sea-level rise on coastal habitat: vulnerability assessment, adaptation strategies and policy recommendations. J. Environ. Manage., 330 (2023),
CrossRef Google scholar
U. Shahzad, K. Si Mohammed, S. Tiwari, J. Nakonieczny, R. Nesterowicze. Resources policy connectedness between geopolitical risk, financial instability indices and precious metals markets: novel findings from Russia Ukrainian conflict perspective. Resour. Policy, 80 (2023), Article 103190,
CrossRef Google scholar
K. Si-Mohammed, T. Sunil, F. Diogo, I. Shahzadi. Assessing the EKC hypothesis by considering the supply chain disruption and greener energy: findings in the lens of sustainable development goals. Environ. Sci. Pollut. Res., 30 (2023), pp. 18168-18180,
CrossRef Google scholar
Y. Sun, M. Usman, M. Radulescu, U.K. Pata, D. Balsalobre-Lorente. New insights from the STIPART model on how environmental-related technologies, natural resources and the use of the renewable energy influence load capacity factor. Gondwana Res (2023),
CrossRef Google scholar
P.R. Thompson, M.J. Widlansky, E. Leuliette, W. Sweet, D.P. Chambers, B.D. Hamlington, S. Jevrejeva, J.J. Mara, M.A. Merrifield, G.T. Mitchum, R.S. Nerem. Sea level variability and change. Bulletin of the Georgian Academy of Sciences Am. Meteorol. Soc., 100 (2019), pp. 84-87,
CrossRef Google scholar
K. Tokimatsu, M. Höök, B. McLellan, H. Wachtmeister, S. Murakami, R. Yasuoka, M. Nishio. Energy modeling approach to the global energy-mineral nexus: exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Appl. Energy, 225 (2018), pp. 1158-1175,
CrossRef Google scholar
P. Tzampoglou, C. Loupasakis. Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine. Greece. Int. J. Min. Sci. Technol., 28 (2018), pp. 601-612,
CrossRef Google scholar
M. Umar, X. Ji, D. Kirikkaleli, A.A. Alola. The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. J. Clean. Prod., 285 (2021), Article 124863,
CrossRef Google scholar
P. Viebahn, O. Soukup, S. Samadi, J. Teubler, K. Wiesen, M. Ritthoff. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev., 49 (2015), pp. 655-671,
CrossRef Google scholar
J. Wang, L. Yang, J. Lin, Y. Bentley. The availability of critical minerals for China’s renewable energy development: an analysis of physical supply. Nat. Resour. Res., 29 (2020), pp. 2291-2306,
CrossRef Google scholar
World Bank, 2015. World Bank group partnership fund for the sustainable development goals. https://thedocs.worldbank.org/en/doc/648761485963736748-0270022017/original/DC20150009EAgendaforSD.pdf (accessed 24 June 2023).
Y. Yang, H. Guo, L. Chen, X. Liu, M. Gu, X. Ke. Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resour. Policy, 61 (2019), pp. 261-272,
CrossRef Google scholar
K.M. Yavor, V. Bach, M. Finkbeiner. Resource assessment of renewable energy systems—a review. Sustain., 13 (11) (2021), p. 6107,
CrossRef Google scholar
Y. Zhou, J. Li, G. Wang, S. Chen, W. Xing, T. Li. Assessing the short-to medium-term supply risks of clean energy minerals for China. J. Clean. Prod., 215 (2019), pp. 217-225,
CrossRef Google scholar
Q. Zhou, S. Wang, J. Liu, X. Hu, Y. Liu, Y. He, X. He, X. Wu. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geosci. Front., 13 (2022), Article 101427,
CrossRef Google scholar
G. Žibret, M. Gosar, M. Miler, J. Alijagić. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. L. Degrad. Dev., 29 (2018), pp. 4457-4470,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/