Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis

Kamel. Si Mohammed , Ugur Korkut Pata

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101683

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) :101683 DOI: 10.1016/j.gsf.2023.101683

Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis

Author information +
History +
PDF

Abstract

Natural resources, climate change, and sustainable development are critical and simultaneously interrelated issues. This study investigates the interdependence between raw minerals material and sea level rise, considering the role of economic performance and material footprint employing wavelet locale multiple correlations from 1970 to 2019. The results provide strong evidence for cross-correlation of climate change with mineral resources, economic output, and domestic material consumption (biomass-fossil, metal, and non-metal) localized at the high frequency-time domain. However, the outcomes provide weak evidence for the association between bivariate time series at low frequency, which is a limitation in the short term. Based on the results, policymakers should implement effective environmental taxes and invest in cutting-edge technologies to optimize clean energy and mineral resources in a sustainable manner.

Keywords

Mineral resources / Sea level rise / Material footprint / Wavelet multiple correlation

Cite this article

Download citation ▾
Kamel. Si Mohammed, Ugur Korkut Pata. Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis. Geoscience Frontiers, 2024, 15(3): 101683 DOI:10.1016/j.gsf.2023.101683

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Kamel. Si Mohammed: Conceptualization, Supervision, Methodology, Software, Visualization, Writing – original draft. Ugur Korkut Pata: Data curation, Formal analysis, Visualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

A.O. Acheampong, M. Shahbaz, J. Dzator, Z. Jiao. Effects of income inequality and governance on energy poverty alleviation: Implications for sustainable development policy. Util. Policy, 78 (2022), Article 101403,

[2]

O.B. Adekoya, G.E. Ajayi, M. Suhrab, J.A. Oliyide. How critical are resource rents, agriculture, growth, and renewable energy to environmental degradation in the resource-rich African countries? The role of institutional quality. Energy Policy, 164 (2022), Article 112888,

[3]

S.A. Aladejare. Natural resource rents, globalisation and environmental degradation: new insight from 5 richest African economies. Resour. Policy, 78 (2022), Article 102909,

[4]

M.A. Alam, R. Sepúlveda. Environmental degradation through mining for energy resources: the case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci., 3 (2022), pp. 182-190,

[5]

H.F. Ali, S.M. Ghoneim. Satellite-based silica mapping as an essential mineral for clean energy transition: remote sensing mineral exploration as a climate change adaptation approach. J. African Earth Sci., 196 (2022), Article 104683,

[6]

H. Alqaralleh, A. Canepa. The role of precious metals in portfolio diversification during the Covid19 pandemic: a wavelet-based quantile approach. Resour. Policy, 75 (2022), Article 102532,

[7]

M. Amin, S. Zhou, A. Safi. The nexus between consumption-based carbon emissions, trade, eco-innovation, and energy productivity: empirical evidence from N-11 economies. Environ. Sci. Pollut. Res., 29 (2022), pp. 39239-39248,

[8]

M.A. Ansari. Re-visiting the Environmental Kuznets curve for ASEAN: a comparison between ecological footprint and carbon dioxide emissions. Renew. Sustain. Energy Rev., 168 (2022), Article 112867,

[9]

M. Azadi, S.A. Northey, S.H. Ali, M. Edraki. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci., 13 (2020), pp. 100-104,

[10]

R.A. Badeeb, H.H. Lean, M. Shahbaz. Are too many natural resources to blame for the shape of the Environmental Kuznets Curve in resource-based economies?. Resour. Policy, 68 (2020), Article 101694,

[11]

V. Balaram. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front., 10 (2019), pp. 1285-1303,

[12]

B. Ballinger, M. Stringer, R. Diego, B.K. Schmeda-Lopez, B. Parkinson, C. Greig, S. Smart. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy, 255 (2019), Article 113844,

[13]

D. Balsalobre-Lorente, L. Ibáñez-Luzón, M. Usman, M. Shahbaz. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew. Energy, 185 (2022), pp. 1441-1455,

[14]

L.J. Belmonte-Ureña, J.A. Plaza-Úbeda, D. Vazquez-Brust, N. Yakovleva. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: a global analysis and future agenda. Ecol. Econ., 185 (2021), Article 107050,

[15]

Broock, W.A., Scheinkman, J.A., Dechert, W.D., LeBaron, B., 1996. A test for independence based on the correlation dimension. Econom. Rev. 15(3), 197–235.

[16]

Caldwell, P.C., Merrifield, M.A., Thompson, P.R., 2015, Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.7289/V5V40S7W.

[17]

G. Calvo, A. Valero. Strategic mineral resources: availability and future estimations for the renewable energy sector. Environ. Dev., 41 (2022), Article 100640,

[18]

C. Caminade, K.M. McIntyre, A.E. Jones. Impact of recent and future climate change on vector-borne diseases. Ann. N.Y Acad. Sci., 1436 (2019), pp. 157-173,

[19]

A. Cazenave, W. Llovel. Contemporary sea level rise. Ann. Rev. Mar. Sci., 2 (2010), pp. 145-173,

[20]

X. Chen, F. Zhou, D. Hu, G. Yi, W. Cao. An improved evaluation method to assess the coordination between mineral resource exploitation, economic development, and environmental protection. Ecol. Indic., 138 (2022), Article 108808,

[21]

L. Cheng, J. Abraham, K.E. Trenberth, J. Fasullo, T. Boyer, R. Locarnini, B. Zhang, F. Yu, L. Wan, X. Chen, X. Song, Y. Liu, M.E. Mann, F. Reseghetti, S. Simoncelli, V. Gouretski, G. Chen, A. Mishonov, J. Reagan, J. Zhu. Upper ocean temperatures hit record high in 2020. Adv. Atmos. Sci., 38 (2021), pp. 523-530,

[22]

J.A. Church, N.J. White, T. Aarup, W.S. Wilson, P.L. Woodworth, C.M. Domingues, J.R. Hunter, K. Lambeck. Understanding global sea levels: past, present and future. Sustain. Sci., 3 (2008), pp. 9-22,

[23]

V. Dagar, M.K. Khan, R. Alvarado, A. Rehman, M. Irfan, O.B. Adekoya, S. Fahad. Impact of renewable energy consumption, financial development and natural resources on environmental degradation in OECD countries with dynamic panel data. Environ. Sci. Pollut. Res., 29 (2022), pp. 18202-18212,

[24]

J.A. Dallas, S. Raval, S. Saydam, A.G. Dempster. Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronaut., 186 (2021), pp. 74-86,

[25]

Danish, Baloch, M.A., Mahmood, N., Zhang, J.W., 2019. Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci. Total Environ. 678, 632–638. https://doi.org/10.1016/j.scitotenv.2019.05.028.

[26]

A. Dogan, U.K. Pata. The role of ICT, R&D spending and renewable energy consumption on environmental quality: testing the LCC hypothesis for G7 countries. J. Clean. Prod., 380 (2022), Article 135038,

[27]

C. Garcia-Soto, L. Cheng, L. Caesar, S. Schmidtko, E.B. Jewett, A. Cheripka, I. Rigor, A. Caballero, S. Chiba, J.C. Báez, T. Zielinski, J.P. Abraham. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circula). Front. Mar. Sci., 8 (2021),

[28]

B. Guloglu, A.E. Caglar, U.K. Pata. . Analyzing the determinants of the load capacity factor in OECD countries: Evidence from advanced quantile panel data methods. Gondwana Res., 118 (2023), pp. 92-104,

[29]

S.M. Hayes, E.A. McCullough. Critical minerals: a review of elemental trends in comprehensive criticality studies. Resour. Policy, 59 (2018), pp. 192-199,

[30]

Q. He, M.D. Bertness, J.F. Bruno, B. Li, G. Chen, T.C. Coverdale, A.H. Altieri, J. Bai, T. Sun, S.C. Pennings, J. Liu, P.R. Ehrlich, B. Cui. Economic development and coastal ecosystem change in China. Sci. Rep., 4 (2014), pp. 1-9,

[31]

L. He, X. Zhang, Y. Yan. Heterogeneity of the Environmental Kuznets Curve across Chinese cities: how to dance with ‘shackles’?. Ecol. Indic., 130 (2021), Article 108128,

[32]

K. Hund, D. La Porta, T. Fabregas, T. Laing, J. Drexhage. Minerals for climate action: the mineral intensity of the clean energy transition. WORLD Bank Publ., 110 (2020)

[33]

J. Hussain, A. Khan, K. Zhou. The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: a cross-country analysis. Energy, 199 (2020), Article 117409,

[34]

M. Ibrahim, M. Foglia, U. Shahzad, Z. Fareed. Technological forecasting & social change green innovation, resource price and carbon emissions during the COVID-19 times: new findings from wavelet local multiple correlation analysis. Technol. Forecast. Soc. Chang., 184 (2022), Article 121957,

[35]

International Monetary Fund, 2023. International Financial Statistics. https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b (accessed 10 February 2023).

[36]

International Resource Panel, 2023. https://www.resourcepanel.org/data-resources (accessed 20 February 2023).

[37]

IPCC, 2019. https://www.ipcc.ch/2019/ (accessed 24 June 2023).

[38]

X. Jin, Z. Ahmed, U.K. Pata, M.T. Kartal, S. Erdogan. Do investments in green energy, energy efficiency, and nuclear energy R&D improve the load capacity factor?. An augmented ARDL approach. Geosci. Front., 101646 (2023),

[39]

I.M. Jiskani, B.M. Moreno-Cabezali, A. Ur Rehman, J.M. Fernandez-Crehuet, S. Uddin. Implications to secure mineral supply for clean energy technologies for developing countries: A fuzzy based risk analysis for mining projects. J. Clean. Prod., 358 (2022), Article 132055,

[40]

B. Jones, V. Nguyen-Tien, R.J.R. Elliott. The electric vehicle revolution: critical material supply chains, trade and development. WORLD Econ., 46 (1) (2023), pp. 2-26,

[41]

A.A. Khan. Why would sea-level rise for global warming and polar ice-melt?. Geosci. Front., 10 (2019), pp. 481-494,

[42]

I. Khan, F. Hou, H.P. Le. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ., 754 (2021), Article 142222,

[43]

H. Kreinin, E. Aigner. From “Decent work and economic growth” to “Sustainable work and economic degrowth”: a new framework for SDG 8. Empirica, 49 (2022), pp. 281-311,

[44]

Z. Liu, Z. Deng, S.J. Davis, C. Giron, P. Ciais. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ., 3 (2022), pp. 217-219,

[45]

M. Liu, Z. Chen, J.K. Sowah Jr., Z. Ahmed, D. Kirikkaleli. The dynamic impact of energy productivity and economic growth on environmental sustainability in South European countries. Gondwana Res, 115 (2023), pp. 116-127

[46]

G. Liu, Z. Zhao, A. Ghahreman. Novel approaches for lithium extraction from salt-lake brines: a review. Hydrometall., 187 (2019), pp. 81-100,

[47]

M. Marschalko, I. Yilmaz, M. Bednárik, K. Kubečka, T. Bouchal, J. Závada. Subsidence map of underground mining influence for urban planning: an example from the Czech Republic. Q. J. Eng. Geol. Hydrogeol., 45 (2012), pp. 231-241,

[48]

Masson-Delmott, V., Shukla, P.R., Zhai, P., Pörtner, H.-O., Skea, J., Roberts, D., 2021. Global warming of 1.5°C, An IPCC Special Report. https://doi.org/10.1038/291285a0.

[49]

C. McMichael, S. Dasgupta, S. Ayeb-Karlsson, I. Kelman. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett., 15 (12) (2020), Article 123005,

[50]

M. Murshed, M. Haseeb, M.S. Alam. The Environmental Kuznets Curve hypothesis for carbon and ecological footprints in South Asia: the role of renewable energy. GeoJournal, 87 (2022), pp. 2345-2372,

[51]

R.S. Nerem, B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, G.T. Mitchum. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. U. S. A., 115 (2018), pp. 2022-2025,

[52]

M.O. Oyebanji, D. Kirikkaleli. Energy productivity and environmental deregulation: the case of Greece. Environ. Sci. Pollut. Res., 29 (2022), pp. 82772-82784,

[53]

U.K. Pata, H.M. Ertugrul. Do the Kyoto protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis. Resour. Policy, 81 (2023), Article 103352,

[54]

U.K. Pata, M.T. Kartal. Impact of nuclear and renewable energy sources on environment quality: testing the EKC and LCC hypotheses for South Korea. Nucl. Eng. Technol., 55 (2) (2023), pp. 587-594,

[55]

U.K. Pata, F. Shahzad, Z. Fareed, M.A. Rehman. Revisiting the EKC hypothesis with export diversification and ecological footprint pressure index for India: a RALS-Fourier cointegration test. Front. Environ. Sci., 10 (2022), Article 886515,

[56]

J.M. Polanco-Martínez, J. Fernández-Macho, M. Medina-Elizalde. Dynamic wavelet correlation analysis for multivariate climate time series. Sci. Rep., 10 (1) (2020), p. 21277,

[57]

P. Roy, S.C. Pal, R. Chakrabortty, I. Chowdhuri, A. Saha, M. Shit. Effects of climate change and sea-level rise on coastal habitat: vulnerability assessment, adaptation strategies and policy recommendations. J. Environ. Manage., 330 (2023),

[58]

U. Shahzad, K. Si Mohammed, S. Tiwari, J. Nakonieczny, R. Nesterowicze. Resources policy connectedness between geopolitical risk, financial instability indices and precious metals markets: novel findings from Russia Ukrainian conflict perspective. Resour. Policy, 80 (2023), Article 103190,

[59]

K. Si-Mohammed, T. Sunil, F. Diogo, I. Shahzadi. Assessing the EKC hypothesis by considering the supply chain disruption and greener energy: findings in the lens of sustainable development goals. Environ. Sci. Pollut. Res., 30 (2023), pp. 18168-18180,

[60]

Y. Sun, M. Usman, M. Radulescu, U.K. Pata, D. Balsalobre-Lorente. New insights from the STIPART model on how environmental-related technologies, natural resources and the use of the renewable energy influence load capacity factor. Gondwana Res (2023),

[61]

P.R. Thompson, M.J. Widlansky, E. Leuliette, W. Sweet, D.P. Chambers, B.D. Hamlington, S. Jevrejeva, J.J. Mara, M.A. Merrifield, G.T. Mitchum, R.S. Nerem. Sea level variability and change. Bulletin of the Georgian Academy of Sciences Am. Meteorol. Soc., 100 (2019), pp. 84-87,

[62]

K. Tokimatsu, M. Höök, B. McLellan, H. Wachtmeister, S. Murakami, R. Yasuoka, M. Nishio. Energy modeling approach to the global energy-mineral nexus: exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Appl. Energy, 225 (2018), pp. 1158-1175,

[63]

P. Tzampoglou, C. Loupasakis. Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine. Greece. Int. J. Min. Sci. Technol., 28 (2018), pp. 601-612,

[64]

M. Umar, X. Ji, D. Kirikkaleli, A.A. Alola. The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. J. Clean. Prod., 285 (2021), Article 124863,

[65]

P. Viebahn, O. Soukup, S. Samadi, J. Teubler, K. Wiesen, M. Ritthoff. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev., 49 (2015), pp. 655-671,

[66]

J. Wang, L. Yang, J. Lin, Y. Bentley. The availability of critical minerals for China’s renewable energy development: an analysis of physical supply. Nat. Resour. Res., 29 (2020), pp. 2291-2306,

[67]

World Bank, 2015. World Bank group partnership fund for the sustainable development goals. https://thedocs.worldbank.org/en/doc/648761485963736748-0270022017/original/DC20150009EAgendaforSD.pdf (accessed 24 June 2023).

[68]

Y. Yang, H. Guo, L. Chen, X. Liu, M. Gu, X. Ke. Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resour. Policy, 61 (2019), pp. 261-272,

[69]

K.M. Yavor, V. Bach, M. Finkbeiner. Resource assessment of renewable energy systems—a review. Sustain., 13 (11) (2021), p. 6107,

[70]

Y. Zhou, J. Li, G. Wang, S. Chen, W. Xing, T. Li. Assessing the short-to medium-term supply risks of clean energy minerals for China. J. Clean. Prod., 215 (2019), pp. 217-225,

[71]

Q. Zhou, S. Wang, J. Liu, X. Hu, Y. Liu, Y. He, X. He, X. Wu. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geosci. Front., 13 (2022), Article 101427,

[72]

G. Žibret, M. Gosar, M. Miler, J. Alijagić. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. L. Degrad. Dev., 29 (2018), pp. 4457-4470,

PDF

367

Accesses

0

Citation

Detail

Sections
Recommended

/