Impact and prediction of pollutant on mangrove and carbon stocks: A machine learning study based on urban remote sensing data
Mengjie Xu, Chuanwang Sun, Yanhong Zhan, Ye Liu
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (3) : 101665.
Impact and prediction of pollutant on mangrove and carbon stocks: A machine learning study based on urban remote sensing data
Mangrove ecosystems have important ecological and economic values, especially their ability to store carbon. However, in recent years, human disturbance has accelerated mangrove degradation. Among them, the emission of pollutants cannot be ignored. It is of great significance for carbon emission reduction and ecological protection to study the impacts of different pollutants on mangroves and their carbon stocks. Based on the remote sensing data of coastal areas south of the Yangtze River in mainland China, this paper builds the ensemble learning model Random Forest (RF) and Gradient Boosting Regression (GBR) to empirically analyse the relationship between industrial wastewater, industrial sulfur dioxide (SO2), PM2.5 and mangrove forests. The results show that the pollutant concentration of meteorological normalisation is more stable. The importance of pollutants presents regional heterogeneity. The area of mangroves in different cities and the corresponding total carbon stocks show different trends with the increase or decrease of pollutants, and there is a dynamic balance between urban pollutant discharge and mangrove growth in some cities. The research in this paper provides an analysis and explanation from the perspective of machine learning to explore the relationship between mangroves and pollutants and at the same time, provides scientific suggestions for the formulation of future pollutant emission policies in different cities.
Mangrove forests / Pollutants / Machine learning model / Carbon stocks / Regional heterogeneity
D.M. Alongi. Present state and future of the world's mangrove forests. Environ. Conserv., 29 (3) (2002), pp. 331-349
|
D.M. Alongi. Carbon sequestration in mangrove forests. Carbon Manage., 3 (3) (2012), pp. 313-322
|
M. Besset, N. Gratiot, E.J. Anthony, F. Bouchette, M. Goichot, P. Marchesiello. Mangroves and shoreline erosion in the Mekong River delta. Viet Nam. Estuar. Coast. Shelf Sci., 226 (2019), Article 106263
|
L. Breiman. Bagging predictors. Machine Learning, 24 (2) (1996), pp. 123-140
|
L. Breiman. Random forests. Machine Learning, 45 (1) (2001), pp. 5-32
|
P. Bunting, A. Rosenqvist, L. Hilarides, R.M. Lucas, N. Thomas, T. Tadono, T.A. Worthington, M. Spalding, N.J. Murray, L.-M. Rebelo. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens., 14 (15) (2022), p. 3657
|
S. Cannicci, F. Bartolini, F. Dahdouh-Guebas, S. Fratini, C. Litulo, A. Macia, E.J. Mrabu, G. Penha-Lopes, J. Paula. Effects of urban wastewater on crab and mollusc assemblages in equatorial and subtropical mangroves of East Africa. Estuar. Coast. Shelf Sci., 84 (3) (2009), pp. 305-317
|
K. Chen, X. Zhu. Remote sensing of spatio-temporal dynamics of saltmarsh vegetation along South China Coast based on Google Earth Engine. Remote Sens. Technol. Appl., 36 (4) (2021), pp. 751-759
|
Z. Cheng, L. Li, J. Liu. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indicat., 82 (2017), pp. 61-75
|
S.D. Costanzo, M.J. O’Donohue, W.C. Dennison. Assessing the influence and distribution of shrimp pond effluent in a tidal mangrove creek in north-east Australia. Mar. Pollut. Bull., 48 (5–6) (2004), pp. 514-525
|
P.J. Crutzen. The “anthropocene”. E. Ehlers, T. Krafft (Eds.), Earth System Science in the Anthropocene, Springer, Berlin, Heidelberg (2006), pp. 13-18
|
Dai, J., Zhang, X., Wang, D., Guo, C., Fang, R., Wang, X., 2011. Water quality change of Nanliu River in Guangxi Beibu Gulf Economic Zone. 2011 International Conference on Remote Sensing, Environ. Transport. Eng.
|
D. de Paula, M. Costa, C.E. Lovelock, N.J. Waltham, M. Young, M.F. Adame, C.V. Bryant, D. Butler, D. Green, M.A. Rasheed, C. Salinas. Current and future carbon stocks in coastal wetlands within the Great Barrier Reef catchments. Global Change Biol., 27 (14) (2021), pp. 3257-3271
|
B. Debnath, G.J. Ahammed. Effect of acid rain on plant growth and development: physiological and molecular interventions. M. Naeem, A.A. Ansari, S.S. Gill (Eds.), Contaminants in Agriculture, Springer, Cham (2020), pp. 103-114
|
Y. Du, X. Xu, Q. Liu, L. Bai, K. Hang, D. Wang. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. Sci. Tot. Environ., 806 (2022), Article 150691
|
S.I. Elmahdy, T.A. Ali, M.M. Mohamed, F.M. Howari, M. Abouleish, D. Simonet. Spatiotemporal mapping and monitoring of mangrove forests changes from 1990 to 2019 in the Northern Emirates, UAE using random forest, Kernel logistic regression and Naive Bayes Tree models. Front. Enviro. Sci., 8 (2020), p. 102
|
F. Fazlioglu, J.S. Wan, L. Chen. Latitudinal shifts in mangrove species worldwide: evidence from historical occurrence records. Hydrobiologia, 847 (19) (2020), pp. 4111-4123
|
J.C. Fernández-Cadena, S. Andrade, C. Silva-Coello, R. De la Iglesia. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar. Pollut. Bull., 82 (1–2) (2014), pp. 221-226
|
A.M. Fiore, V. Naik, D.V. Spracklen, A. Steiner, N. Unger, M. Prather, D. Bergmann, P.J. Cameron-Smith, I. Cionni, W.J. Collins. Global air quality and climate. Chem. Soc. Rev., 41 (19) (2012), pp. 6663-6683
|
Y. Freund, R.E. Schapire. Experiments with a new boosting algorithm. Int. Conferen. Mach. Learn., 96 (1996), pp. 148-156
|
J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist. (2001), pp. 1189-1232
|
J.H. Friedman. Stochastic gradient boosting. Computat. Statist. Data Anal., 38 (4) (2002), pp. 367-378
|
S.K. Grange, D.C. Carslaw. Using meteorological normalisation to detect interventions in air quality time series. Sci. Tot. Environ., 653 (2019), pp. 578-588
|
S.K. Grange, D.C. Carslaw, A.C. Lewis, E. Boleti, C. Hueglin. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys., 18 (9) (2018), pp. 6223-6239
|
S. Hamilton. Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci., 89 (2) (2013), pp. 585-601
|
T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman. The Elements of Statistical Learning: Data mining, Inference, and Prediction. (Second Edition.), Springer, New York (2009)
|
W. Hu, Y. Wang, D. Zhang, W. Yu, G. Chen, T. Xie, Z. Liu, Z. Ma, J. Du, B. Chao. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Tot. Environ., 748 (2020), Article 142321
|
D.J. Jacob, D.A. Winner. Effect of climate change on air quality. Atmos. Environ., 43 (1) (2009), pp. 51-63
|
Jiang, Z., Shekhar, S., Mohan, P., Knight, J., Corcoran, J., 2012. Learning spatial decision tree for geographical classification: a summary of results. Proceedings of the 20th International Conference on Advances in Geographic Information Systems.
|
K. Johnston, J.M. Ver Hoef, K. Krivoruchko, N. Lucas. Using ArcGIS Geostatistical Analyst. ESRI Redlands, United States of America (2001), p. 380
|
M. Kamruzzaman, S. Sharma, A. Hagihara. Vegetative and reproductive phenology of the mangrove Kandelia obovata. Plant Species Biol., 28 (2) (2013), pp. 118-129
|
C. Kuenzer, A. Bluemel, S. Gebhardt, T.V. Quoc, S. Dech. Remote sensing of mangrove ecosystems: A review. Remote Sens., 3 (5) (2011), pp. 878-928
|
J. Lepping. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. John Wiley & Sons, New York (2018)
|
Y. Li, Q. Li, K. Zhou, X.-L. Sun, L.-R. Zhao, Y.-B. Zhang. Occurrence and distribution of the environmental pollutant antibiotics in Gaoqiao mangrove area, China. Chemosphere, 147 (2016), pp. 25-35
|
J. Li, H. Liu, Z. Lv, R. Zhao, F. Deng, C. Wang, A. Qin, X. Yang. Estimation of PM2.5 mortality burden in China with new exposure estimation and local concentration-response function. Environ. Pollution, 243 (2018), pp. 1710-1718
|
Y. Li, Y. Wang, B. Wang, Y. Wang, W. Yu. The response of plant photosynthesis and stomatal conductance to fine particulate matter (PM2.5) based on leaf factors analyzing. J. Plant Biol., 62 (2) (2019), pp. 120-128
|
X. Li, C. Wu, M.E. Meadows, Z. Zhang, X. Lin, Z. Zhang, Y. Chi, M. Feng, E. Li, Y. Hu. Factors underlying spatiotemporal variations in atmospheric PM2.5 concentrations in Zhejiang province, China. Remote Sens., 13 (15) (2021), p. 3011
|
X. Liu, T.E. Fatoyinbo, N.M. Thomas, W.W. Guan, Y. Zhan, P. Mondal, D. Lagomasino, M. Simard, C.C. Trettin, R. Deo. Large-scale high-resolution coastal mangrove forests mapping across West Africa with machine learning ensemble and satellite big data. Front. Earth Sci., 8 (2021), Article 560933
|
H. Liu, H. Ren, D. Hui, W. Wang, B. Liao, Q. Cao. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manage., 133 (2014), pp. 86-93
|
J. Lovell-Smith, H. Pearson. On the concept of relative humidity. Metrologia, 43 (1) (2005), p. 129
|
B. Ma, G. Tian, L. Kong. Spatial-temporal characteristics of China’s industrial wastewater discharge at different scales. Environ. Sci. Pollution Res., 27 (8) (2020), pp. 8103-8118
|
L. Ma, X. Zhang. The spatial effect of China’s haze pollution and the impact from economic change and energy structure. China Indust. Econom., 4 (2014), pp. 19-31
|
Y. Peng, X. Li, K. Wu, Y. Peng, G. Chen. Effect of an integrated mangrove-aquaculture system on aquacultural health. Front. Biol. China, 4 (4) (2009), pp. 579-584
|
L. Peng, K. Liu, J. Cao, Y. Zhu, F. Li, L. Liu. Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods. Int. J. Remote Sens., 41 (3) (2020), pp. 813-838
|
M.M. Rahman, X. Zhang, I. Ahmed, Z. Iqbal, M. Zeraatpisheh, M. Kanzaki, M. Xu. Remote sensing-based mapping of senescent leaf C: N ratio in the sundarbans reserved forest using machine learning techniques. Remote Sens., 12 (9) (2020), p. 1375
|
M. Rezaei, R. Kafaei, M. Mahmoodi, A.M. Sanati, D.R. Vakilabadi, H. Arfaeinia, S. Dobaradaran, G.A. Sorial, B. Ramavandi, D.C. Boffito. Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environ. Nanotechnol., Monitor. Manage., 15 (2021), Article 100456
|
D.R. Richards, B.S. Thompson, L. Wijedasa. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun., 11 (1) (2020), pp. 1-7
|
Sagi, O., Rokach, L., 2018. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov. 8(4), e1249.
|
Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2000. Analysis of recommendation algorithms for e-commerce. Proceedings of the 2nd ACM Conference on Electronic Commerce.
|
S. Sathirathai, E.B. Barbier. Valuing mangrove conservation in southern Thailand. Contemp. Econom. Policy, 19 (2) (2001), pp. 109-122
|
S. Sharma, M. Kamruzzaman, A. Rafiqul Hoque, A. Hagihara. Leaf phenological traits and leaf longevity of three mangrove species (Rhizophoraceae) on Okinawa Island. Japan. J. Oceanogr., 68 (6) (2012), pp. 831-840
|
Z. Shi, C. Song, B. Liu, G. Lu, J. Xu, T. Van Vu, R.J. Elliott, W. Li, W.J. Bloss, R.M. Harrison. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv., 7 (3) (2021), p. eabd6696
|
M. Simard, L. Fatoyinbo, C. Smetanka, V.H. Rivera-Monroy, E. Castañeda-Moya, N. Thomas, T. Van der Stocken. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci., 12 (1) (2019), pp. 40-45
|
A.G. Singal, A. Mukherjee, B.J. Elmunzer, P.D. Higgins, A.S. Lok, J. Zhu, J.A. Marrero, A.K. Waljee. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Am. J. Gastroenterol., 108 (11) (2013), p. 1723
|
A. Singh, M. Agrawal. Acid rain and its ecological consequences. J. Environ. Biol., 29 (1) (2007), p. 15
|
N.F. Tam, Y.S. Wong. Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia, 295 (1) (1995), pp. 231-241
|
R. Tan, L. Pan, M. Xu, X. He. Transportation infrastructure, economic agglomeration and non-linearities of green total factor productivity growth in China: Evidence from partially linear functional coefficient model. Transport Policy, 129 (2022), pp. 1-13
|
Z. Xing, J. Wang, K. Feng, K. Hubacek. Decline of net SO2 emission intensity in China's thermal power generation: Decomposition and attribution analysis. Sci. Tot. Environ., 719 (2020), Article 137367
|
B. Xu, B. Lin. Regional differences of pollution emissions in China: Contributing factors and mitigation strategies. J. Clean. Product., 112 (2016), pp. 1454-1463
|
M. Xu, R. Tan. How to reduce CO2 emissions in pharmaceutical industry of China: Evidence from total-factor carbon emissions performance. J. Clean. Product., 337 (2022), Article 130505
|
M. Xu, R. Tan, X. He. How does economic agglomeration affect energy efficiency in China?: Evidence from endogenous stochastic frontier approach. Energy Economics, 108 (2022), Article 105901
|
L. Zhao, L. Li, Y. Wu. Research on the coupling coordination of a sea–land system based on an integrated approach and new evaluation index system: A case study in Hainan Province, China. Sustainability, 9 (5) (2017), p. 859
|
J. Zheng, L. Zhong, T. Wang, P.K. Louie, Z. Li. Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network. Atmos. Environ., 44 (6) (2010), pp. 814-823
|
S. Zhong, K. Zhang, M. Bagheri, J.G. Burken, A. Gu, B. Li, X. Ma, B.L. Marrone, Z.J. Ren, J. Schrier. Machine learning: new ideas and tools in environmental science and engineering. Environ. Sci. Technol., 55 (19) (2021), pp. 12741-12754
|
Z. Zhou. Machine Learning. Tsinghua University Press, Beijing (2016), pp. 25-27
|
J. Zhou, E. Li, H. Wei, C. Li, Q. Qiao, D.J. Armaghani. Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci., 9 (8) (2019), p. 1621
|
/
〈 |
|
〉 |