MUS81 UFMylation at K400 promotes cell survival in response to camptothecin-induced replication stress

Qunsong Tan, Xingzhi Xu

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (4) : 154-163. DOI: 10.1007/s42764-024-00132-w
Original Research Paper

MUS81 UFMylation at K400 promotes cell survival in response to camptothecin-induced replication stress

Author information +
History +

Abstract

Camptothecin (CPT) is a widely used chemotherapeutic drug that acts by trapping topoisomerase I (TOP1) on DNA during replication. UFMylation is a ubiquitin-like modification involved in various cellular processes, including DNA double-strand break repair. The role of UFMylation in regulating replication-induced DNA damage within cells, however, is unclear. Through in vivo screening, we ascertained that the structure-specific endonuclease MUS81 is UFMylated. MUS81 is responsible for the progression and restarting of replication forks in human cells. We show that CPT triggered the UFMylation of MUS81 at lysine 400, which in turn prevented its ubiquitination-mediated degradation. Additionally, re-expression of WT MUS81, but not UFMylation defective mutant MUS81(K400R), in MUS81-depleted cells rescued CPT-induced cytotoxicity. Thus, the study revealed a new role for UFMylation in CPT-induced DNA damage, in which MUS81 UFMylation at K400 promotes cancer cell survival by inhibiting MUS81 degradation in response to CPT treatment, thus providing an attractive therapeutic strategy combining UFMylation inhibitors with CPT.

Keywords

UFMylation / MUS81 / CPT / Ubiquitination / Cancer therapy

Cite this article

Download citation ▾
Qunsong Tan, Xingzhi Xu. MUS81 UFMylation at K400 promotes cell survival in response to camptothecin-induced replication stress. Genome Instability & Disease, 2024, 5(4): 154‒163 https://doi.org/10.1007/s42764-024-00132-w

References

[]
Banerjee, S., Kumar, M., & Wiener, R. (2020). Decrypting UFMylation: How proteins are modified with UFM1 biomolecules 10, Artn 144210.3390/Biom10101442.
[]
Boddy, M. N., Gaillard, P. H. L., McDonald, W. H., Shanahan, P., Yates, J. R., & Russell, P. (2001). Mus81-Eme1 are essential components of a Holliday junction resolvase cell 107, 537–548 https://doi.org/10.1016/S0092-8674(01)00536-0
[]
Ciechanover A. The ubiquitin-proteasome pathway: On protein death and cell life. Embo J, 1998, 17: 7151-7160, pmcid: 1171061
CrossRef Pubmed Google scholar
[]
Debethune L, Kohlhagen G, Grandas A, Pommier Y. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Research, 2002, 30: 1198-1204, pmcid: 101246
CrossRef Pubmed Google scholar
[]
Deng C, Brown JA, You D, Brown JM. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics, 2005, 170: 591-600, pmcid: 1450417
CrossRef Pubmed Google scholar
[]
Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF. Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Research, 2001, 61: 5926-5932, WOS:000170194700039
Pubmed
[]
Desai SD, Zhang H, Rodriguez-Bauman A, Yang JM, Wu XH, Gounder MK, Rubin EH, Liu LF. Transcription-dependent degradation of topoisomerase I-DNA covalent complexes. Molecular and Cellular Biology, 2003, 23: 2341-2350, pmcid: 150741
CrossRef Pubmed Google scholar
[]
Duxin JP, Dewar JM, Yardimci H, Walter JC. Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell, 2014, 159: 346-357, pmcid: 4229047
CrossRef Pubmed Google scholar
[]
Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. Journal of Cell Biology, 2008, 183: 241-252, pmcid: 2568021
CrossRef Pubmed Google scholar
[]
Gadgil RY, Romer EJ, Goodman CC, Rider SD, Damewood FJ, Barthelemy JR, Shin-ya K, Hanenberg H, Leffak M. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. Journal of Biological Chemistry, 2020, 295: 15378-15397, pmcid: 7650239
CrossRef Pubmed Google scholar
[]
Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand. DNA Breaks Nat Struct Mol Biol, 2007, 14: 1096-1104,
CrossRef Pubmed Google scholar
[]
Li TK, Liu LF. Tumor cell death induced by topoisomerase-targeting. Drugs Annual Review of Pharmacology and Toxicology, 2001, 41: 53-77,
CrossRef Pubmed Google scholar
[]
Lin CP, Ban Y, Lyu YL, Desai SD, Liu LF. A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes. Journal of Biological Chemistry, 2008, 283: 21074-21083, pmcid: 2475699
CrossRef Pubmed Google scholar
[]
Liu C, Pouliot JJ, Nash HA. Repair of topoisomerase I covalent complexes in the absence of the tyrosyl-DNA phosphodiesterase Tdp1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 14970-14975, pmcid: 137529
CrossRef Pubmed Google scholar
[]
Liu J, Guan D, Dong MG, Yang JJ, Wei HB, Liang Q, Song LZ, Xu L, Bai JJ, Liu C, Mao J, Zhang Q, Zhou JZ, Wu XY, Wang M, Cong YS. UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nature Cell Biology, 2020, 22: 1056,
CrossRef Pubmed Google scholar
[]
Marini V, Nikulenkov F, Samadder P, Juul S, Knudsen BR, Krejci L. MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. Bmc Biol, 2023, 21: ARTN110,
CrossRef Google scholar
[]
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. Febs J, 2023, 290: 5040-5056, pmcid: 10952357
CrossRef Pubmed Google scholar
[]
Murai J, Zhang YP, Morris J, Ji JP, Takeda S, Doroshow JH, Pommier Y. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or Temozolomide based on PARP trapping versus Catalytic Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2014, 349: 408-416, pmcid: 4019318
CrossRef Pubmed Google scholar
[]
Pepe A, West SC. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Research, 2014, 42: 3833-3845,
CrossRef Pubmed Google scholar
[]
Pepe A, West SC. MUS81-EME2 promotes replication fork. Restart Cell Rep, 2014, 7: 1048-1055,
CrossRef Pubmed Google scholar
[]
Pommier Y. DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition. Chemical Reviews, 2009, 109: 2894-2902, pmcid: 2707511
CrossRef Pubmed Google scholar
[]
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Bio, 2022, 23: 407-427,
CrossRef Google scholar
[]
Qin, B., Yu, J., Nowsheen, S., Zhao, F., Wang, L. W., & Lou, Z. K. (2020). STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation Science advances 6, ARTN eaax821410.1126/sciadv.aax8214.
[]
Regairaz M, Zhang YW, Fu H, Agama KK, Tata N, Agrawal S, Aladjem MI, Pommier Y. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. The Journal of cell Biology, 2011, 195: 739-749, pmcid: 3257568
CrossRef Pubmed Google scholar
[]
Reuvers, T. G. A., Kanaar, R., & Nonnekens, J. (2020). DNA damage-inducing Anticancer therapies: From Global to Precision damage cancers 12, Artn 209810.3390/Cancers12082098.
[]
Sun, Y., Miller Jenkins, L. M., Su, Y. P., Nitiss, K. C., Nitiss, J. L., & Pommier, Y. (2020). A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation. Science Advances, 6. https://doi.org/10.1126/sciadv.aba6290
[]
Sun, Y., Baechler, S. A., Zhang, X., Kumar, S., Factor, V. M., Arakawa, Y., Chau, C. H., Okamoto, K., Parikh, A., Walker, B., Su, Y. P., Chen, J., Ting, T., Huang, S. N., Beck, E., Itkin, Z., McKnight, C., Xie, C., Roper, N., & Pommier, Y. (2023). Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex Nature communications 14, 3762 https://doi.org/10.1038/s41467-023-39374-9
[]
Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, Yamamoto M, Tanaka, Komatsu K. A novel type of E3 ligase for the Ufm1 conjugation system. Journal of Biological Chemistry, 2010, 285: 5417-5427,
CrossRef Pubmed Google scholar
[]
Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biology, 2009, 11: 1315-U1125, pmcid: 2912930
CrossRef Pubmed Google scholar
[]
van Wietmarschen N, Sridharan S, Nathan WJ, Tubbs A, Chan EM, Callen E, Wu W, Belinky F, Tripathi V, Wong N, Foster K, Noorbakhsh J, Garimella K, Cruz-Migoni A, Sommers JA, Huang Y, Borah AA, Smith JT, Kalfon J, Nussenzweig A. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 2020, 586: 292-298, pmcid: 8916167
CrossRef Pubmed Google scholar
[]
Wang, Z. F., Gong, Y. M., Peng, B., Shi, R. F., Fan, D., Zhao, H. C., Zhu, M., Zhang, H. X., Lou, Z. K., Zhou, J. W., Zhu, W. G., Cong, Y. S., & Xu, X. Z. (2019). MRE11 UFMylation promotes ATM activation nucleic acids research 47, 4124–4135 https://doi.org/10.1093/nar/gkz110
[]
Wyatt, H. D. M., Laister, R. C., Martin, S. R., Arrowsmith, C. H., & West, S. C. (2017). The SMX DNA repair tri-nuclease Mol Cell 65, 848– https://doi.org/10.1016/j.molcel.2017.01.031
Funding
National Natural Science Foundation of China(32090031)

Accesses

Citations

Detail

Sections
Recommended

/