The silent guardian: unraveling the roles of H3K9me3 in genome maintenance

Zhiming Li, Zhiguo Zhang

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (4) : 133-153. DOI: 10.1007/s42764-024-00131-x

The silent guardian: unraveling the roles of H3K9me3 in genome maintenance

Author information +
History +

Abstract

Genomic integrity is a fundamental prerequisite for all living organisms, ensuring the accurate transmission of genetic information and stability of cellular functions across generations. The maintenance of genome integrity relies on a meticulously orchestrated network encompassing a variety of DNA repair factors and pathways. In eukaryotic cells, genomic DNA is assembled into chromatin, a highly organized complex of proteins and DNA. Therefore, chromatin and epigenetic factors have emerged as crucial guardians against genotoxic stress. In this review, we provide a comprehensive summary of the multifaceted roles of H3K9me3, a histone mark associated with silent chromatin, in DNA damage repair and genome maintenance, elucidating its dynamic participation in chromatin organization, silencing of repetitive DNA sequences, and modulation of DNA repair pathways. Importantly, we discuss the potential contribution of H3K9me3 to epigenetic memory following DNA damage, which introduces an additional layer of complexity to our comprehension of genomic surveillance. Finally, we explore the implications of H3K9me3 dysregulation in human cancers and the promising therapeutic avenues that may arise from a nuanced understanding of its function in maintaining genomic stability.

Keywords

H3K9me3 / DNA repair / Genome stability / Repetitive DNA / DNA replication / Epigenetic memory

Cite this article

Download citation ▾
Zhiming Li, Zhiguo Zhang. The silent guardian: unraveling the roles of H3K9me3 in genome maintenance. Genome Instability & Disease, 2024, 5(4): 133‒153 https://doi.org/10.1007/s42764-024-00131-x

References

[]
Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T. Functional mammalian homologues of the PEV-modifier encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO Journal, 1999, 18: 1923-1938.
CrossRef Google scholar
[]
Adar S, Hu J, Lieb JD, Sancar A. Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proceedings of National Academy Science USA, 2016, 113(15): E2124-2133.
CrossRef Google scholar
[]
Alagoz M, Katsuki Y, Ogiwara H, Ogi T, Shibata A, Kakarougkas A, Jeggo P. SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells. Nucleic Acids Research, 2015, 43(16): 7931-7944.
CrossRef Google scholar
[]
Allshire RC, Madhani HD. Ten principles of heterochromatin formation and function. Nature Reviews Molecular Cell Biology, 2018, 19(4): 229-244.
CrossRef Google scholar
[]
Al-Sady B, Madhani HD, Narlikar GJ. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Molecular Cell, 2013, 51(1): 80-91.
CrossRef Google scholar
[]
Altaf M, Saksouk N, Cote J. Histone modifications in response to DNA damage. Mutation Research, 2007, 618(1–2): 81-90.
CrossRef Google scholar
[]
Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature, 2021, 590(7847): 660-665.
CrossRef Google scholar
[]
Arnould C, Rocher V, Saur F, Bader AS, Muzzopappa F, Collins S, Lesage E, Le Bozec B, Puget N, Clouaire T, Mangeat T, Mourad R, Ahituv N, Noordermeer D, Erdel F, Bushell M, Marnef A, Legube G. Chromatin compartmentalization regulates the response to DNA damage. Nature, 2023, 623(7985): 183-192.
CrossRef Google scholar
[]
Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR. HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature, 2008, 453(7195): 682-686.
CrossRef Google scholar
[]
Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proceedings of National Academy Science USA, 2014, 111(25): 9169-9174.
CrossRef Google scholar
[]
Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. Journal of Cell Biology, 2011, 193(1): 81-95.
CrossRef Google scholar
[]
Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer, 2010, 10: 4.
CrossRef Google scholar
[]
Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824): 120-124.
CrossRef Google scholar
[]
Barral A, Pozo G, Ducrot L, Papadopoulos GL, Sauzet S, Oldfield AJ, Cavalli G, Dejardin J. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Molecular Cell, 2022, 82(4): 816-832.
CrossRef Google scholar
[]
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823-837.
CrossRef Google scholar
[]
Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends in Genetics, 2016, 32(1): 29-41.
CrossRef Google scholar
[]
Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nature Genetics, 2013, 45(12): 1479-1482.
CrossRef Google scholar
[]
Benard A, Goossens-Beumer IJ, van Hoesel AQ, de Graaf W, Horati H, Putter H, Zeestraten EC, van de Velde CJ, Kuppen PJ. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer, 2014, 14: 531.
CrossRef Google scholar
[]
Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: Epigenetic regulators in cancer cells. Cancer Research, 2013, 73(10): 2936-2942.
CrossRef Google scholar
[]
Bhat KP, Umit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: Targeting writers of protein lysine methylation to treat disease. Nature Reviews Drug Discovery, 2021, 20(4): 265-286.
CrossRef Google scholar
[]
Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C, Lewis PW, Glass K, Allis CD, Dyson NJ, Getz G, Whetstine JR. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell, 2013, 154(3): 541-555.
CrossRef Google scholar
[]
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Molecular Cell, 2017, 66(6): 801-817.
CrossRef Google scholar
[]
Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007, 317(5845): 1760-1764.
CrossRef Google scholar
[]
Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell, 2006, 127(7): 1361-1373.
CrossRef Google scholar
[]
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvak Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biology, 2018, 19(1): 199.
CrossRef Google scholar
[]
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 2005, 436(7051): 660-665.
CrossRef Google scholar
[]
Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 2008, 9(4): 297-308.
CrossRef Google scholar
[]
Brumbaugh J, Kim IS, Ji F, Huebner AJ, Di Stefano B, Schwarz BA, Charlton J, Coffey A, Choi J, Walsh RM, Schindler JW, Anselmo A, Meissner A, Sadreyev RI, Bernstein BE, Hock H, Hochedlinger K. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nature Cell Biology, 2019, 21(11): 1449-1461.
CrossRef Google scholar
[]
Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B, O'Sullivan RJ, Martens JH, Walter J, Manke T, Lachner M, Jenuwein T. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Molecular Cell, 2014, 55(2): 277-290.
CrossRef Google scholar
[]
Burton A, Brochard V, Galan C, Ruiz-Morales ER, Rovira Q, Rodriguez-Terrones D, Kruse K, Le Gras S, Udayakumar VS, Chin HG, Eid A, Liu X, Wang C, Gao S, Pradhan S, Vaquerizas JM, Beaujean N, Jenuwein T, Torres-Padilla ME. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nature Cell Biology, 2020, 22(7): 767-778.
CrossRef Google scholar
[]
Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 1999, 21(1): 103-107.
CrossRef Google scholar
[]
Cao LL, Shen C, Zhu WG. Histone modifications in DNA damage response. Science China Life Science, 2016, 59(3): 257-270.
CrossRef Google scholar
[]
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Frontiers in Immunology, 2015, 6: 487.
CrossRef Google scholar
[]
Castel SE, Martienssen RA. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 2013, 14(2): 100-112.
CrossRef Google scholar
[]
Ceccaldi R, Rondinelli B, D'Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends in Cell Biology, 2016, 26(1): 52-64.
CrossRef Google scholar
[]
Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R, Sarkaria J, Zhang Z. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Device, 2013, 27(9): 985-990.
CrossRef Google scholar
[]
Chan KM, Han J, Fang D, Gan H, Zhang Z. A lesson learned from the H3.3K27M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo?. Cell Cycle, 2013, 12(16): 2546-2552.
CrossRef Google scholar
[]
Chan KM, Zhang ZG. Leucine-rich repeat and WD repeat-containing Protein 1 is recruited to pericentric heterochromatin by Trimethylated Lysine 9 of Histone H3 and maintains heterochromatin silencing. Journal of Biological Chemistry, 2012, 287(18): 15024-15033.
CrossRef Google scholar
[]
Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 2012, 47(4): 497-510.
CrossRef Google scholar
[]
Chen Q, Zhuang S, Hong Y, Yang L, Guo P, Mo P, Peng K, Li W, Xiao N, Yu C. Demethylase JMJD2D induces PD-L1 expression to promote colorectal cancer immune escape by enhancing IFNGR1-STAT3-IRF1 signaling. Oncogene, 2022, 41(10): 1421-1433.
CrossRef Google scholar
[]
Chen YW, Kao SY, Wang HJ, Yang MH. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer, 2013, 119(24): 4259-4267.
CrossRef Google scholar
[]
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 2019, 4: 62.
CrossRef Google scholar
[]
Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell, 2011, 144(5): 732-744.
CrossRef Google scholar
[]
Cimprich KA, Cortez D. ATR: An essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 2008, 9(8): 616-627.
CrossRef Google scholar
[]
Collins RE, Northrop JP, Horton JR, Lee DY, Zhang X, Stallcup MR, Cheng X. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nature Structural & Molecular Biology, 2008, 15(3): 245-250.
CrossRef Google scholar
[]
Consortium An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414): 57-74.
CrossRef Google scholar
[]
Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nature Reviews Cancer, 2012, 12(12): 801-817.
CrossRef Google scholar
[]
Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA: A Cancer Journal for Clinicians, 2023, 73(4): 376-424.
CrossRef Google scholar
[]
Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nature Structural & Molecular Biology, 2013, 20(10): 1147-1155.
CrossRef Google scholar
[]
Di Micco R, Sulli G, Dobreva M, Liontos M, Botrugno OA, Gargiulo G, dal Zuffo R, Matti V, d'Ario G, Montani E, Mercurio C, Hahn WC, Gorgoulis V, Minucci S, d'Adda di Fagagna F. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biology, 2011, 13(3): 292-302.
CrossRef Google scholar
[]
Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3–K9 methyltransferase ESET is essential for early development. Molecular and Cellular Biology, 2004, 24(6): 2478-2486.
CrossRef Google scholar
[]
Dolce V, Dusi S, Giannattasio M, Joseph CR, Fumasoni M, Branzei D. Parental histone deposition on the replicated strands promotes error-free DNA damage tolerance and regulates drug resistance. Genes & Development, 2022, 36(3–4): 167-179.
CrossRef Google scholar
[]
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nature Reviews Molecular Cell Biology, 2024, 25(3): 212-222.
CrossRef Google scholar
[]
Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfurst B, Walenta S, Mueller-Klieser W, Graler M, Hummel M, Keller U, Buck AK, Dorken B, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 2013, 501(7467): 421-425.
CrossRef Google scholar
[]
Douse CH, Tchasovnikarova IA, Timms RT, Protasio AV, Seczynska M, Prigozhin DM, Albecka A, Wagstaff J, Williamson JC, Freund SMV, Lehner PJ, Modis Y. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nature Communications, 2020, 11(1): 4940.
CrossRef Google scholar
[]
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. Science China Life Science, 2022, 65(11): 2162-2190.
CrossRef Google scholar
[]
Ellinger J, Bachmann A, Goke F, Behbahani TE, Baumann C, Heukamp LC, Rogenhofer S, Muller SC. Alterations of global histone H3K9 and H3K27 methylation levels in bladder cancer. Urologia Internationalis, 2014, 93(1): 113-118.
CrossRef Google scholar
[]
Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gutgemann I, Walter B, Hofstadter F, Buttner R, Muller SC, Bastian PJ, von Ruecker A. Global levels of histone modifications predict prostate cancer recurrence. Prostate, 2010, 70(1): 61-69.
CrossRef Google scholar
[]
Elsasser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature, 2015, 522(7555): 240-244.
CrossRef Google scholar
[]
Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, Soria D, Garibaldi JM, Paish CE, Ammar AA, Grainge MJ, Ball GR, Abdelghany MK, Martinez-Pomares L, Heery DM, Ellis IO. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Research, 2009, 69(9): 3802-3809.
CrossRef Google scholar
[]
Escobar TM, Loyola A, Reinberg D. Parental nucleosome segregation and the inheritance of cellular identity. Nature Reviews Genetics, 2021, 22(6): 379-392.
CrossRef Google scholar
[]
Escobar TM, Oksuz O, Saldana-Meyer R, Descostes N, Bonasio R, Reinberg D. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell, 2019, 179(4): 953-963.
CrossRef Google scholar
[]
Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, Jin L, Chen J, Zhou H, Wang J, Zhang H, Yang N, Bradley EW, Ho TH, Rubin BP, Bridge JA, Thibodeau SN, Ordog T, Chen Y, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science, 2016, 352(6291): 1344-1348.
CrossRef Google scholar
[]
Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: The histone guardian of the genome. DNA Repair (amst), 2004, 3(8–9): 959-967.
CrossRef Google scholar
[]
Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature, 2005, 438(7071): 1116-1122.
CrossRef Google scholar
[]
Fnu S, Williamson EA, De Haro LP, Brenneman M, Wray J, Shaheen M, Radhakrishnan K, Lee SH, Nickoloff JA, Hromas R. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proceedings of the National Academy Science USA, 2011, 108(2): 540-545.
CrossRef Google scholar
[]
Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CCY, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 2013, 499(7456): 50-54.
CrossRef Google scholar
[]
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews Molecular Cell Biology, 2022, 23(7): 481-497.
CrossRef Google scholar
[]
Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d'Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biology, 2012, 14(4): 355-365.
CrossRef Google scholar
[]
Gaggioli V, Lo CSY, Reveron-Gomez N, Jasencakova Z, Domenech H, Nguyen H, Sidoli S, Tvardovskiy A, Uruci S, Slotman JA, Chai Y, Goncalves J, Manolika EM, Jensen ON, Wheeler D, Sridharan S, Chakrabarty S, Demmers J, Kanaar R, et al. Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability. Nature Cell Biology, 2023, 25(7): 1017-1032.
CrossRef Google scholar
[]
Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C, Zhang Z. The Mcm2-Ctf4-Polalpha axis facilitates parental histone H3–H4 transfer to lagging strands. Molecular Cell, 2018, 72(1): 140-151.
CrossRef Google scholar
[]
Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ, 1990, 300(6722): 423-429.
CrossRef Google scholar
[]
Garland W, Muller I, Wu M, Schmid M, Imamura K, Rib L, Sandelin A, Helin K, Jensen TH. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Molecular Cell, 2022, 82(9): 1691-1707.
CrossRef Google scholar
[]
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses, 2020, 12(8): 884.
CrossRef Google scholar
[]
Gershman A, Sauria MEG, Guitart X, Vollger MR, Hook PW, Hoyt SJ, Jain M, Shumate A, Razaghi R, Koren S, Altemose N, Caldas GV, Logsdon GA, Rhie A, Eichler EE, Schatz MC, O'Neill RJ, Phillippy AM, Miga KH, et al. Epigenetic patterns in a complete human genome. Science, 2022, 376(6588): 5089.
CrossRef Google scholar
[]
Giglia-Mari G, Zotter A, Vermeulen W. DNA damage response. Cold Spring Harbor Perspectives in Biology, 2011, 3(1).
CrossRef Google scholar
[]
Ginjala V, Rodriguez-Colon L, Ganguly B, Gangidi P, Gallina P, Al-Hraishawi H, Kulkarni A, Tang J, Gheeya J, Simhadri S, Yao M, Xia B, Ganesan S. Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage. Science and Reports, 2017, 7(1): 16613.
CrossRef Google scholar
[]
Gonzalez-Garrido C, Prado F. Parental histone distribution and location of the replication obstacle at nascent strands control homologous recombination. Cell Reports, 2023, 42(3).
CrossRef Google scholar
[]
Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, Quist MJ, Davis LE, Huang EC, Woo PJ, Ponnuswami A, Chen S, Johung TB, Sun W, Kogiso M, Du Y, Qi L, Huang Y, Hutt-Cabezas M, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21(6): 555-559.
CrossRef Google scholar
[]
Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012, 13(5): 343-357.
CrossRef Google scholar
[]
Grewal SI, Jia S. Heterochromatin revisited. Nature Reviews Genetics, 2007, 8(1): 35-46.
CrossRef Google scholar
[]
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, Dele-Oni D, Du PP, Halawi AG, Ishizuka JJ, Kim SY, Klaeger S, Knudsen NH, Miller BC, Nguyen TH, Olander KE, Papanastasiou M, Rachimi S, Robitschek EJ, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature, 2021, 595(7866): 309-314.
CrossRef Google scholar
[]
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature, 1997, 389(6649): 349-352.
CrossRef Google scholar
[]
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends in Genetics, 2024, 40(1): 39-51.
CrossRef Google scholar
[]
Han C, Srivastava AK, Cui T, Wang QE, Wani AA. Differential DNA lesion formation and repair in heterochromatin and euchromatin. Carcinogenesis, 2016, 37(2): 129-138.
CrossRef Google scholar
[]
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery, 2022, 12(1): 31-46.
CrossRef Google scholar
[]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 2000, 100(1): 57-70.
CrossRef Google scholar
[]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674.
CrossRef Google scholar
[]
Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, Fang D, Huang X, Tom MW, Ngo V, Solomon D, Mueller S, Paris PL, Zhang Z, Petritsch C, Gupta N, Waldman TA, James CD. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine, 2014, 20(12): 1394-1396.
CrossRef Google scholar
[]
Hauer MH, Gasser SM. Chromatin and nucleosome dynamics in DNA damage and repair. Genes & Development, 2017, 31(22): 2204-2221.
CrossRef Google scholar
[]
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1): 17-35.
CrossRef Google scholar
[]
Herz HM, Morgan M, Gao X, Jackson J, Rickels R, Swanson SK, Florens L, Washburn MP, Eissenberg JC, Shilatifard A. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science, 2014, 345(6200): 1065-1070.
CrossRef Google scholar
[]
Hirota T, Lipp JJ, Toh BH, Peters JM. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature, 2005, 438(7071): 1176-1180.
CrossRef Google scholar
[]
Hoeijmakers JH. DNA damage, aging, and cancer. New England Journal of Medicine, 2009, 361(15): 1475-1485.
CrossRef Google scholar
[]
Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nature Structural & Molecular Biology, 2019, 26(10): 880-889.
CrossRef Google scholar
[]
Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Molecular and Cellular Biology, 2007, 27(20): 7028-7040.
CrossRef Google scholar
[]
Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environmental and Molecular Mutagenesis, 2009, 50(2): 105-113.
CrossRef Google scholar
[]
Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO Journal, 2001, 20(18): 5232-5241.
CrossRef Google scholar
[]
Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, Pandita RK, Paquet E, Herst P, Gingras AC, Pandita TK, Legube G, Doyon Y, Durocher D, Cote J. The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular Cell, 2016, 62(3): 409-421.
CrossRef Google scholar
[]
Jain N, Zhao Z, Koche RP, Antelope C, Gozlan Y, Montalbano A, Brocks D, Lopez M, Dobrin A, Shi Y, Gunset G, Giavridis T, Sadelain M. Disruption of SUV39H1-mediated H3K9 methylation sustains CAR T cell function. Cancer Discovery, 2024, 14(1): 142-157.
CrossRef Google scholar
[]
Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV, van Steensel B, Bindra RS, LaRocque JR, Karpen GH. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes & Development, 2016, 30(14): 1645-1657.
CrossRef Google scholar
[]
Janssen A, Colmenares SU, Karpen GH. Heterochromatin: guardian of the genome. Annual Review of Cell and Developmental Biology, 2018, 34: 265-288.
CrossRef Google scholar
[]
Jorgensen S, Schotta G, Sorensen CS. Histone H4 lysine 20 methylation: Key player in epigenetic regulation of genomic integrity. Nucleic Acids Research, 2013, 41(5): 2797-2806.
CrossRef Google scholar
[]
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54(1): 61-83.
CrossRef Google scholar
[]
Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell, 2011, 8(6): 676-687.
CrossRef Google scholar
[]
Karri S, Yang Y, Zhou J, Dickinson Q, Jia J, Huang Y, Wang Z, Gan H, Yu C. Defective transfer of parental histone decreases frequency of homologous recombination by increasing free histone pools in budding yeast. Nucleic Acids Research, 2024.
CrossRef Google scholar
[]
Kato S, Weng QY, Insco ML, Chen KY, Muralidhar S, Pozniak J, Diaz JMS, Drier Y, Nguyen N, Lo JA, van Rooijen E, Kemeny LV, Zhan Y, Feng Y, Silkworth W, Powell CT, Liau BB, Xiong Y, Jin J, et al. Gain-of-function genetic alterations of G9a drive oncogenesis. Cancer Discovery, 2020, 10(7): 980-997.
CrossRef Google scholar
[]
Kelly GM, Al-Ejeh F, McCuaig R, Casciello F, Ahmad Kamal N, Ferguson B, Pritchard AL, Ali S, Silva IP, Wilmott JS, Long GV, Scolyer RA, Rao S, Hayward NK, Gannon F, Lee JS. G9a inhibition enhances checkpoint inhibitor blockade response in melanoma. Clinical Cancer Research, 2021, 27(9): 2624-2635.
CrossRef Google scholar
[]
Keung EZ, Akdemir KC, Al Sannaa GA, Garnett J, Lev D, Torres KE, Lazar AJ, Rai K, Chin L. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. The Journal of Clinical Investigation, 2015, 125(8): 2965-2978.
CrossRef Google scholar
[]
Khoury-Haddad H, Guttmann-Raviv N, Ipenberg I, Huggins D, Jeyasekharan AD, Ayoub N. PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair. Proceeding of National Academy Science USA, 2014, 111(7): 728-737.
CrossRef Google scholar
[]
Khurana S, Kruhlak MJ, Kim J, Tran AD, Liu J, Nyswaner K, Shi L, Jailwala P, Sung MH, Hakim O, Oberdoerffer P. A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Reports, 2014, 8(4): 1049-1062.
CrossRef Google scholar
[]
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: The DNA damage response and histone modifications. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54(3): 208-241.
CrossRef Google scholar
[]
Klein KN, Zhao PA, Lyu X, Sasaki T, Bartlett DA, Singh AM, Tasan I, Zhang M, Watts LP, Hiraga SI, Natsume T, Zhou X, Baslan T, Leung D, Kanemaki MT, Donaldson AD, Zhao H, Dalton S, Corces VG, et al. Replication timing maintains the global epigenetic state in human cells. Science, 2021, 372(6540): 371-378.
CrossRef Google scholar
[]
Klymenko T, Papp B, Fischle W, Kocher T, Schelder M, Fritsch C, Wild B, Wilm M, Muller J. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes & Development, 2006, 20(9): 1110-1122.
CrossRef Google scholar
[]
Kodaira M, Ryo H, Kamada N, Furukawa K, Takahashi N, Nakajima H, Nomura T, Nakamura N. No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors. Radiation Research, 2010, 173(2): 205-213.
CrossRef Google scholar
[]
Kodaira M, Satoh C, Hiyama K, Toyama K. Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells. American Journal of Human Genetics, 1995, 57(6): 1275-1283.
[]
Kohi SM, Feng T, Tian Y, Zhu W-G. Biological function and regulation of histone 4 lysine 20 methylation in DNA damage response. Genome Instability & Disease, 2022, 3: 33-46.
CrossRef Google scholar
[]
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular Cell Biology, 2012, 13(5): 297-311.
CrossRef Google scholar
[]
Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, Pogribny IP, Kovalchuk O. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis, 2007, 28(8): 1831-1838.
CrossRef Google scholar
[]
Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature, 2007, 447(7145): 730-734.
CrossRef Google scholar
[]
Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 2001, 410(6824): 116-120.
CrossRef Google scholar
[]
Lamm N, Rogers S, Cesare AJ. Chromatin mobility and relocation in DNA repair. Trends in Cell Biology, 2021, 31(10): 843-855.
CrossRef Google scholar
[]
Lam-Ubol A, Phattarataratip E. Distinct histone H3 modification profiles correlate with aggressive characteristics of salivary gland neoplasms. Science and Reports, 2022, 12(1): 15063.
CrossRef Google scholar
[]
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.
CrossRef Google scholar
[]
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. The FASEB Journal, 2020, 34(3): 3461-3484.
CrossRef Google scholar
[]
Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell, 2010, 142(5): 682-685.
CrossRef Google scholar
[]
Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK. HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Research, 2013, 41(11): 5784-5798.
CrossRef Google scholar
[]
Leszinski G, Gezer U, Siegele B, Stoetzer O, Holdenrieder S. Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Research, 2012, 32(5): 2199-2205.
[]
Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 2013, 340(6134): 857-861.
CrossRef Google scholar
[]
Li Z, Chen Y, Tang M, Li Y, Zhu W-G. Regulation of DNA damage-induced ATM activation by histone modifications. Genome Instability & Disease, 2020, 1: 20-33.
CrossRef Google scholar
[]
Li Z, Duan S, Hua X, Xu X, Li Y, Menolfi D, Zhou H, Lu C, Zha S, Goff SP, Zhang Z. Asymmetric distribution of parental H3K9me3 in S phase silences L1 elements. Nature, 2023, 623(7987): 643-651.
CrossRef Google scholar
[]
Li Z, Hua X, Serra-Cardona A, Xu X, Gan S, Zhou H, Yang WS, Chen CL, Xu RM, Zhang Z. DNA polymerase alpha interacts with H3–H4 and facilitates the transfer of parental histones to lagging strands. Science Advances, 2020, 6(35): eabb5820.
CrossRef Google scholar
[]
Little MP, Goodhead DT, Bridges BA, Bouffler SD. Evidence relevant to untargeted and transgenerational effects in the offspring of irradiated parents. Mutation Research, 2013, 753(1): 50-67.
CrossRef Google scholar
[]
Liu N, Lee CH, Swigut T, Grow E, Gu B, Bassik MC, Wysocka J. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature, 2018, 553(7687): 228-232.
CrossRef Google scholar
[]
Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, Koseki H, Wong J. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nature Communications, 2013, 4: 1563.
CrossRef Google scholar
[]
Lopez-Cobo S, Fuentealba JR, Gueguen P, Bonte PE, Tsalkitzi K, Chacon I, Glauzy S, Bohineust A, Biquand A, Silva L, Gouveia Z, Goudot C, Perez F, Saitakis M, Amigorena S. SUV39H1 ablation enhances Long-Term CAR-T function in solid tumors. Cancer Discovery, 2024, 14(1): 120-141.
CrossRef Google scholar
[]
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell, 2023, 186(2): 243-278.
CrossRef Google scholar
[]
Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, Murphy D, Venneti S, Hameed M, Pawel BR, Wunder JS, Dickson BC, Lundgren SM, Jani KS, De Jay N, Papillon-Cavanagh S, Andrulis IL, Sawyer SL, Grynspan D, et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science, 2016, 352(6287): 844-849.
CrossRef Google scholar
[]
Lu X, Tang M, Zhu Q, Yang Q, Li Z, Bao Y, Liu G, Hou T, Lv Y, Zhao Y, Wang H, Yang Y, Cheng Z, Wen H, Liu B, Xu X, Gu L, Zhu WG. GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Nucleic Acids Research, 2019, 47(21): 10977-10993.
CrossRef Google scholar
[]
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. Nat Aging, 2023, 3(12): 1486-1499.
CrossRef Google scholar
[]
Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LH, Houtsmuller AB, Verschure PJ, van Driel R. Heterochromatin protein 1 is recruited to various types of DNA damage. Journal of Cell Biology, 2009, 185(4): 577-586.
CrossRef Google scholar
[]
Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS, Grofte M, Chan KL, Hickson ID, Bartek J, Lukas J. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nature Cell Biology, 2011, 13(3): 243-253.
CrossRef Google scholar
[]
Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature Cell Biology, 2011, 13(10): 1161-1169.
CrossRef Google scholar
[]
Machour FE, Ayoub N. Transcriptional regulation at DSBs: mechanisms and consequences. Trends in Genetics, 2020, 36(12): 981-997.
CrossRef Google scholar
[]
Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia, 2010, 24(4): 679-686.
CrossRef Google scholar
[]
Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM, Lorincz MC. Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics & Chromatin, 2013, 6(1): 15.
CrossRef Google scholar
[]
Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO Journal, 2012, 31(8): 1865-1878.
CrossRef Google scholar
[]
Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. Journal of Biological Chemistry, 2011, 286(13): 11779-11791.
CrossRef Google scholar
[]
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. Science Advances, 2023, 9(36): eadh2358.
CrossRef Google scholar
[]
Marechal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology, 2013.
CrossRef Google scholar
[]
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469(7330): 343-349.
CrossRef Google scholar
[]
Markova E, Schultz N, Belyaev IY. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. International Journal of Radiation Biology, 2007, 83(5): 319-329.
CrossRef Google scholar
[]
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature, 2010, 464(7290): 927-931.
CrossRef Google scholar
[]
Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, Tanaka T, Tsutsumi S, Nakao M, Doi T, Fukami K, Osborne TF, Kodama T, Aburatani H, Sakai J. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Molecular Cell, 2015, 60(4): 584-596.
CrossRef Google scholar
[]
Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK. RNF168 ubiquitinates K13–15 on H2A/H2AX to drive DNA damage signaling. Cell, 2012, 150(6): 1182-1195.
CrossRef Google scholar
[]
Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Molecular and Cellular Biology, 2000, 20(10): 3728-3741.
CrossRef Google scholar
[]
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378): 480-489.
CrossRef Google scholar
[]
Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437(7057): 436-439.
CrossRef Google scholar
[]
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448(7153): 553-560.
CrossRef Google scholar
[]
Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y, Dorr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dorken B, Zuber J, Gronemeyer H, et al. Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553(7686): 96-100.
CrossRef Google scholar
[]
Mo Y, Duan S, Zhang X, Hua X, Zhou H, Wei HJ, Watanabe J, McQuillan N, Su Z, Gu W, Wu CC, Vakoc CR, Hashizume R, Chang K, Zhang Z. Epigenome programming by H3.3K27M mutation creates a dependence of pediatric glioma on SMARCA4. Cancer Discovery, 2022, 12(12): 2906-2929.
CrossRef Google scholar
[]
Montavon T, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Ryan D, Musa Y, Mittler G, Meyer AG, Genoud C, Jenuwein T. Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nature Communications, 2021, 12(1): 4359.
CrossRef Google scholar
[]
Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clinical Epigenetics, 2016, 8: 57.
CrossRef Google scholar
[]
Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, Dai J, Hartley SW, Schonfeld SJ, Sampson JN, Maruvka YE, Kapoor V, Ramsden DA, Carvajal-Garcia J, Perou CM, Parker JS, Krznaric M, Yeager M, Boland JF, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372(6543): eabg2538.
CrossRef Google scholar
[]
Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell, 2004, 119(6): 789-802.
CrossRef Google scholar
[]
Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nature Reviews Cancer, 2004, 4(2): 158-164.
CrossRef Google scholar
[]
Muller I, Helin K. Keep quiet: The HUSH complex in transcriptional silencing and disease. Nature Structural & Molecular Biology, 2024, 31(1): 11-22.
CrossRef Google scholar
[]
Muller-Tidow C, Klein HU, Hascher A, Isken F, Tickenbrock L, Thoennissen N, Agrawal-Singh S, Tschanter P, Disselhoff C, Wang Y, Becker A, Thiede C, Ehninger G, et al. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood, 2010, 116(18): 3564-3571.
CrossRef Google scholar
[]
Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biology, 2006, 8(1): 91-99.
CrossRef Google scholar
[]
Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J, Soshnev AA, Kundra R, Schultz N, Muir TW, Allis CD. The expanding landscape of 'oncohistone' mutations in human cancers. Nature, 2019, 567(7749): 473-478.
CrossRef Google scholar
[]
Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, Li M, Meng W, Ponnuswami A, Sun W, Ma J, Hulleman E, Swigut T, Wysocka J, Tang Y, Monje M. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell, 2017, 31(5): 635-652.
CrossRef Google scholar
[]
Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 2001, 292(5514): 110-113.
CrossRef Google scholar
[]
Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, Montavon T, Becker JS, Grindheim JM, Blahnik K, Garcia BA, Tan K, Bonasio R, Jenuwein T, Zaret KS. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science, 2019, 363(6424): 294-297.
CrossRef Google scholar
[]
Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Current Opinion in Genetics & Development, 2019, 55: 1-10.
CrossRef Google scholar
[]
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, Aganezov S, Hoyt SJ, Diekhans M, Logsdon GA, Alonge M, Antonarakis SE, Borchers M, Bouffard GG, Brooks SY, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.
CrossRef Google scholar
[]
Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nature Reviews Molecular Cell Biology, 2022, 23(9): 623-640.
CrossRef Google scholar
[]
Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, Hoffman SE, Kugener G, Shaw ML, Mire HM, Hack OA, Dempster JM, Lareau C, Dai L, Sigua LH, et al. BAF complex maintains glioma stem cells in pediatric H3K27M glioma. Cancer Discovery, 2022, 12(12): 2880-2905.
CrossRef Google scholar
[]
Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nature Reviews Molecular Cell Biology, 2014, 15(1): 7-18.
CrossRef Google scholar
[]
Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D, Karamboulas C, Ailles L, Karamchandani J, Marchione DM, Garcia BA, Weinreb I, Goldstein D, Lewis PW, Dancu OM, Dhaliwal S, Stecho W, Howlett CJ, Mymryk JS, Barrett JW, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nature Genetics, 2017, 49(2): 180-185.
CrossRef Google scholar
[]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012, 12(4): 252-264.
CrossRef Google scholar
[]
Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Annals of Surgical Oncology, 2008, 15(7): 1968-1976.
CrossRef Google scholar
[]
Pei HD, Zhang L, Luo KT, Qin YX, Chesi M, Fei F, Bergsagel PL, Wang LW, You ZS, Lou ZK. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature, 2011, 470(7332): 124-U144.
CrossRef Google scholar
[]
Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 2001, 107(3): 323-337.
CrossRef Google scholar
[]
Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A, Andersson R, Groth A. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 2018, 361(6409): 1389-1392.
CrossRef Google scholar
[]
Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, Jenuwein T. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell, 2012, 150(5): 948-960.
CrossRef Google scholar
[]
Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, Rendleman EJ, Ma Q, Takahashi YH, Woodfin AR, Misharin AV, Abshiru NA, Lulla RR, Saratsis AM, Kelleher NL, James CD, Shilatifard A. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nature Medicine, 2017, 23(4): 493-500.
CrossRef Google scholar
[]
Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes & Development, 2011, 25(5): 409-433.
CrossRef Google scholar
[]
Prigozhin DM, Douse CH, Farleigh LE, Albecka A, Tchasovnikarova IA, Timms RT, Oda SI, Adolf F, Freund SMV, Maslen S, Lehner PJ, Modis Y. Periphilin self-association underpins epigenetic silencing by the HUSH complex. Nucleic Acids Research, 2020, 48(18): 10313-10328.
CrossRef Google scholar
[]
Qian Y, Li Y, Zheng C, Lu T, Sun R, Mao Y, Yu S, Fan H, Zhang Z. High methylation levels of histone H3 lysine 9 associated with activation of hypoxia-inducible factor 1alpha (HIF-1alpha) predict patients' worse prognosis in human hepatocellular carcinomas. Cancer Genetics, 2020, 245: 17-26.
CrossRef Google scholar
[]
Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, Li H, Wang L, Lou Z. UFL1 promotes histone H4 ufmylation and ATM activation. Nature Communications, 2019, 10(1): 1242.
CrossRef Google scholar
[]
Qin B, Yu J, Nowsheen S, Zhao F, Wang L, Lou Z. STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation. Science Advances, 2020, 6(23): eaxx8214.
CrossRef Google scholar
[]
Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406(6796): 593-599.
CrossRef Google scholar
[]
Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science, 2002, 297(5588): 1831.
CrossRef Google scholar
[]
Ren W, Fan H, Grimm SA, Guo Y, Kim JJ, Yin J, Li L, Petell CJ, Tan XF, Zhang ZM, Coan JP, Gao L, Cai L, Detrick B, Cetin B, Cui Q, Strahl BD, Gozani O, Wang Y, et al. Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc Natl Acad Sci U S A, 2020, 117(31): 18439-18447.
CrossRef Google scholar
[]
Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, et al. Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518(7539): 317-330.
CrossRef Google scholar
[]
Robbez-Masson L, Tie CHC, Conde L, Tunbak H, Husovsky C, Tchasovnikarova IA, Timms RT, Herrero J, Lehner PJ, Rowe HM. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Research, 2018, 28(6): 836-845.
CrossRef Google scholar
[]
Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, Barsyte-Lovejoy D, Martinez JY, Bedford MT, Fuchs SM, Arrowsmith CH, Strahl BD. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nature Structural & Molecular Biology, 2012, 19(11): 1155-1160.
CrossRef Google scholar
[]
Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell, 2010, 18(6): 590-605.
CrossRef Google scholar
[]
Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 2004, 73: 39-85.
CrossRef Google scholar
[]
Schleich K, Kase J, Dorr JR, Trescher S, Bhattacharya A, Yu Y, Wailes EM, Fan DNY, Lohneis P, Milanovic M, Lau A, Lenze D, Hummel M, Chapuy B, Leser U, Reimann M, Lee S, Schmitt CA. H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nature Communications, 2020, 11(1): 3651.
CrossRef Google scholar
[]
Schlissel G, Rine J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proceeding of National Academy Science USA, 2019, 116(41): 20605-20611.
CrossRef Google scholar
[]
Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T. A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes & Development, 2004, 18(11): 1251-1262.
CrossRef Google scholar
[]
Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes & Development, 2002, 16(8): 919-932.
CrossRef Google scholar
[]
Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage in the ageing process. Nature, 2021, 592(7856): 695-703.
CrossRef Google scholar
[]
Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482(7384): 226-231.
CrossRef Google scholar
[]
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019, 20(11): 698-714.
CrossRef Google scholar
[]
Seczynska M, Bloor S, Cuesta SM, Lehner PJ. Genome surveillance by HUSH-mediated silencing of intronless mobile elements. Nature, 2022, 601(7893): 440-445.
CrossRef Google scholar
[]
Seczynska M, Lehner PJ. The sound of silence: Mechanisms and implications of HUSH complex function. Trends in Genetics, 2023, 39(4): 251-267.
CrossRef Google scholar
[]
Segovia C, San Jose-Eneriz E, Munera-Maravilla E, Martinez-Fernandez M, Garate L, Miranda E, Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, Valcarcel LV, Rabal O, Casares N, Bernardini A, Suarez-Cabrera C, Lopez-Calderon FF, Fortes P, Casado JA, Duenas M, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nature Medicine, 2019, 25(7): 1073-1081.
CrossRef Google scholar
[]
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nature Reviews Genetics, 2021, 22(11): 691-711.
CrossRef Google scholar
[]
Shan CM, Wang J, Xu K, Chen H, Yue JX, Andrews S, Moresco JJ, Yates JR, Nagy PL, Tong L, Jia S. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. eLife, 2016.
CrossRef Google scholar
[]
Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell, 2010, 141(6): 970-981.
CrossRef Google scholar
[]
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature, 2007, 450(7171): 908-912.
CrossRef Google scholar
[]
Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, Rantala J, Barshop W, Hope JL, Gimple RC, Sangfelt O, Bradley LM, Wohlschlegel J, Rich JN, Spruck C. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell, 2021, 184(2): 352-369.
CrossRef Google scholar
[]
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941-953.
CrossRef Google scholar
[]
Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes & Development, 2011, 25(8): 781-788.
CrossRef Google scholar
[]
Shirai A, Kawaguchi T, Shimojo H, Muramatsu D, Ishida-Yonetani M, Nishimura Y, Kimura H, Nakayama JI, Shinkai Y. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife, 2017.
CrossRef Google scholar
[]
Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Research, 2008, 18(1): 134-147.
CrossRef Google scholar
[]
Siddiqui MS, Francois M, Fenech MF, Leifert WR. Persistent gammaH2AX: A promising molecular marker of DNA damage and aging. Mutation Research, Reviews in Mutation Research, 2015, 766: 1-19.
CrossRef Google scholar
[]
Song JS, Kim YS, Kim DK, Park SI, Jang SJ. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathology International, 2012, 62(3): 182-190.
CrossRef Google scholar
[]
Soria G, Almouzni G. Differential contribution of HP1 proteins to DNA end resection and homology-directed repair. Cell Cycle, 2013, 12(3): 422-429.
CrossRef Google scholar
[]
Soria G, Polo SE, Almouzni G. Prime, repair, restore: The active role of chromatin in the DNA damage response. Molecular Cell, 2012, 46(6): 722-734.
CrossRef Google scholar
[]
Spies J, Lukas C, Somyajit K, Rask MB, Lukas J, Neelsen KJ. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nature Cell Biology, 2019, 21(4): 487-497.
CrossRef Google scholar
[]
Spiliopoulou P, Spear S, Mirza H, Garner I, McGarry L, Grundland-Freile F, Cheng Z, Ennis DP, Iyer N, McNamara S, Natoli M, Mason S, Blyth K, Adams PD, Roxburgh P, Fuchter MJ, Brown B, McNeish IA. Dual G9A/EZH2 inhibition stimulates antitumor immune response in ovarian high-grade serous carcinoma. Molecular Cancer Therapeutics, 2022, 21(4): 522-534.
CrossRef Google scholar
[]
Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell, 2009, 136(3): 420-434.
CrossRef Google scholar
[]
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nature Cell Biology, 2020, 22(4): 361-371.
CrossRef Google scholar
[]
Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 1998, 12(5): 599-606.
CrossRef Google scholar
[]
Suganuma T, Workman JL. Crosstalk among histone modifications. Cell, 2008, 135(4): 604-607.
CrossRef Google scholar
[]
Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceeding National Academy Science USA, 2005, 102(37): 13182-13187.
CrossRef Google scholar
[]
Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR, Price BD. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nature Cell Biology, 2009, 11(11): 1376-1382.
CrossRef Google scholar
[]
Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature, 2015, 521(7550): 81-84.
CrossRef Google scholar
[]
Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science, 2013, 339(6127): 1567-1570.
CrossRef Google scholar
[]
Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO Journal, 2008, 27(20): 2681-2690.
CrossRef Google scholar
[]
Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. Journal of Biology Chemistry, 2001, 276(27): 25309-25317.
CrossRef Google scholar
[]
Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes & Development, 2005, 19(7): 815-826.
CrossRef Google scholar
[]
Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nature Structural & Molecular Biology, 2013, 20(3): 317-325.
CrossRef Google scholar
[]
Tang M, Li Z, Zhang C, Lu X, Tu B, Cao Z, Li Y, Chen Y, Jiang L, Wang H, Wang L, Wang J, Liu B, Xu X, Wang H, Zhu WG. SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Science Advances, 2019, 5(3): eeav1118.
CrossRef Google scholar
[]
Tchasovnikarova IA, Timms RT, Douse CH, Roberts RC, Dougan G, Kingston RE, Modis Y, Lehner PJ. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nature Genetics, 2017, 49(7): 1035-1044.
CrossRef Google scholar
[]
Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R, Gottgens B, Dougan G, Dawson MA, Lehner PJ. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science, 2015, 348(6242): 1481-1485.
CrossRef Google scholar
[]
Techer H, Koundrioukoff S, Nicolas A, Debatisse M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics, 2017, 18(9): 535-550.
CrossRef Google scholar
[]
Tencer AH, Cox KL, Di L, Bridgers JB, Lyu J, Wang X, Sims JK, Weaver TM, Allen HF, Zhang Y, Gatchalian J, Darcy MA, Gibson MD, Ikebe J, Li W, Wade PA, Hayes JJ, Strahl BD, Kono H, et al. Covalent modifications of histone H3K9 promote binding of CHD3. Cell Reports, 2017, 21(2): 455-466.
CrossRef Google scholar
[]
Torrano J, Al Emran A, Hammerlindl H, Schaider H. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clinical Epigenetics, 2019, 11(1): 43.
CrossRef Google scholar
[]
Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Molecular Cell, 2016, 63(2): 293-305.
CrossRef Google scholar
[]
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811-816.
CrossRef Google scholar
[]
Tsukada YI, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes & Development, 2010, 24(5): 432-437.
CrossRef Google scholar
[]
Tu B, Bao Y, Tang M, Zhu Q, Lu X, Wang H, Hou T, Zhao Y, Zhang P, Zhu W-G. TIP60 recruits SUV39H1 to chromatin to maintain heterochromatin genome stability and resist hydrogen peroxide-induced cytotoxicity. Genome Instability & Disease, 2020, 1: 339-355.
CrossRef Google scholar
[]
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 2017, 168(4): 644-656.
CrossRef Google scholar
[]
Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK, Fernandes L, Holt J, van der Veen AG, Giampazolias E, Burns KH, Maillard PV, Rowe HM. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nature Communications, 2020, 11(1): 5387.
CrossRef Google scholar
[]
Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 2004, 303(5658): 672-676.
CrossRef Google scholar
[]
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J, Wang Y, Le R, Wang H, Duan T, Zhang Y, Gao S. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nature Cell Biology, 2018, 20(5): 620-631.
CrossRef Google scholar
[]
Wang D, Zhou J, Liu X, Lu D, Shen C, Du Y, Wei FZ, Song B, Lu X, Yu Y, Wang L, Zhao Y, Wang H, Yang Y, Akiyama Y, Zhang H, Zhu WG. Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proceedings of the National Academy of Science USA, 2013, 110(14): 5516-5521.
CrossRef Google scholar
[]
Wang S, Meyer DH, Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature, 2023, 613(7943): 365-374.
CrossRef Google scholar
[]
Wang T, Xu C, Liu Y, Fan K, Li Z, Sun X, Ouyang H, Zhang X, Zhang J, Li Y, Mackenzie F, Min J, Tu X. Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS ONE, 2012, 7(12).
CrossRef Google scholar
[]
Watson GE, Lorimore SA, Macdonald DA, Wright EG. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Research, 2000, 60(20): 5608-5611.
[]
Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell, 2006, 125(3): 467-481.
CrossRef Google scholar
[]
Wilson DM 3rd Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell, 2023, 186(4): 693-714.
CrossRef Google scholar
[]
Wilson MD, Benlekbir S, Fradet-Turcotte A, Sherker A, Julien JP, McEwan A, Noordermeer SM, Sicheri F, Rubinstein JL, Durocher D. The structural basis of modified nucleosome recognition by 53BP1. Nature, 2016, 536(7614): 100-103.
CrossRef Google scholar
[]
Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell, 2007, 131(1): 46-57.
CrossRef Google scholar
[]
Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature, 2009, 458(7242): 1201-1204.
CrossRef Google scholar
[]
Wolf G, Yang P, Fuchtbauer AC, Fuchtbauer EM, Silva AM, Park C, Wu W, Nielsen AL, Pedersen FS, Macfarlan TS. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes & Development, 2015, 29(5): 538-554.
CrossRef Google scholar
[]
Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 2012, 44(3): 251-253.
CrossRef Google scholar
[]
Wu J, Liu Y, Zhangding Z, Liu X, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W, Hu J. Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nature Genetics, 2023, 55(8): 1347-1358.
CrossRef Google scholar
[]
Wu R, Wang Z, Zhang H, Gan H, Zhang Z. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Research, 2017, 45(1): 169-180.
CrossRef Google scholar
[]
Wu W, Nishikawa H, Fukuda T, Vittal V, Asano M, Miyoshi Y, Klevit RE, Ohta T. Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage. Cancer Research, 2015, 75(7): 1311-1321.
CrossRef Google scholar
[]
Xia R, Zhou R, Tian Z, Zhang C, Wang L, Hu Y, Han J, Li J. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma. Archives of Pathology and Laboratory Medicine, 2013, 137(12): 1761-1769.
CrossRef Google scholar
[]
Xu R, Li S, Wu Q, Li C, Jiang M, Guo L, Chen M, Yang L, Dong X, Wang H, Wang C, Liu X, Ou X, Gao S. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos. Cell Stem Cell, 2022, 29(7): 1051-1066.
CrossRef Google scholar
[]
Xu X, Duan S, Hua X, Li Z, He R, Zhang Z. Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions. Nature Communication, 2022, 13(1): 2514.
CrossRef Google scholar
[]
Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 2006, 125(3): 483-495.
CrossRef Google scholar
[]
Yang BX, El Farran CA, Guo HC, Yu T, Fang HT, Wang HF, Schlesinger S, Seah YF, Goh GY, Neo SP, Li Y, Lorincz MC, Tergaonkar V, Lim TM, Chen L, Gunaratne J, Collins JJ, Goff SP, Daley GQ, et al. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell, 2015, 163(1): 230-245.
CrossRef Google scholar
[]
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, et al. Loss of epigenetic information as a cause of mammalian aging. Cell, 2023, 186(2): 305-326.
CrossRef Google scholar
[]
Yang P, Wang Y, Macfarlan TS. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends in Genetics, 2017, 33(11): 871-881.
CrossRef Google scholar
[]
Yang Q, Zhu Q, Lu X, Du Y, Cao L, Shen C, Hou T, Li M, Li Z, Liu C, Wu D, Xu X, Wang L, Wang H, Zhao Y, Yang Y, Zhu WG. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proceedings of the National Academy Science USA, 2017, 114(30): 6054-6063.
CrossRef Google scholar
[]
Yasuhara T, Zou L. Impacts of chromatin dynamics and compartmentalization on DNA repair. DNA Repair (amst), 2021, 105.
CrossRef Google scholar
[]
Yeager M, Machiela MJ, Kothiyal P, Dean M, Bodelon C, Suman S, Wang M, Mirabello L, Nelson CW, Zhou W, Palmer C, Ballew B, Colli LM, Freedman ND, Dagnall C, Hutchinson A, Vij V, Maruvka Y, Hatch M, et al. Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science, 2021, 372(6543): 725-729.
CrossRef Google scholar
[]
Yokoyama Y, Hieda M, Nishioka Y, Matsumoto A, Higashi S, Kimura H, Yamamoto H, Mori M, Matsuura S, Matsuura N. Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Science, 2013, 104(7): 889-895.
CrossRef Google scholar
[]
Yoo CB, Jones PA. Epigenetic therapy of cancer: Past, present and future. Nature Reviews Drug Discovery, 2006, 5(1): 37-50.
CrossRef Google scholar
[]
Young LC, McDonald DW, Hendzel MJ. Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following gamma-irradiation. Journal of Biological Chemistry, 2013, 288(29): 21376-21388.
CrossRef Google scholar
[]
Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S, Sharma S, Johansson E, Chabes A, Xu RM, Zhang Z. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science, 2018, 361(6409): 1386-1389.
CrossRef Google scholar
[]
Yu H, Chen M, Hu Y, Ou S, Yu X, Liang S, Li N, Yang M, Kong X, Sun C, Jia S, Zhang Q, Liu L, Hurst LD, Li R, Wang W, Wang J. Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development. Cell Stem Cell, 2022, 29(7): 1031-1050.
CrossRef Google scholar
[]
Yu Y, Schleich K, Yue B, Ji S, Lohneis P, Kemper K, Silvis MR, Qutob N, van Rooijen E, Werner-Klein M, Li L, Dhawan D, Meierjohann S, Reimann M, Elkahloun A, Treitschke S, Dorken B, Speck C, Mallette FA, et al. Targeting the senescence-overriding cooperative activity of structurally unrelated H3K9 demethylases in melanoma. Cancer Cell, 2018, 33(2): 322-336.
CrossRef Google scholar
[]
Zhang K, Mosch K, Fischle W, Grewal SI. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nature Structural & Molecular Biology, 2008, 15(4): 381-388.
CrossRef Google scholar
[]
Zhang L, Geng X, Wang F, Tang J, Ichida Y, Sharma A, Jin S, Chen M, Tang M, Pozo FM, Wang W, Wang J, Wozniak M, Guo X, Miyagi M, Jin F, Xu Y, Yao X, Zhang Y. 53BP1 regulates heterochromatin through liquid phase separation. Nature Communications, 2022, 13(1): 360.
CrossRef Google scholar
[]
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature, 2021, 598(7882): 682-687.
CrossRef Google scholar
[]
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Reports, 2015, 16(11): 1467-1481.
CrossRef Google scholar
[]
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 2015, 348(6239): 1160-1163.
CrossRef Google scholar
[]
Zhang W, Liu W, Jia L, Chen D, Chang I, Lake M, Bentolila LA, Wang CY. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Molecular Cell, 2021, 81(10): 2148-2165.
CrossRef Google scholar
[]
Zhao QY, Lei PJ, Zhang X, Zheng JY, Wang HY, Zhao J, Li YM, Ye M, Li L, Wei G, Wu M. Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model. Clinical Epigenetics, 2016, 8: 34.
CrossRef Google scholar
[]
Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nature Reviews Cancer, 2021, 21(7): 413-430.
CrossRef Google scholar
[]
Zhao S, Lu J, Pan B, Fan H, Byrum SD, Xu C, Kim A, Guo Y, Kanchi KL, Gong W, Sun T, Storey AJ, Burkholder NT, Mackintosh SG, Kuhlers PC, Edmondson RD, Strahl BD, Diao Y, Tackett AJ, et al. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Nature, 2023, 623(7987): 633-642.
CrossRef Google scholar
[]
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nature Reviews Immunology, 2023, 23(2): 75-89.
CrossRef Google scholar
[]
Zheng CL, Wang NJ, Chung J, Moslehi H, Sanborn JZ, Hur JS, Collisson EA, Vemula SS, Naujokas A, Chiotti KE, Cheng JB, Fassihi H, Blumberg AJ, Bailey CV, Fudem GM, Mihm FG, Cunningham BB, Neuhaus IM, Liao W, et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Reports, 2014, 9(4): 1228-1234.
CrossRef Google scholar
[]
Zhou M, Yan JQ, Chen QX, Yang YZ, Li YL, Ren YX, Weng ZJ, Zhang XF, Guan JX, Tang LY, Ren ZF. Association of H3K9me3 with breast cancer prognosis by estrogen receptor status. Clinical Epigenetics, 2022, 14(1): 135.
CrossRef Google scholar
[]
Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Current Medicinal Chemistry: Anti-Cancer Agents, 2003, 3(3): 187-199.
CrossRef Google scholar
Funding
National Institute of General Medical Sciences(R35GM118015)