KIF18A as a potential biomarker to distinguish different breast cancer subtypes based on receptor status

Caglar Berkel

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (2) : 89-96. DOI: 10.1007/s42764-024-00126-8
Original Research Paper

KIF18A as a potential biomarker to distinguish different breast cancer subtypes based on receptor status

Author information +
History +

Abstract

The inhibition of KIF18A selectively reduces the viability of chromosomally unstable cancers due to increased mitotic vulnerability. KIF18A expression was also reported to be upregulated and associated with tumor aggressiveness in certain cancer types including breast cancer. Here, I first showed that KIF18A mRNA expression is higher in triple-negative breast cancer (TNBC) than in non-TNBC. I also found that ER (estrogen receptor)-negative and PR (progesterone receptor)-negative breast cancer cells have higher KIF18A mRNA expression compared to ER-positive and PR-positive breast cancer cells, respectively. In contrast, HER2-positive breast tumors have higher KIF18A expression compared to HER2-negative breast tumors. In terms of PAM50 breast cancer subtypes, KIF18A transcript levels were found to be the highest in basal-like breast cancer, followed by HER2-enriched, luminal B, normal-like and luminal A. Besides, in non-TNBC, cells with high AR (androgen receptor) mRNA expression have higher KIF18A mRNA expression than cells with low AR mRNA expression. Both non-TNBC and TNBC cells with high BRCA1 and BRCA2 mRNA expression levels were observed to have higher KIF18A mRNA expression than those with low BRCA1 and BRCA2 mRNA expression levels, respectively. Combined, this study demonstrates that breast tumors with low and high expression of ER, PR, HER2, AR and BRCA1/2 have differential transcript levels of KIF18A, pointing that KIF18A might contribute to the molecular differences between different breast cancer subtypes.

Keywords

KIF18A / Estrogen receptor / Progesterone receptor / HER2 / Breast cancer / Androgen receptor / BRCA / Triple-negative breast cancer / Basal-like breast cancer

Cite this article

Download citation ▾
Caglar Berkel. KIF18A as a potential biomarker to distinguish different breast cancer subtypes based on receptor status. Genome Instability & Disease, 2024, 5(2): 89‒96 https://doi.org/10.1007/s42764-024-00126-8

References

[]
Alfarsi LH, Elansari R, Toss MS, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. Kinesin family member-18A (KIF18A) is a predictive biomarker of poor benefit from endocrine therapy in early ER+ breast cancer. Breast Cancer Research and Treatment, 2019, 173(1): 93-102, Epub 2018 Oct 10. PMID: 30306428
CrossRef Pubmed Google scholar
[]
Belete AM, Aynalem YA, Gemeda BN, Demelew TM, Shiferaw WS. The Effect of Estrogen Receptor Status on Survival in Breast Cancer Patients in Ethiopia. Retrospective Cohort Study. Breast Cancer (Dove Med Press), 2022, 14: 153-161,
CrossRef Pubmed Google scholar
[]
Berkel C. Estrogen receptor- and progesterone receptor-positive breast tumors have higher mRNA levels of NR3C1 and ZBTB16, with implications in prognosis for luminal A subtype. Human Cell., 2023, Epub ahead of print. PMID: 37999919
CrossRef Pubmed Google scholar
[]
Berkel C, Cacan E. Involvement of ATMIN-DYNLL1-MRN axis in the progression and aggressiveness of serous ovarian cancer. Biochemical and Biophysical Research Communications, 2021, 17(570): 74-81, Epub 2021 Jul 14. PMID: 34273621
CrossRef Google scholar
[]
Berkel C, Cacan E. Lower expression of NINJ1 (Ninjurin 1), a mediator of plasma membrane rupture, is associated with advanced disease and worse prognosis in serous ovarian cancer. Immunologic Research, 2023, 71(1): 15-28, Epub 2022 Oct 3. PMID: 36184655
CrossRef Pubmed Google scholar
[]
Berkel C, Cacan E. The expression of O-linked glycosyltransferase GALNT7 in breast cancer is dependent on estrogen-, progesterone-, and HER2-receptor status, with prognostic implications. Glycoconjugate Journal, 2023, Epub ahead of print. PMID: 37947928
CrossRef Pubmed Google scholar
[]
Chang HJ, Yang UC, Lai MY, Chen CH, Fann YC. High BRCA1 gene expression increases the risk of early distant metastasis in ER+ breast cancers. Science and Reports, 2022, 12(1): 77, PMID: 34996912; PMCID: PMC8741892
CrossRef Google scholar
[]
Cohen-Sharir Y, McFarland JM, Abdusamad M, Marquis C, Bernhard SV, Kazachkova M, Tang H, Ippolito MR, Laue K, Zerbib J, Malaby HLH, Jones A, Stautmeister LM, Bockaj I, Wardenaar R, Lyons N, Nagaraja A, Bass AJ, Spierings DCJ, Foijer F, Beroukhim R, Santaguida S, Golub TR, Stumpff J, Storchová Z, Ben-David U. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 2021, 590(7846): 486-491, pmcid: 8262644 Epub 2021 Jan 27. PMID: 33505028; PMCID: PMC8262644
CrossRef Pubmed Google scholar
[]
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S METABRIC Group Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, Caldas C, Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403): 346-352, pmcid: 3440846 PMID: 22522925; PMCID: PMC3440846
CrossRef Pubmed Google scholar
[]
Derakhshan F, Reis-Filho JS. Pathogenesis of triple-negative breast cancer. Annual Review of Pathology: Mechanisms of Disease, 2022, 24(17): 181-204, PMID: 35073169; PMCID: PMC9231507
CrossRef Google scholar
[]
Fonseca CL, Malaby HLH, Sepaniac LA, Martin W, Byers C, Czechanski A, Messinger D, Tang M, Ohi R, Reinholdt LG, Stumpff J. Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase. Journal of Cell Biology, 2019, 218(4): 1148-1163, pmcid: 6446859 Epub 2019 Feb 7. PMID: 30733233; PMCID: PMC6446859
CrossRef Pubmed Google scholar
[]
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology, 2020, 38(6): 675-678, pmcid: 7386072 PMID: 32444850; PMCID: PMC7386072
CrossRef Pubmed Google scholar
[]
Gorodetska I, Kozeretska I, Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. Journal of Cancer, 2019, 10(9): 2109-2127, pmcid: 6548160 PMID: 31205572; PMCID: PMC6548160
CrossRef Pubmed Google scholar
[]
Greenup R, Buchanan A, Lorizio W, Rhoads K, Chan S, Leedom T, King R, McLennan J, Crawford B, Kelly Marcom P, Shelley HE. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Annals of Surgical Oncology, 2013, 20(10): 3254-3258, Epub 2013 Aug 22. PMID: 23975317
CrossRef Pubmed Google scholar
[]
Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene, 2006, 25(43): 5864-5874, PMID: 16998501
CrossRef Pubmed Google scholar
[]
Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Computational and Structural Biotechnology Journal, 2021, 18(19): 4101-4109, PMID: 34527184; PMCID: PMC8339292
CrossRef Google scholar
[]
Hitti E, Bakheet T, Al-Souhibani N, Moghrabi W, Al-Yahya S, Al-Ghamdi M, Al-Saif M, Shoukri MM, Lánczky A, Grépin R, Győrffy B, Pagès G, Khabar KS. Systematic analysis of AU-rich element expression in cancer reveals common functional clusters regulated by key RNA-binding proteins. Cancer Research, 2016, 76(14): 4068-4080, Epub 2016 May 17. PMID: 27197193
CrossRef Pubmed Google scholar
[]
Huszno J, Kołosza Z, Grzybowska E. BRCA1 mutation in breast cancer patients: Analysis of prognostic factors and survival. Oncology Letters, 2019, 17(2): 1986-1995, Epub 2018 Nov 28. PMID: 30675265; PMCID: PMC6341769
CrossRef Pubmed Google scholar
[]
Jin TY, Park KS, Nam SE, Yoo YB, Park WS, Yun IJ. BRCA1/2 serves as a biomarker for poor prognosis in breast carcinoma. International Journal of Molecular Sciences, 2022, 23(7): 3754, pmcid: 8998777 PMID: 35409110; PMCID: PMC8998777
CrossRef Pubmed Google scholar
[]
Kasahara M, Nagahara M, Nakagawa T, Ishikawa T, Sato T, Uetake H, Sugihara K. Clinicopathological relevance of kinesin family member 18A expression in invasive breast cancer. Oncology Letters, 2016, 12(3): 1909-1914, pmcid: 4998100 Epub 2016 Jul 7. PMID: 27588139; PMCID: PMC4998100
CrossRef Pubmed Google scholar
[]
Kassambara, A. (2023). ggpubr: 'ggplot2' based publication ready plots. R package version 0.6.0. https://CRAN.R-project.org/package=ggpubr. Accessed 26 Dec 2023.
[]
Kensler KH, Sankar VN, Wang J, Zhang X, Rubadue CA, Baker GM, Parker JS, Hoadley KA, Stancu AL, Pyle ME, Collins LC, Hunter DJ, Eliassen AH, Hankinson SE, Tamimi RM, Heng YJ. PAM50 molecular intrinsic subtypes in the nurses' health study cohorts. Cancer Epidemiology, Biomarkers & Prevention, 2019, 28(4): 798-806, Epub 2018 Dec 27. PMID: 30591591; PMCID: PMC6449178
CrossRef Google scholar
[]
Lal A, Ramazzotti D, Weng Z, Liu K, Ford JM, Sidow A. Comprehensive genomic characterization of breast tumors with BRCA1 and BRCA2 mutations. BMC Medical Genomics, 2019, 12(1): 84, pmcid: 6558765 PMID: 31182087; PMCID: PMC6558765
CrossRef Pubmed Google scholar
[]
Li TF, Zeng HJ, Shan Z, Ye RY, Cheang TY, Zhang YJ, Lu SH, Zhang Q, Shao N, Lin Y. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell International, 2020, 15(20): 123, PMID: 32322170; PMCID: PMC7161125
CrossRef Google scholar
[]
Marquis C, Fonseca CL, Queen KA, Wood L, Vandal SE, Malaby HLH, Clayton JE, Stumpff J. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nature Communications, 2021, 12(1): 1213, pmcid: 7900194 PMID: 33619254; PMCID: PMC7900194
CrossRef Pubmed Google scholar
[]
Mayr MI, Hümmer S, Bormann J, Grüner T, Adio S, Woehlke G, Mayer TU. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 2007, 17(6): 488-498, Epub 2007 Mar 8. PMID: 17346968
CrossRef Pubmed Google scholar
[]
Morgan, M., Obenchain, V., Hester, J., & Pagès, H. (2022). SummarizedExperiment: SummarizedExperiment container. R package version 1.26.1. https://bioconductor.org/packages/SummarizedExperiment. Accessed 26 Dec 2023.
[]
Morgan, M., Shepherd, L. (2022a). AnnotationHub: Client to access AnnotationHub resources. R package version 3.4.0.
[]
Morgan, M., Shepherd, L. (2022b). ExperimentHub: Client to access ExperimentHub resources. R package version 2.4.0.
[]
Ooms, J. (2023). magick: Advanced graphics and image-processing in R. R package version 2.7.4. https://CRAN.R-project.org/package=magick. Accessed 26 Dec 2023.
[]
Pareja F, Geyer FC, Marchiò C, Burke KA, Weigelt B, Reis-Filho JS. Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer, 2016, 16(2): 16036, PMID: 28721389; PMCID: PMC5515338
CrossRef Google scholar
[]
Patel A, Unni N, Peng Y. The Changing paradigm for the treatment of HER2-positive breast cancer. Cancers (basel), 2020, 12(8): 2081, PMID: 32731409; PMCID: PMC7464074
CrossRef Pubmed Google scholar
[]
Payton M, Belmontes B, Hanestad K, Moriguchi J, Chen K, McCarter JD, Chung G, Ninniri MS, Sun J, Manoukian R, Chambers S, Ho SM, Kurzeja RJM, Edson KZ, Dahal UP, Wu T, Wannberg S, Beltran PJ, Canon J, Boghossian AS, Rees MG, Ronan MM, Roth JA, Minocherhomji S, Bourbeau MP, Allen JR, Coxon A, Tamayo NA, Hughes PE. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. Nature Cancer, 2023, pmcid: 10824666 Epub ahead of print. PMID: 38151625
CrossRef Pubmed Google scholar
[]
Quinton RJ, DiDomizio A, Vittoria MA, Kotýnková K, Ticas CJ, Patel S, Koga Y, Vakhshoorzadeh J, Hermance N, Kuroda TS, Parulekar N, Taylor AM, Manning AL, Campbell JD, Ganem NJ. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature, 2021, 590(7846): 492-497, pmcid: 7889737 Epub 2021 Jan 27. Erratum in: Nature. 2021 May;593(7860):E15. PMID: 33505027; PMCID: PMC7889737
CrossRef Pubmed Google scholar
[]
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
[]
Rath O, Kozielski F. Kinesins and cancer. Nature Reviews Cancer, 2012, 12(8): 527-539, PMID: 22825217
CrossRef Pubmed Google scholar
[]
Ravaioli S, Maltoni R, Pasculli B, Parrella P, Giudetti AM, Vergara D, Tumedei MM, Pirini F, Bravaccini S. Androgen receptor in breast cancer: the "5W" questions. Frontiers in Endocrinology (lausanne)., 2022, 30(13), PMID: 36111296; PMCID: PMC9468319
CrossRef Google scholar
[]
Royston P. Remark AS R94: a remark on algorithm AS 181: The WW test for normality. Journal of Applied Statistics, 1995, 44: 547-551,
CrossRef Google scholar
[]
Savci-Heijink CD, Halfwerk H, Koster J, Horlings HM, van de Vijver MJ. A specific gene expression signature for visceral organ metastasis in breast cancer. BMC Cancer, 2019, 19(1): 333, pmcid: 6454625 PMID: 30961553; PMCID: PMC6454625
CrossRef Pubmed Google scholar
[]
Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developmental Cell, 2008, 14(2): 252-262, pmcid: 2267861 PMID: 18267093; PMCID: PMC2267861
CrossRef Pubmed Google scholar
[]
Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Developmental Cell, 2012, 22(5): 1017-1029, pmcid: 3356572 PMID: 22595673; PMCID: PMC3356572
CrossRef Pubmed Google scholar
[]
TečićVuger A, Šeparović R, Vazdar L, Pavlović M, Lepetić P, Šitić S, Bajić Ž, Šarčević B, Vrbanec D. Characteristics and prognosis of triple-negative breast cancer patients: a croatian single institution retrospective cohort study. Acta Clinica Croatica, 2020, 59(1): 97-108, PMID: 32724280; PMCID: PMC7382886
CrossRef Google scholar
[]
Turner NC, Reis-Filho JS. Tackling the diversity of triple-negative breast cancer. Clinical Cancer Research, 2013, 19(23): 6380-6388, CCR-13-0915. PMID: 24298068
CrossRef Pubmed Google scholar
[]
Wang Z, Zhang J, Zhang Y, Deng Q, Liang H. Expression and mutations of BRCA in breast cancer and ovarian cancer: Evidence from bioinformatics analyses. International Journal of Molecular Medicine, 2018, 42(6): 3542-3550, Epub 2018 Sep 11. PMID: 30221688
CrossRef Pubmed Google scholar
[]
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. Welcome to the tidyverse. Journal of Open Source Software, 2019, 4(43): 1686,
CrossRef Google scholar
[]
You CP, Tsoi H, Man EPS, Leung MH, Khoo US. Modulating the activity of androgen receptor for treating breast cancer. International Journal of Molecular Sciences, 2022, 23(23): 15342, pmcid: 9739178 PMID: 36499670; PMCID: PMC9739178
CrossRef Pubmed Google scholar
[]
Zhang C, Zhu C, Chen H, Li L, Guo L, Jiang W, Lu SH. Kif18A is involved in human breast carcinogenesis. Carcinogenesis, 2010, 31(9): 1676-1684, Epub 2010 Jul 1. PMID: 20595236
CrossRef Pubmed Google scholar
[]
Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Molecular Cancer Research, 2014, 12(4): 539-549, Epub 2014 Jan 3. PMID: 24391143; PMCID: PMC4139106
CrossRef Pubmed Google scholar

Accesses

Citations

Detail

Sections
Recommended

/