Death-associated protein 3 in cell death and beyond

Ting Cao, Xuling Luo, Binjiao Zheng, Yao Deng, Yu Zhang, Yuyan Li, Wenwen Xi, Meng Guo, Xuefeng Yang, Zhiyue Li, Bin Lu

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (2) : 51-60. DOI: 10.1007/s42764-024-00125-9
Review Article

Death-associated protein 3 in cell death and beyond

Author information +
History +

Abstract

Death-associated protein 3 (DAP3) is a highly conserved guanosine triphosphate (GTP) binding protein. As a component of the mitochondrial ribosome 28 S small subunit, DAP3 is involved in apoptosis pathways and plays a vital role in mitochondrial dynamics, mitochondrial protein synthesis, anoikis, and autophagy. Recently, DAP3 has been reported to participate in the development and progression of various cancers. In this review, we provide a brief overview of recent findings regarding the structure, subcellular localization, and function of DAP3 as well as its role in cancer development and progression.

Keywords

Death-associated protein 3 / Extrinsic apoptosis pathways / Tumorigenesis / Mitochondrial ribosomal subunit

Cite this article

Download citation ▾
Ting Cao, Xuling Luo, Binjiao Zheng, Yao Deng, Yu Zhang, Yuyan Li, Wenwen Xi, Meng Guo, Xuefeng Yang, Zhiyue Li, Bin Lu. Death-associated protein 3 in cell death and beyond. Genome Instability & Disease, 2024, 5(2): 51‒60 https://doi.org/10.1007/s42764-024-00125-9

References

[]
Berger T, Kretzler M. Interaction of DAP3 and FADD only after cellular disruption. Nature Immunology, 2002, 3(1): 3-5,
CrossRef Pubmed Google scholar
[]
Boonstra J, Post J. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 2004, 337: 1-13,
CrossRef Pubmed Google scholar
[]
Cavdar KE, Ranasinghe A, Burkhart W, Blackburn K, Koc H, Moseley A, Spremulli LL. A new face on apoptosis: Death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Letters, 2001, 492(1–2): 166-170,
CrossRef Google scholar
[]
Chimento A, Arianna DL, D’Amico M, Francesca D, Pezzi V. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in Cancer Therapy. International Journal of Molecular Sciences, 2023, 24(2): 1680, pmcid: 9863215
CrossRef Pubmed Google scholar
[]
Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nature Reviews Molecular Cell Biology, 2023, 24(8): 560-575,
CrossRef Pubmed Google scholar
[]
Feng, Q. L., Hu, K., Hu, H., Lu, Y., Zhang, H., Wang, G. L., Zhang, Q., Xu, Z., Gao, X. J., Jia, X., Zhu, H., Song, D., Yi, H., Peng, Y., Wu, X., Li, B., Zhu, W., & Shi, J. (2023). Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells. International Immunopharmacology, 125(Pt A). https://doi.org/10.1016/j.intimp.2023.111139.
[]
Festa BP, Siddiqi FH, Jimenez-Sanchez M, Won H, Rob M, Djajadikerta A, Stamatakou E, Rubinsztein D. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron, 2023, 111(13): 2021-2037,
CrossRef Pubmed Google scholar
[]
Fox L, Joanna MF, Marion. Targeting cell death signalling in cancer: Minimising ‘Collateral damage’. British Journal of Cancer, 2016, 115(1): 5-11, pmcid: 4931361
CrossRef Pubmed Google scholar
[]
Franke T, Hornik C, Segev L, Shostak G, Sugimoto C. PI3K/Akt and apoptosis: Size matters. Oncogene, 2003, 22(56): 8983-8998,
CrossRef Pubmed Google scholar
[]
Graef M, Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO Journal, 2011, 30(11): 2101-2114, pmcid: 3117638
CrossRef Pubmed Google scholar
[]
Guo J, Yang N, Zhang J, Huang Y, Xiang Q, Wen J, Chen Y, Hu T, Qiuyan L, Rao C. Neurotoxicity study of ethyl acetate extract of Zanthoxylum armatum DC. On SH-SY5Y based on ROS mediated mitochondrial apoptosis pathway. Journal of Ethnopharmacology, 2024, 319(Pt3): 117321,
CrossRef Pubmed Google scholar
[]
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim P, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141(4): 656-667, pmcid: 3059894
CrossRef Pubmed Google scholar
[]
Han J, An O, Hong H, Chan TH, Chen L. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Science Advances, 2020, 6(25): eaba5136, pmcid: 7299630
CrossRef Pubmed Google scholar
[]
Han, J., An, O., Ren, X., Song, Y., Tang, S. J., Shen, H., Ke, X., Ng, V. H. E., Tay, D. J. T., Tan, H. Q., Kappei, D., Yang, H., & Chen, L. (2022). Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nature Communications, 13(1), 1793. https://doi.org/10.1038/s41467-022-29400-7.
[]
Harada, T., Iwai, A., & Miyazaki, T. (2010). Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis, 15(10), 1247–1255. https://doi.org/10.1007/s10495-010-0519-3.
[]
Hulkko SM, Zilliacus J. Functional interaction between the pro-apoptotic DAP3 and the glucocorticoid receptor. Biochemical and Biophysical Research Communications, 2002, 295(3): 749-755,
CrossRef Pubmed Google scholar
[]
Hulkko SM, Wakui H, Zilliacus J. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. Biochemical Journal, 2000, 349(Pt 3): 885-893, pmcid: 1221218
CrossRef Pubmed Google scholar
[]
Jacques C, Chevrollier A, Loiseau D, Lagoutte L, Savagner F, Malthiery Y, Reynier P. mtDNA controls expression of the Death Associated protein 3. Experimental Cell Research, 2006, 312(6): 737-745,
CrossRef Pubmed Google scholar
[]
Jacques C, Fontaine J, Franc F, Mirebeau-Prunier B, Triau D, Savagner S, Malthiery F. Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours. British Journal of Cancer, 2009, 101(1): 132-138, pmcid: 2713694
CrossRef Pubmed Google scholar
[]
Jia Y, Ye L, Ji K, Zhang L, Hargest R, Ji J, Jiang W. Death-associated protein-3, DAP-3, correlates with preoperative chemotherapy effectiveness and prognosis of gastric cancer patients following perioperative chemotherapy and radical gastrectomy. British Journal of Cancer, 2014, 110(2): 421-429,
CrossRef Pubmed Google scholar
[]
Kim HR, Chae HJ, Thomas M, Miyazaki T, Monosov A, Monosov E, Krajewska M, Krajewski S, Reed J. Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. The FASEB Journal, 2007, 21(1): 188-196,
CrossRef Pubmed Google scholar
[]
Kiraz Y, Adan A, Kartal YM, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biology, 2016, 37(7): 8471-8486,
CrossRef Pubmed Google scholar
[]
Kissil, J. L., & Kimchi, A. (1997). Assignment of death associated protein 3 (DAP3) to human chromosome 1q21 by in situ hybridization. Cytogenetics and Cell Genetics, 77(3–4). https://doi.org/10.1159/000134587.
[]
Kissil JL, Kimchi A. Death-associated proteins: From gene identification to the analysis of their apoptotic and tumour suppressive functions. Molecular Medicine Today, 1998, 4(6): 268-274,
CrossRef Pubmed Google scholar
[]
Kissil JL, Deiss LP, Bayewitch M, Raveh T, Khaspekov G, Kimchi A. Isolation of DAP3, a novel mediator of interferon-gamma-induced cell death. Journal of Biological Chemistry, 1995, 270(46): 27932-27936,
CrossRef Pubmed Google scholar
[]
Kissil JL, Cohen O, Raveh T, Kimchi A. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha - and Fas-induced cell death. EMBO Journal, 1999, 18(2): 353-362, pmcid: 1171130
CrossRef Pubmed Google scholar
[]
Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San, P. J., Cadwell, M., Cecconi, K., Choi, F., Choi, A. M. K., Chu, M. E., Codogno, C. T., Colombo, P., Cuervo, M. I., Deretic, A. M., Dikic, V., Elazar, I., Eskelinen, Z., … Pietrocola, F. (2021). Autophagy in major human diseases. EMBO Journal, 40(19). https://doi.org/10.15252/embj.2021108863.
[]
Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Current Biology, 2010, 20(12): 1093-1098,
CrossRef Pubmed Google scholar
[]
Lee, H. Y., Son, S. W., Moeng, S., Choi, S. Y., & Park, J. K. (2021). The role of noncoding RNAs in the regulation of anoikis and anchorage-independent growth in cancer. International Journal of Molecular Sciences, 22(2). https://doi.org/10.3390/ijms22020627.
[]
Lee D, Kang HW, Kim SY, Kim MJ, Jeong JW, Hong WC, Fang S, Kim HS, Lee YS, Kim HJ, Park JS. Ivermectin and gemcitabine combination treatment induces apoptosis of pancreatic cancer cells via mitochondrial dysfunction. Frontiers in Pharmacology, 2022, 13: 934746, pmcid: 9459089
CrossRef Pubmed Google scholar
[]
Lee H, Lee TJ, Galloway CA, Zhi W, Xiao W, Mesy BKL, Sharma A, Teng Y, Sesaki H, Yoon Y. The mitochondrial fusion protein OPA1 is dispensable in the liver and its absence induces mitohormesis to protect liver from drug-induced injury. Nature Communications, 2023, 14(1): 6721-6721, pmcid: 10593833
CrossRef Pubmed Google scholar
[]
Li HM, Fujikura D, Harada T, Uehara J, Kawai K, Akira S, Reed JC, Iwai A, Miyazaki T. IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death & Differentiation, 2009, 16(2): 1615-1621,
CrossRef Google scholar
[]
Lu J, Li Y, Gong S, Wang J, Lu X, Jin Q, Lu B, Chen Q. Ciclopirox targets cellular bioenergetics and activates ER stress to induce apoptosis in non-small cell lung cancer cells. Cell Communication and Signaling, 2022, 20(1): 37, pmcid: 8943949
CrossRef Pubmed Google scholar
[]
Malik Q, Herbert KE. Oxidative and non-oxidative DNA damage and cardiovascular disease. Free Radical Research, 2012, 46(4): 554-564,
CrossRef Pubmed Google scholar
[]
Mariani L, Beaudry C, Mcdonough W, Hoelzinger S, Kaczmarek DB, Ponce E, Coons F, Giese SW, Seiler A, Berens ME. Death-associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clinical Cancer Research, 2001, 7(8): 2480-2489,
CrossRef Pubmed Google scholar
[]
Marsh T, Debnath J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy, 2020, 16(6): 1164-1165, pmcid: 7469534
CrossRef Pubmed Google scholar
[]
Meggyeshazi N, Andocs G, Balogh L, Balla P, Kiszner G, Teleki I, Jeney A, Krenacs T. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlentherapie Und Onkologie, 2014, 190(9): 815-822,
CrossRef Pubmed Google scholar
[]
Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Developmental Cell, 2021, 56(7): 906-918, pmcid: 8026727
CrossRef Pubmed Google scholar
[]
Miller JL, Koc H, Koc E. Identification of phosphorylation sites in mammalian mitochondrial ribosomal protein DAP3. Protein Science, 2008, 17(2): 251-260, pmcid: 2222727
CrossRef Pubmed Google scholar
[]
Miyazaki T, Reed JC. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nature Immunology, 2001, 2(6): 493-500,
CrossRef Pubmed Google scholar
[]
Miyazaki T, Shen M, Fujikura D, Tosa N, Kim HR, Kon S, Uede T, Reed JC. Functional role of death-associated protein 3 (DAP3) in anoikis. Journal of Biological Chemistry, 2004, 279(43): 44667-44672,
CrossRef Pubmed Google scholar
[]
Morgan CJ, Jacques C, Savagner F, Tourmen Y, Mirebeau DP, Malthiery Y, Reynier P. A conserved N-terminal sequence targets human DAP3 to mitochondria. Biochemical and Biophysical Research Communications, 2001, 280(1): 177-181,
CrossRef Pubmed Google scholar
[]
Mukamel Z, Kimchi A. Death-associated protein 3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. Journal of Biological Chemistry, 2004, 279(35): 36732-36738,
CrossRef Pubmed Google scholar
[]
Murata Y, Wakoh T, Uekawa N, Sugimoto M, Asai A, Miyazaki T, Maruyama M. Death-associated protein 3 regulates cellular senescence through oxidative stress response. FEBS Letters, 2006, 580(26): 6093-6099,
CrossRef Pubmed Google scholar
[]
Musicco C, Signorile A, Pesce V, Loguercio PP, Cormio A. Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. International Journal of Molecular Sciences, 2023, 24(13): 10420, pmcid: 10342097
CrossRef Pubmed Google scholar
[]
O’Brien TW. Properties of human mitochondrial ribosomes. IUBMB Life, 2003, 55(9): 505-513,
CrossRef Pubmed Google scholar
[]
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova G, Khlestkina Z, Maslov L. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis, 2023, 28(1–2): 55-80,
CrossRef Pubmed Google scholar
[]
Sasaki H, Ide N, Yukiue H, Kobayashi Y, Fukai I, Yamakawa Y, Fujii Y. Arg and DAP3 expression was correlated with human thymoma stage. Clinical & Experimental Metastasis, 2004, 21(6): 507-513,
CrossRef Google scholar
[]
Sato Y, Yoshino H, Kashiwakura I, Tsuruga E. DAP3 is involved in modulation of cellular radiation response by RIG-I-Like receptor agonist in human lung adenocarcinoma cells. International Journal of Molecular Sciences, 2021, 22(1): 420, pmcid: 7795940
CrossRef Pubmed Google scholar
[]
Sato Y, Yoshino H, Sato K, Kashiwakura I, Tsuruga E. DAP3-mediated cell cycle regulation and its association with radioresistance in human lung adenocarcinoma cell lines. Journal of Radiation Research, 2023, 64(3): 520-529, pmcid: 10214994
CrossRef Pubmed Google scholar
[]
Saveanu C, Fromont-Racine M, Harington A, Ricard F, Namane A, Jacquier A. Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. Journal of Biological Chemistry, 2001, 276(19): 15861-15867,
CrossRef Pubmed Google scholar
[]
Schwickert TA, Tagoh H, Schindler K, Fischer M, Jaritz M, Busslinger M. Ikaros prevents autoimmunity by controlling anergy and toll-like receptor signaling in B cells. Nature Immunology, 2019, 20(11): 1517-1529, pmcid: 7115902
CrossRef Pubmed Google scholar
[]
Smith DP, Rayter S, Niederlander I, Spicer G, Jones J, Ashworth A. LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Human Molecular Genetics, 2001, 10(25): 2869-2877,
CrossRef Pubmed Google scholar
[]
Sui L, Ye L, Sanders A, Yang J, Hao Y, Hargest C, Jiang WG. Expression of death associated proteins DAP1 and DAP3 in human pancreatic cancer. Anticancer Research, 2021, 41(5): 2357-2362,
CrossRef Pubmed Google scholar
[]
Sui L, Zeng J, Zhao H, Ye L, Martin TA, Sanders A, Ruge J, Jiang F, Dou A, Hargest QP, Song R, Jiang W. Death associated protein–3 (DAP3) and DAP3 binding cell death enhancer–1 (DELE1) in human colorectal cancer, and their impacts on clinical outcome and chemoresistance. International Journal of Oncology, 2023, 62(1): 7,
CrossRef Pubmed Google scholar
[]
Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. Journal of Biological Chemistry, 2001, 276(35): 33181-33195,
CrossRef Pubmed Google scholar
[]
Takeda S, Iwai A, Nakashima M, Fujikura D, Chiba S, Li HM, Uehara J, Kawaguchi S, Kaya M, Nagoya S, Wada T, Yuan J, Rayter S, Ashworth A, Reed J, Yamashita C, Uede T, Miyazaki T. LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma. Anticancer Research, 2007, 27(2): 761-768,
CrossRef Pubmed Google scholar
[]
Tosa N, Iwai A, Tanaka T, Kumagai T, Nitta T, Chiba S, Maeda M, Takahama Y, Uede T, Miyazaki T. Critical function of death-associated protein 3 in T cell receptor-mediated apoptosis induction. Biochemical and Biophysical Research Communications, 2010, 395(3): 356-360,
CrossRef Pubmed Google scholar
[]
Wang J, Huang F, Bai Z, Chi B, Wu J, Chen X. Curcumol inhibits growth and induces apoptosis of colorectal cancer LoVo Cell line via IGF-1R and p38 MAPK pathway. International Journal of Molecular Sciences, 2015, 16(8): 19851-19867, pmcid: 4581329
CrossRef Pubmed Google scholar
[]
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy, 2023, 19(9): 2409-2427, pmcid: 10392742
CrossRef Pubmed Google scholar
[]
Wazir U, Jiang WG, Sharma AK, Mokbel K. The mRNA expression of DAP3 in human breast cancer: Correlation with clinicopathological parameters. Anticancer Research, 2012, 32(2): 671-674,
CrossRef Pubmed Google scholar
[]
Wazir U, Orakzai MM, Khanzada ZS, Jiang WG, Sharma AK, Kasem A, Mokbel K. The role of death-associated protein 3 in apoptosis, anoikis and human cancer. Cancer Cell International, 2015, 15: 39, pmcid: 4399419
CrossRef Pubmed Google scholar
[]
Xiao L, Xian H, Lee KY, Xiao B, Wang H, Yu F, Shen HM, Liou YC. Death-associated protein 3 regulates mitochondrial-encoded protein synthesis and mitochondrial dynamics. Journal of Biological Chemistry, 2015, 290(41): 24961-24974, pmcid: 4599003
CrossRef Pubmed Google scholar
[]
Yasumura K, Sugimura I, Igarashi K, Kakinuma S, Nishimura M, Doi M, Shimada Y. Altered expression of tfg and Dap3 in Ikaros-defective T-cell lymphomas induced by X-irradiation in B6C3F1 mice. British Journal of Haematology, 2004, 124(2): 179-185,
CrossRef Pubmed Google scholar
[]
Yepuri G, Ramirez LM, Theophall GG, Reverdatto SV, Quadri N, Hasan SN, Bu L, Thiagarajan D, Wilson R, Diez RL, Gugger PF, Mangar K, Narula N, Katz SD, Zhou B, Li H, Stotland AB, Gottlieb RA, Schmidt AM, Shekhtman A, Ramasamy R. DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress. Nature Communications, 2023, 14(1): 6900, pmcid: 10616211
CrossRef Pubmed Google scholar
[]
Yin YJ, Zhang YH, Wang Y, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic acid ameliorates the quality of in vitro-aged bovine oocytes by suppressing oxidative stress and apoptosis. Aging (Albany NY), 2023, 15(21): 12497-12512,
CrossRef Pubmed Google scholar
[]
Zhang, S., Zhang, Y., Feng, Y., Wu, J., Hu, Y., Lin, L., Xu, C., Chen, J., Tang, Z., Tian, H., & Chen, X. (2022). Biomineralized two-enzyme nanoparticles regulate tumor glycometabolism inducing tumor cell pyroptosis and robust antitumor immunotherapy. Advanced Materials, 34(50). https://doi.org/10.1002/adma.202206851.
[]
Zhao, W., Zhang, L., Zhang, Y., Jiang, Z., Lu, H., Xie, Y., Han, W., Zhao, W., He, J., Shi, Z., Yang, H., Chen, J., Chen, S., Li, Z., Mao, J., Zhou, L., Gao, X., Li, W., Tan, G., Zhang, B., & Wang, Z. (2023). The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest. Cell Death & Disease, 14(1). https://doi.org/10.1038/s41419-022-05528-8.
[]
Zhu M, Wang J, Zhou R. Combination of metformin and oxaliplatin inhibits gastric cancer cell proliferation and induces apoptosis. Acta Biochimica Polonica, 2022, 69(2): 321-326,
CrossRef Pubmed Google scholar
Funding
National Natural Science Foundation of China(31771534, 31570772); Scientific Research Foundation of University of South China(211RJC002); The Special Funding for the Construction of Innovative Provinces in Hunan(2021SK4031)

Accesses

Citations

Detail

Sections
Recommended

/