Telomere-based treatment strategy of cardiovascular diseases: imagination comes to reality

Mohammed Abdel-Gabbar, Mohamed G. M. Kordy

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (2) : 61-75. DOI: 10.1007/s42764-024-00123-x
Review Article

Telomere-based treatment strategy of cardiovascular diseases: imagination comes to reality

Author information +
History +

Abstract

The significance of telomere/telomerase biology in the pathogenesis of age-related cardiovascular diseases (CVDs), such as atherosclerosis, hypertension, myocardial infarction (MI), and heart failure, has been increasingly highlighted in recent years. The activation of the DNA damage response (DDR) due to the presence of short telomeres is believed to be a significant upstream signal responsible for inducing a permanent cessation of the cell cycle in cardiomyocytes. Heart failure (HF) is a condition that arises due to the restricted regenerative capacity of the elderly and injured mammalian heart. This limitation may be related to the decreased proliferative potential of cardiac stem cells (CSCs) and cardiomyocytes. The association between CVDs and shorter telomeres provides a foundation for developing therapeutic techniques aimed at elongating telomeres and subsequently restoring the proliferative ability of the adult mammalian heart. This phenomenon offers intriguing prospects for the treatment and prevention of cardiovascular disease (CVD). Further investigation into telomerase gene therapy in the field of cardiac regenerative medicine is justified based on the encouraging outcomes shown in mice models, whereby the reactivation of telomerase in the heart after MI has demonstrated beneficial effects.

Keywords

CVD / Telomere / LTL / Senescing / Aging / DNA damage response

Cite this article

Download citation ▾
Mohammed Abdel-Gabbar, Mohamed G. M. Kordy. Telomere-based treatment strategy of cardiovascular diseases: imagination comes to reality. Genome Instability & Disease, 2024, 5(2): 61‒75 https://doi.org/10.1007/s42764-024-00123-x

References

[]
Aix E, Gutiérrez-Gutiérrez Ó, Sánchez-Ferrer C, Aguado T, Flores I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through P21 activation. Journal of Cell Biology, 2016, 213: 571-583.
CrossRef Google scholar
[]
Ashrafian H, Harling L, Darzi A, Athanasiou T. Neurodegenerative disease and obesity: What is the role of weight loss and bariatric interventions?. Metabolic Brain Disease, 2013, 28: 341-353.
CrossRef Google scholar
[]
Bär C, De Jesus BB, Serrano R, Tejera A, Ayuso E, Jimenez V, Formentini I, Bobadilla M, Mizrahi J, De Martino A, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nature Communications, 2014, 5: 5863.
CrossRef Google scholar
[]
Bekaert S, Van Pottelbergh I, De Meyer T, Zmierczak H, Kaufman JM, Van Oostveldt P, Goemaere S. Telomere length versus hormonal and bone mineral status in healthy elderly men. Mechanisms of Ageing and Development, 2005, 126: 1115-1122.
CrossRef Google scholar
[]
Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nature Genetics, 2007, 39: 243-250.
CrossRef Google scholar
[]
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, De Ferranti SD, Floyd J, Fornage M, Gillespie C. Heart disease and stroke statistics—2017 update: A Report from the American Heart Association. Circulation, 2017, 135: e146-e603.
CrossRef Google scholar
[]
Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C. Dynamics of cell generation and turnover in the human heart. Cell, 2015, 161: 1566-1575.
CrossRef Google scholar
[]
Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends in Genetics, 2013, 29: 513-520.
CrossRef Google scholar
[]
Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Molecular Medicine, 2012, 4: 691-704.
CrossRef Google scholar
[]
Blackburn EH. Telomere states and cell Fates. Nature, 2000, 408: 53-56.
CrossRef Google scholar
[]
Blackburn EH. Switching and signaling at the telomere. Cell, 2001, 106: 661-673.
CrossRef Google scholar
[]
Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 1979, 2015(350): 1193-1198.
CrossRef Google scholar
[]
Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 1997, 91: 25-34.
CrossRef Google scholar
[]
Bodnar AG, Kim NW, Effros RB, Chiu CP. Mechanism of telomerase induction during T cell activation. Experimental Cell Research, 1996, 228: 58-64.
CrossRef Google scholar
[]
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science, 1979, 1998(279): 349-352.
CrossRef Google scholar
[]
Booth SA, Charchar FJ. Cardiac telomere length in heart development, function, and disease. Physiological Genomics, 2017, 49: 368-384.
CrossRef Google scholar
[]
Booth SA, Wadley GD, Marques FZ, Wlodek ME, Charchar FJ. Fetal growth restriction shortens cardiac telomere length, but this is attenuated by exercise in early life. Physiological Genomics, 2018, 50: 956-963.
CrossRef Google scholar
[]
Brandt M, Dörschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S. Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension, 2022, 79: 2173-2184.
CrossRef Google scholar
[]
Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ. Telomere length, risk of coronary heart disease, and statin treatment in the west of scotland primary prevention study: A nested case-control Study. The Lancet, 2007, 369: 107-114.
CrossRef Google scholar
[]
Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: A review. European Journal of Vascular and Endovascular Surgery, 2010, 40: 17-26.
CrossRef Google scholar
[]
Calado RT, Brudno J, Mehta P, Kovacs JJ, Wu C, Zago MA, Chanock SJ, Boyer TD, Young NS. Constitutional Telomerase Mutations Are Genetic Risk Factors for Cirrhosis. Hepatology, 2011, 53: 1600-1607.
CrossRef Google scholar
[]
Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proceedings of the National Academy of Sciences, 2007, 104: 5300-5305.
CrossRef Google scholar
[]
Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet, 2003, 361: 393-395.
CrossRef Google scholar
[]
Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M, Puppato E, Marino L, Signore S. Effects of age and heart failure on human cardiac stem cell function. American Journal of Pathology, 2011, 179: 349-366.
CrossRef Google scholar
[]
Chakravarti D, LaBella KA, DePinho RA. Telomeres: History, health, and hallmarks of aging. Cell, 2021, 184: 306-322.
CrossRef Google scholar
[]
Chilton W, O’Brien B, Charchar F. Telomeres, aging and exercise: Guilty by association?. International Journal of Molecular Sciences, 2017, 18: 2573.
CrossRef Google scholar
[]
Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circulation Research, 2003, 93: 604-613.
CrossRef Google scholar
[]
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I. Identification of seven loci affecting mean telomere length and their association with disease. Nature Genetics, 2013, 45: 422-427.
CrossRef Google scholar
[]
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell, 2007, 130: 223-233.
CrossRef Google scholar
[]
D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circulation. Cardiovascular Genetics, 2015, 8: 82-90.
CrossRef Google scholar
[]
Dagarag M, Ng H, Lubong R, Effros RB, Yang OO. Differential impairment of lytic and cytokine functions in senescent human immunodeficiency virus type 1-specific cytotoxic T lymphocytes. Journal of Virology, 2003, 77: 3077-3083.
CrossRef Google scholar
[]
de Lange T. Protection of mammalian telomeres. Oncogene, 2002, 21: 532-540.
CrossRef Google scholar
[]
De Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes & Development, 2005, 19: 2100-2110.
CrossRef Google scholar
[]
de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE. Structure and variability of human chromosome ends. Molecular and Cellular Biology, 1990, 10: 518-527.
CrossRef Google scholar
[]
De Meyer T, Nawrot T, Bekaert S, De Buyzere ML, Rietzschel ER, Andrés V. Telomere length as cardiovascular aging biomarker: JACC review topic of the week. Journal of the American College of Cardiology, 2018, 72: 805-813.
CrossRef Google scholar
[]
del López-Armas GC, Ramos-Márquez ME, Navarro-Meza M, Macías-Islas , Saldaña-Cruz AM, Zepeda-Moreno A, Siller-López F, Cruz-Ramos JA. Leukocyte telomere length predicts severe disability in relapsing-remitting multiple sclerosis and correlates with mitochondrial DNA copy number. International Journal of Molecular Sciences, 2023, 24: 916.
CrossRef Google scholar
[]
Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circulation Research, 2008, 102: 1319-1330.
CrossRef Google scholar
[]
Eisenberg DTA. Inconsistent inheritance of telomere length (TL): Is offspring TL more strongly correlated with maternal or paternal TL?. European Journal of Human Genetics, 2014, 22: 8-9.
CrossRef Google scholar
[]
Eisenberg DTA, Salpea KD, Kuzawa CW, Hayes MG, Humphries SE. Substantial variation in QPCR measured mean blood telomere lengths in young men from Eleven European Countries. American Journal of Human Biology, 2011, 23: 228-231.
CrossRef Google scholar
[]
Engelhardt M, Ozkaynak MF, Drullinsky P, Sandoval C, Tugal O, Jayabose S, Moore MAS. Telomerase activity and telomere length in pediatric patients with malignancies undergoing chemotherapy. Leukemia, 1998, 12: 13-24.
CrossRef Google scholar
[]
Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, Wüst S, Wadhwa PD. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proceedings of the National Academy of Sciences, 2011, 108: E513-E518.
CrossRef Google scholar
[]
Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences, 2004, 101: 17312-17315.
CrossRef Google scholar
[]
Epel ES, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, Seeman TE. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly Men. Aging, 2009, 1: 81-88.
CrossRef Google scholar
[]
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA, 2010, 303: 250-257.
CrossRef Google scholar
[]
Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: Longitudinal Findings from the Heart and Soul Study. PLoS ONE, 2010, 5.
CrossRef Google scholar
[]
Ferrón S, Mira H, Franco S, Cano-Jimenez M, Bellmunt E, Ramírez C, Fariñas I, Blasco MA. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development, 2004, 131: 4059-4070.
CrossRef Google scholar
[]
Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: A general signature of adult stem cell compartments. Genes & Development, 2008, 22: 654-667.
CrossRef Google scholar
[]
Flores I, Cayuela ML, Blasco MA. Molecular biology: Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 1979, 2005(309): 1253-1256.
CrossRef Google scholar
[]
Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, et al. Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 2014, 51: 15-27.
CrossRef Google scholar
[]
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, De Lange T. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97: 503-514.
CrossRef Google scholar
[]
Guan JZ, Maeda T, Sugano M, Oyama J, Higuchi Y, Makino N. Change in the telomere length distribution with age in the Japanese population. Molecular and Cellular Biochemistry, 2007, 304: 353-360.
CrossRef Google scholar
[]
Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circulation Research, 2004, 94: 768-775.
CrossRef Google scholar
[]
Hannum G, Guinney J, Zhao L, Zhang LI, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y. Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 2013, 49: 359-367.
CrossRef Google scholar
[]
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature, 1990, 345: 458-460.
CrossRef Google scholar
[]
Harris SE, Deary IJ, MacIntyre A, Lamb KJ, Radhakrishnan K, Starr JM, Whalley LJ, Shiels PG. The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neuroscience Letters, 2006, 406: 260-264.
CrossRef Google scholar
[]
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Experimental Cell Research, 1961, 25: 585-621.
CrossRef Google scholar
[]
Hemmeryckx B, Hohensinner P, Swinnen M, Heggermont W, Wojta J, Lijnen HR. Antioxidant treatment improves cardiac dysfunction in a murine model of premature aging. Journal of Cardiovascular Pharmacology, 2016, 68: 374-382.
CrossRef Google scholar
[]
Herrera E, Samper E, Martín-Caballero J, Flores JM, Lee H-W, Blasco MA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO Journal, 1999, 18: 2950-2960.
CrossRef Google scholar
[]
Hoffmann J, Erben Y, Zeiher AM, Dimmeler S, Spyridopoulos I. Telomere length-heterogeneity among myeloid cells is a predictor for chronological ageing. Experimental Gerontology, 2009, 44: 363-366.
CrossRef Google scholar
[]
Hoffmann J, Richardson G, Haendeler J, Altschmied J, Andrés V, Spyridopoulos I. Telomerase as a therapeutic target in cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41: 1047-1061.
CrossRef Google scholar
[]
Hoffmann J, Spyridopoulos I. Telomere length in cardiovascular disease: New challenges in measuring this marker of cardiovascular aging. Future Cardiology, 2011, 7: 693-707.
CrossRef Google scholar
[]
Hooijberg E, Ruizendaal JJ, Snijders PJF, Kueter EWM, Walboomers JMM, Spits H. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. The Journal of Immunology, 2000, 165: 4239-4245.
CrossRef Google scholar
[]
Horvath S. DNA methylation age of human tissues and cell types. Genome Biology, 2013, 14: 3156.
CrossRef Google scholar
[]
Iancu EM, Speiser DE, Rufer N. Assessing ageing of individual T lymphocytes: Mission impossible?. Mechanisms of Ageing and Development, 2008, 129: 67-78.
CrossRef Google scholar
[]
Jakob S, Schroeder P, Lukosz M, Büchner N, Spyridopoulos I, Altschmied J, Haendeler J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. Journal of Biological Chemistry, 2008, 283: 33155-33161.
CrossRef Google scholar
[]
Jiang R, Hauser ER, Kwee LC, Shah SH, Regan JA, Huebner JL, Kraus VB, Kraus WE, Ward-Caviness CK. The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes. Clinical Epigenetics, 2022, 14: 165.
CrossRef Google scholar
[]
Jin, X., Pan, B., Dang, X., Wu, H., & Xu, D. (2018). Relationship between short telomere length and stroke: A meta-analysis. Medicine 97.
[]
Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D. Myocyte turnover in the aging human heart. Circulation Research, 2010, 107: 1374-1386.
CrossRef Google scholar
[]
Kaur P, Wu D, Lin J, Countryman P, Bradford KC, Erie DA, Riehn R, Opresko PL, Wang H. Enhanced electrostatic force microscopy reveals higher-order DNA looping mediated by the telomeric protein TRF2. Science and Reports, 2016, 6: 20513.
CrossRef Google scholar
[]
Khincha, P. P., Bertuch, A. A., Agarwal, S., Townsley, D. M., Young, N. S., Keel, S., Shimamura, A., Boulad, F., Simoneau, T., & Justino, H. (2017). Pulmonary arteriovenous malformations: An uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. European Respiratory Journal 49.
[]
Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell, 2010, 9: 203-219.
CrossRef Google scholar
[]
Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AFH, Rudolph KL, Ristow M. Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging (albany NY), 2010, 2: 650.
CrossRef Google scholar
[]
Lanna A, Vaz B, D’Ambra C, Valvo S, Vuotto C, Chiurchiù V, Devine O, Sanchez M, Borsellino G, Akbar AN, et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nature Cell Biology, 2022, 24: 1461-1474.
CrossRef Google scholar
[]
Lansdorp PM. Self-renewal of stem cells, 1998 Humana Press.
CrossRef Google scholar
[]
Lee H-W, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature, 1998, 392: 569-574.
CrossRef Google scholar
[]
Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F, Nadal-Ginard B, Kajstura J, Anversa P, Blasco MA. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with P53 upregulation. EMBO Journal, 2003, 22: 131-139.
CrossRef Google scholar
[]
Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutation Research DNAging, 1991, 256: 45-48.
CrossRef Google scholar
[]
Liu D, O’Connor MS, Qin J, Songyang Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. Journal of Biological Chemistry, 2004, 279: 51338-51342.
CrossRef Google scholar
[]
Liu L, Bailey SM, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A. telomere lengthening early in development. Nature Cell Biology, 2007, 9: 1436-1441.
CrossRef Google scholar
[]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell, 2013, 153: 1194-1217.
CrossRef Google scholar
[]
Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LCJ, Guth LM, Spangenburg EE, Roth SM. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. Journals of Gerontology-Series A Biological Sciences and Medical Sciences, 2012, 67A: 911-926.
CrossRef Google scholar
[]
Lynch SM, Peek MK, Mitra N, Ravichandran K, Branas C, Spangler E, Zhou W, Paskett ED, Gehlert S, Degraffinreid C, et al. Race, ethnicity, psychosocial factors, and telomere length in a multicenter setting. PLoS ONE, 2016, 11.
CrossRef Google scholar
[]
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 2009, 4: 141-154.
CrossRef Google scholar
[]
Marques FZ, Booth SA, Prestes PR, Curl CL, Delbridge LMD, Lewandowski P, Harrap SB, Charchar FJ. Telomere dynamics during aging in polygenic left ventricular hypertrophy. Physiological Genomics, 2016, 48: 42-49.
CrossRef Google scholar
[]
Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nature Reviews Cancer, 2011, 11: 161-176.
CrossRef Google scholar
[]
Martínez P, Blasco MA. Heart-breaking telomeres. Circulation Research, 2018, 123: 787-802.
CrossRef Google scholar
[]
Mather KA, Jorm AF, Milburn PJ, Tan X, Easteal S, Christensen H. No associations between telomere length and age-sensitive indicators of physical function in mid and later life. Journals of Gerontology-Series A Biological Sciences and Medical Sciences, 2010, 65A: 792-799.
CrossRef Google scholar
[]
Matthews C, Gorenne I, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circulation Research, 2006, 99: 156-164.
CrossRef Google scholar
[]
McCully KS. Chemical pathology of homocysteine VI. Aging, cellular senescence, and mitochondrial dysfunction. Annals of Clinical Laboratory Science, 2018, 48: 677-687.
[]
Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y, Silberstein LE, Dos Remedios CG, Graham D, Colan S. Cardiomyocyte proliferation contributes to heart growth in young humans. Proceedings of the National Academy of Sciences, 2013, 110: 1446-1451.
CrossRef Google scholar
[]
Mwasongwe S, Gao Y, Griswold M, Wilson JG, Aviv A, Reiner AP, Raffield LM. Leukocyte telomere length and cardiovascular disease in African Americans: The Jackson Heart Study. Atherosclerosis, 2017, 266: 41-47.
CrossRef Google scholar
[]
Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT. Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541: 222-227.
CrossRef Google scholar
[]
Narducci ML, Grasselli A, Biasucci LM, Farsetti A, Mulè A, Liuzzo G, La Torre G, Niccoli G, Mongiardo R, Pontecorvi A. High telomerase activity in neutrophils from unstable coronary plaques. Journal of the American College of Cardiology, 2007, 50: 2369-2374.
CrossRef Google scholar
[]
Njajou OT, Hsueh W-C, Blackburn EH, Newman AB, Wu S-H, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. Journals of Gerontology Series a: Biomedical Sciences and Medical Sciences, 2009, 64: 860-864.
CrossRef Google scholar
[]
O’Donovan A, Epel E, Lin J, Wolkowitz O, Cohen B, Maguen S, Metzler T, Lenoci M, Blackburn E, Neylan TC. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biological Psychiatry, 2011, 70: 465-471.
CrossRef Google scholar
[]
O’Donovan A, Pantell MS, Puterman E, Dhabhar FS, Blackburn EH, Yaffe K, Cawthon RM, Opresko PL, Hsueh WC, Satterfield S, et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study. PLoS ONE, 2011, 6.
CrossRef Google scholar
[]
Ogami M, Ikura Y, Ohsawa M, Matsuo T, Kayo S, Yoshimi N, Hai E, Shirai N, Ehara S, Komatsu R. Telomere shortening in human coronary artery diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24: 546-550.
CrossRef Google scholar
[]
Oikawa S, Tada-Oikawa S, Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry, 2001, 40: 4763-4768.
CrossRef Google scholar
[]
Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A. Telomere attrition of the human abdominal aorta: Relationships with age and atherosclerosis. Atherosclerosis, 2000, 152: 391-398.
CrossRef Google scholar
[]
Olovnikov AM. A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology, 1973, 41: 181-190.
CrossRef Google scholar
[]
Park JII, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, et al. telomerase modulates wnt signalling by association with target gene chromatin. Nature, 2009, 460: 66-72.
CrossRef Google scholar
[]
Passos JF, Saretzki G, Von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: Is there a connection?. Nucleic Acids Research, 2007, 35: 7505-7513.
CrossRef Google scholar
[]
Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical Epigenetics, 2016, 8: 1-7.
CrossRef Google scholar
[]
Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, et al. The transcriptional landscape of age in human peripheral blood. Nature Communications, 2015, 6: 8570.
CrossRef Google scholar
[]
Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Experimental Cell Research, 1998, 239: 152-160.
CrossRef Google scholar
[]
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the MiR-15 family. Proceedings of the National Academy of Sciences, 2013, 110: 187-192.
CrossRef Google scholar
[]
Price LH, Kao H-T, Burgers DE, Carpenter LL, Tyrka AR. Telomeres and early-life stress: An overview. Biological Psychiatry, 2013, 73: 15-23.
CrossRef Google scholar
[]
Proctor CJ, Kirkwood TBL. Modelling telomere shortening and the role of oxidative stress. Mechanisms of Ageing and Development, 2002, 123: 351-363.
CrossRef Google scholar
[]
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell, 2014, 157: 565-579.
CrossRef Google scholar
[]
Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Horvath S. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Agro Food Industry Hi-Tech, 2018, 29:20-21.
[]
Révész D, Milaneschi Y, Verhoeven JE, Lin J, Penninx BWJH. Longitudinal associations between metabolic syndrome components and telomere shortening. Journal of Clinical Endocrinology and Metabolism, 2015, 100: 3050-3059.
CrossRef Google scholar
[]
Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, Wagner KR, Shay JW, Wright WE. Telomere position effect: Regulation of gene expression with progressive telomere shortening over long distances. Genes & Development, 2014, 28: 2464-2476.
CrossRef Google scholar
[]
Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. Journal of Experimental Medicine, 1999, 190: 157-168.
CrossRef Google scholar
[]
Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood, 2001, 98: 597-603.
CrossRef Google scholar
[]
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470: 359-365.
CrossRef Google scholar
[]
Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet, 2001, 358: 472-473.
CrossRef Google scholar
[]
Sandell LL, Zakian VA. Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell, 1993, 75: 729-739.
CrossRef Google scholar
[]
Sanders JL, Cauley JA, Boudreau RM, Zmuda JM, Strotmeyer ES, Opresko PL, Hsueh WC, Cawthon RM, Li R, Harris TB, et al. Leukocyte telomere length is not associated with BMD, osteoporosis, or fracture in older adults: Results from the health, aging and body composition study. Journal of Bone and Mineral Research, 2009, 24: 1531-1536.
CrossRef Google scholar
[]
Sanders JL, Newman AB. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither?. Epidemiologic Reviews, 2013, 35: 112-131.
CrossRef Google scholar
[]
Saretzki G, Murphy MP, Von Zglinicki T. MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2003, 2: 141-143.
CrossRef Google scholar
[]
Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, Wang E, Artandi MK, Oro AE, Artandi SE. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005, 436: 1048-1052.
CrossRef Google scholar
[]
Schaetzlein S, Lucas-Hahn A, Lemme E, Kues WA, Dorsch M, Manns MP, Niemann H, Rudolph KL. Telomere length is reset during early mammalian embryogenesis. Proceedings of the National Academy of Sciences, 2004, 101: 8034-8038.
CrossRef Google scholar
[]
Scheller Madrid A, Rode L, Nordestgaard BG, Bojesen SE. Short Telomere Length and Ischemic Heart Disease: Observational and Genetic Studies in 290 022 Individuals. Clinical Chemistry, 2016, 62: 1140-1149.
CrossRef Google scholar
[]
Shahidi NT, Diamond LK. Testosterone-induced remission in aplastic anemia of both acquired and congenital types: Further observations in 24 cases. New England Journal of Medicine, 1961, 264: 953-967.
CrossRef Google scholar
[]
Shammas MA. Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14: 28.
CrossRef Google scholar
[]
Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC Jr Harel O, Margulies KB, Mourkioti F. Cardiomyocyte-specific telomere shortening is a distinct signature of heart failure in humans. Journal of the American Heart Association, 2017, 6.
CrossRef Google scholar
[]
Smith JA, Raisky J, Ratliff SM, Liu J, Kardia SLR, Turner ST, Mosley TH, Zhao W. Intrinsic and extrinsic epigenetic age acceleration are associated with hypertensive target organ damage in older african americans. BMC Medical Genomics, 2019, 12: 141.
CrossRef Google scholar
[]
Stadler G, Rahimov F, King OD, Chen JCJ, Robin JD, Wagner KR, Shay JW, Emerson CP Jr Wright WE. Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nature Structural & Molecular Biology, 2013, 20: 671-678.
CrossRef Google scholar
[]
Starkweather AR, Alhaeeri AA, Montpetit A, Brumelle J, Filler K, Montpetit M, Mohanraj L, Lyon DE, Jackson-Cook CK. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nursing Research, 2014, 63: 36-50.
CrossRef Google scholar
[]
Stefler D, Malyutina S, Maximov V, Orlov P, Ivanoschuk D, Nikitin Y, Gafarov V, Ryabikov A, Voevoda M, Bobak M, et al. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: Prospective evidence from a Russian Cohort. Science and Reports, 2018, 8: 16627.
CrossRef Google scholar
[]
Strandberg TE, Saijonmaa O, Tilvis RS, Pitkälä KH, Strandberg AY, Miettinen TA, Fyhrquist F. Association of telomere length in older men with mortality and midlife body mass index and smoking. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A: 815-820.
CrossRef Google scholar
[]
Strandberg TE, Saijonmaa O, Tilvis RS, Pitkälä KH, Strandberg AY, Salomaa V, Miettinen TA, Fyhrquist F. Telomere length in old age and cholesterol across the life course. Journal of the American Geriatrics Society, 2011, 59: 1979-1981.
CrossRef Google scholar
[]
Svačina Š. Obesity and cardiovascular disease. Vnitrni Lekarstvi, 2020, 66: 89-91.
CrossRef Google scholar
[]
Tang NLS, Woo J, Suen EWC, Liao CD, Leung JCS, Leung PC. The effect of telomere length, a marker of biological aging, on bone mineral density in elderly population. Osteoporosis International, 2010, 21: 89-97.
CrossRef Google scholar
[]
Terai M, Izumiyama-Shimomura N, Aida J, Ishikawa N, Sawabe M, Arai T, Fujiwara M, Ishii A, Nakamura K, Takubo K. Association of telomere shortening in myocardium with heart weight gain and cause of death. Science and Reports, 2013, 3: 2401.
CrossRef Google scholar
[]
Uygur A, Lee RT. Mechanisms of cardiac regeneration. Developmental Cell, 2016, 36: 362-374.
CrossRef Google scholar
[]
Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet, 2005, 366: 662-664.
CrossRef Google scholar
[]
Valdes AM, Richards JB, Gardner JP, Swaminathan R, Kimura M, Xiaobin L, Aviv A, Spector TD. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporosis International, 2007, 18: 1203-1210.
CrossRef Google scholar
[]
Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clinical Immunology, 2002, 105: 117-125.
CrossRef Google scholar
[]
van der Harst P, van der Steege G, de Boer RA, Voors AA, Hall AS, Mulder MJ, van Gilst WH, van Veldhuisen DJ. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. Journal of the American College of Cardiology, 2007, 49: 1459-1464.
CrossRef Google scholar
[]
Vera E, Canela A, Fraga MF, Esteller M, Blasco MA. Epigenetic regulation of telomeres in human cancer. Oncogene, 2008, 27: 6817-6833.
CrossRef Google scholar
[]
Verde Z, Reinoso-Barbero L, Chicharro L, Garatachea N, Resano P, Sánchez-Hernández I, Rodríguez González-Moro JM, Bandrés F, Santiago C, Gómez-Gallego F. Effects of cigarette smoking and nicotine metabolite ratio on leukocyte telomere length. Environmental Research, 2015, 140: 488-494.
CrossRef Google scholar
[]
Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M, Christensen K, Toupance S, Aviv A, Kyvik KO, Benetos A. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia, 2016, 59: 1258-1265.
CrossRef Google scholar
[]
Von Zglinicki T. Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 2002, 27: 339-344.
CrossRef Google scholar
[]
Von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radical Biology & Medicine, 2000, 28: 64-74.
CrossRef Google scholar
[]
Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, Nadal-Ginard B, Torella D, Ellison GM. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal, 2014, 35: 2722-2731.
CrossRef Google scholar
[]
Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genetics, 2014, 10.
CrossRef Google scholar
[]
Weng N. Telomere and adaptive immunity. Mechanisms of Ageing and Development, 2008, 129: 60-66.
CrossRef Google scholar
[]
Weng N-P, Levine BL, June CH, Hodes RJ. Regulated expression of telomerase activity in human T lymphocyte development and activation. Journal of Experimental Medicine, 1996, 183: 2471-2479.
CrossRef Google scholar
[]
Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation, 2009, 120: 2438-2447.
CrossRef Google scholar
[]
Wong JYY, De Vivo I, Lin X, Fang SC, Christiani DC. The relationship between inflammatory biomarkers and telomere length in an occupational prospective cohort study. PLoS ONE, 2014, 9.
CrossRef Google scholar
[]
Xiong L, Yang G, Guo T, Zeng Z, Liao T, Li Y, Li Y, Chen F, Yang S, Kang L, et al. 17-Year follow-up of association between telomere length and all-cause mortality, cardiovascular mortality in individuals with metabolic syndrome: Results from the NHANES Database Prospective Cohort Study. Diabetology and Metabolic Syndrome, 2023, 15: 247.
CrossRef Google scholar
[]
Xu C, Wang Z, Su X, Da M, Yang Z, Duan W, Mo X. Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Science and Reports, 2020, 10: 80.
CrossRef Google scholar
[]
Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J. Animal models of cardiovascular diseases. Biomedicine Research International, 2011, 2011:1-13.
[]
Zglinicki Tv, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Current Molecular Medicine, 2005, 5: 197-203.
CrossRef Google scholar
[]
Zhang K, Ma Y, Luo Y, Song Y, Xiong G, Ma Y, Sun X, Kan C. Metabolic diseases and healthy aging: Identifying environmental and behavioral risk factors and promoting public health. Frontiers in Public Health, 2023.
CrossRef Google scholar
[]
Zhou H, Liu S, Zhang N, Fang K, Zong J, An Y, Chang X. Downregulation of Sirt6 by CD38 Promotes Cell Senescence and Aging. Aging (albany NY), 2022, 14: 9730.
[]
Zurek M, Altschmied J, Kohlgrüber S, Ale-Agha N, Haendeler J. Role of telomerase in the cardiovascular system. Genes (basel), 2016, 7: 29.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/