The influence of extreme cold ambient temperature on out of hospital cardiac arrest: A systemic review and meta-analysis

Yanxia Lin, Huanrui Zhang, Shijie Zhao, Guohui Hua, Wen Tian

PDF(991 KB)
PDF(991 KB)
Frigid Zone Medicine ›› 2022, Vol. 2 ›› Issue (3) : 186-192. DOI: 10.2478/fzm-2022-0025
META ANALYSIS

The influence of extreme cold ambient temperature on out of hospital cardiac arrest: A systemic review and meta-analysis

Author information +
History +

Abstract

Objective: Many researches have demonstrated the effects of the extreme cold ambient temperature on the risk of out-of-hospital cardiac arrest (OHCA); yet, the results have been inconsistent. We performed a meta-analysis to evaluate whether extreme cold ambient temperature is related to OHCA. Methods: We searched for time-series studies reporting associations between extreme cold ambient temperature and OHCA in PubMed, web of science and Cochrane database. Results: Six studies involving 2 337 403 cases of OHCA were qualified for our meta-analysis. The odds ratio (OR) of OHCA was significantly increased in extreme cold weather (defined as the 1st or 5th centile temperature year-round) compared to reference temperature (as the 25th centile temperatures or daily mean temperature with minimum risk of OHCA) (OR=1.49, 95% CI 1.18-1.88). The subgroup analysis for the elderly and the female failed to detect the influence of extreme cold weather on OHCA, the ORs are 1.25 (95% CI 0.89-1.75) and 1.19 (95% CI 0.87- 1.64), respectively. Conclusion: The risk of OHCA is significantly higher in extreme cold ambient temperatures than in reference temperature, according to a relative temperature scale with percentiles of the regionspecific temperature distribution.

Keywords

extreme cold weather / cardiac arrest / meta-analysis

Cite this article

Download citation ▾
Yanxia Lin, Huanrui Zhang, Shijie Zhao, Guohui Hua, Wen Tian. The influence of extreme cold ambient temperature on out of hospital cardiac arrest: A systemic review and meta-analysis. Frigid Zone Medicine, 2022, 2(3): 186‒192 https://doi.org/10.2478/fzm-2022-0025

References

[[1]]
Yan S, Gan Y, Jiang N, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care, 2020; 24(1): 61.
[[2]]
Zhang S. Sudden cardiac death in China: current status and future perspectives. Europace, 2015; 17(Suppl 2): ii14-ii18.
[[3]]
Sun Z, Chen C, Xu D, et al. Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. Environ Pollut, 2018; 241(1): 1106-1114.
[[4]]
Pouwels S, Van Genderen M E, Kreeftenberg H G, et al. Utility of the cold pressor test to predict future cardiovascular events. Expert Rev Cardiovasc Ther, 2019; 17(4): 305-318.
[[5]]
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 2009; 6(7): e1000097.
[[6]]
Borghei Y, Moghadamnia M T, Sigaroudi A E, et al. Association between climate variables (cold and hot weathers, humidity, atmospheric pressures) with out-of-hospital cardiac arrests in Rasht, Iran. J Therm Biol, 2020; 93(1): 102702.
[[7]]
Chen R, Li T, Cai J, et al. Extreme temperatures and out-ofhospital coronary deaths in six large Chinese cities. J Epidemiol Community Health, 2014; 68(12): 1119-1124.
[[8]]
Medina-Ramón M, Zanobetti A, Cavanagh D P, et al. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect, 2006; 114(9): 1331-1336.
[[9]]
Niu Y, Chen R, Liu C, et al. The association between ambient temperature and out-of-hospital cardiac arrest in Guangzhou, China. Sci Total Environ, 2016; 572(1): 114-118.
[[10]]
Onozuka D, Hagihara A. Extreme temperature and out-of-hospital cardiac arrest in Japan: A nationwide, retrospective, observational study. Sci Total Environ, 2017; 575(1): 258-264.
[[11]]
Ryti N R I, Mäkikyrö E M S, Antikainen H, et al. Risk of sudden cardiac death in relation to season-specific cold spells: a casecrossover study in Finland. BMJ Open, 2017; 7(11): e017398.
[[12]]
Nakanishi N, Nishizawa S, Kitamura Y, et al. Circadian, weekly, and seasonal mortality variations in out-of-hospital cardiac arrest in Japan: analysis from AMI-Kyoto Multicenter Risk Study database. Am J Emerg Med, 2011; 29(9): 1037-1043.
[[13]]
Curriero F C, Heiner K S, Samet J M, et al. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol, 2002; 155(1): 80-87.
[[14]]
O'Neill M S, Zanobetti A, Schwartz J. Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol, 2003; 157(12): 1074-1082.
[[15]]
Hua W, Zhang L F, Wu Y F, et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations. J Am Coll Cardiol, 2009; 54(12): 1110-1118.
[[16]]
Cagle A, Hubbard R. Cold-related cardiac mortality in King County, Washington, USA 1980-2001. Ann Hum Biol, 2005; 32(4): 525-537.
[[17]]
Ghaffari S, Pourafkari L. Coronary spasm provocation with cold pressor test. Intern Emerg Med, 2010; 5(6): 559-560.
[[18]]
Di Blasi C, Renzi M, Michelozzi P, et al. Association between air temperature, air pollution and hospital admissions for pulmonary embolism and venous thrombosis in Italy. Eur J Intern Med, 2022; 96(1): 74-80.
[[19]]
Li Y, Ji C, Ju H, et al. Impact of ambient temperature and atmospheric evaporation on the incidence of acute deep venous thrombosis in the northeast of China. Int Angiol, 2017; 36(3): 243-253.
[[20]]
Stewart S, Moholdt T T, Burrell L M, et al. Winter peaks in heart failure: an inevitable or preventable consequence of seasonal vulnerability? Card Fail Rev, 2019; 5(2): 83-85.
[[21]]
Houdas Y, Deklunder G, Lecroart J L. Cold exposure and ischemic heart disease. Int J Sports Med, 1992; 13 (Suppl 1): S179-S181.
PDF(991 KB)

Accesses

Citations

Detail

Sections
Recommended

/