Nucleotides, such as uridine 5′-monophosphate (5′-UMP) and cytidine 5′-monophosphate (5′-CMP), are heavily demanded as food additives, dietary supplements, and medicinal intermediates. Although enzymatic phosphorylation is an effective approach to producing these nucleosides, its practical application is challenging due to the need for the expensive enzymes and coenzyme guanosine-5′-triphosphate (GTP). Here we prepared biocompatible calcium-based nanoflowers incorporated with cascade enzymes, uridinecytidine kinase (UCK) and acetate kinase (ACK), for the production of nucleotides. The spatial distribution of these enzymes was optimized to maximize their catalytic performances. The most active nanoflowers (Ca3(PO4)2& ACK)& UCK that display the rate-limiting enzyme UCK on the outer layer were used in a packed-bed reactor for continuous synthesis of 5′-UMP and 5′-CMP. The catalytic performance of the catalyst retained over 80% within 10 h, showing good operational stability.
Red rice is a kind of whole grain with health benefits. Probiotic fermentation is widely applied to promote nutrient release from cereals and improve bioactivity. The study aims to investigate the impact of Lactiplantibacillus plantarum (L. plantarum) dy-1 fermentation on the bioactivities, bioaccessibility, and lipid-lowering activities of red rice. Results indicated that fermentation significantly increased the protein and total phenolic content by 1.7 and 1.4 times of red rice, as well as the content of essential and nonessential amino acids. Fermentation remarkably increased the bioaccessibility of phenolics and the antioxidant capacity of red rice during in vitro digestion. Additionally, Caenorhabditis elegans study revealed that fermented red rice extract reduced the triglyceride content, alleviated fat deposition, and regulated lipid metabolism by altering the genes in the fatty acid oxidation and synthesis, such as daf-16, mdt-15, nhr-49, fat-5, fat-7, and hosl-1. Therefore, L. plantarum dy-1 fermentation was beneficial for improving bioaccessibility and lipid-lowering activities of red rice, which will provide a reference for utilization of red rice as a functional food.
Octacosanol is a plant natural product with the potential to ameliorate alcoholic liver injury. However, its poor solubility limits its application in the food industry. This study first verified that octacosanol has a favorable effect on acute and subchronic alcoholic liver injury in mice by protecting the gastric mucosa and ameliorating disease levels. Additionally, octacosanol microcapsules were prepared under the optimal drying conditions of the feed flow rate of 400 mL/h and drying temperature of 180°C to improve the ameliorative effects of octacosanol, with moisture content, water activity, dispersibility, and solubility of 1.53%, 0.16%, 89.84%, and 95.30%, respectively. The microcapsules had a spherical structure, and the droplet sizes after redissolution ranged from 0.061 to 4.63 µm. Instrumental measurements and simulated digestion experiments have shown that microencapsulation enhanced the solubility and thermal stability of octacosanol, with 90.88% of the octacosanol being continuously released. As expected, microencapsulation significantly enhanced the effect of octacosanol in ameliorating alcoholic liver injury by determining the disease index in the mice model. This study demonstrated the beneficial effects of octacosanol on alcoholic liver injury and explored a viable method to improve its solubility and bioaccessibility, thereby enhancing its therapeutic efficacy for the treatment of alcoholic liver injury.
As society advances, the demand for innovative and sustainable food processing techniques and materials has grown significantly. The food industry, especially the food packaging sector, faces the challenge of developing cost-effective and sustainable packaging materials to meet consumers’ increasing demands. One promising solution for this is the use of biodegradable polymers such as polyvinyl alcohol (PVA), but standalone PVA cannot meet the required properties of packaging materials. The use of nanocellulose (NC) as fillers has been intensively studied recently. This review article provides a comprehensive overview of existing studies focusing on the preparation of PVA/NC composite films for packaging applications. The effects of NC loading on the physicomechanical properties of these films, including tensile strength, elongation, water absorption/swelling behavior, barrier properties, and optical properties, have been thoroughly examined. Overall, the general findings suggest that the reinforcement of NC in the PVA polymer matrix leads to improvements in the films’ properties. Specifically, the addition of NC enhances tensile strength, reduces O2, CO2, and water vapor transmission rates, and decreases the films’ propensity to absorb moisture or swell under wet conditions. However, it is important to note that the presence of NC compromises the optical properties of the films by reducing transparency, and the NC content beyond threshold level reduces the feasibility of the composite film. By synthesizing these findings, this review underscores the potential of PVA/NC composite films as promising materials for packaging applications. Moving forward, further research efforts are warranted to optimize the formulation and processing of these composite films to strike a balance between mechanical strength and optical clarity, thus advancing their practical utility in the packaging industry.
Investigating the anti-inflammatory effects of bioactive components present in cold-pressed rapeseed oil through the use of network pharmacology and molecular docking methods. The components of cold-pressed rapeseed oil were identified by liquid chromatography-mass spectrometry. We then conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using bioinformatics databases on overlapping targets affected by active components and inflammation. Finally, molecular docking was used to predict the interactions between core components and key targets. Analysis identified 13 phenols, four steroids, and one retinoid in cold-pressed rapeseed oil, with 143 overlapping targets related to inflammation. Bioinformatics analysis revealed that 25-Hydroxycholesterol, Rosmarinic acid, 9-cis-Retinoic acid, Soyasapogenol B and α-Tocopherol in cold-pressed rapeseed oil could play a positive role in treating inflammation. They achieved this by regulating key targets (MMP9, EGFR, AKT1, ESR1, and PTGS2) involved in the peroxisome proliferator-activated receptor signaling pathway and other related pathways. The molecular docking binding energy of the core components and the key targets were less than -5.0 kcal/mol, indicating that the components and the targets can be stably bound. This result indicated that the active components found in coldpressed rapeseed oil may exert an anti-inflammatory effect through a synergistic mechanism involving multicomponent, multitarget and multipathway interactions.
2’,4’-Dihydroxy-6’-methoxy-3’,5’-dimethylchalcone (DMC) is a typical and abundant chalcone compound from the buds of Cleistocalyx operculatus, which is well-known for its edible and medicinal qualities. In this study, DMC showed effective cell cycle arrest at G2/M on MDA-MB-231 cells, though dual impacts, including the inhibition of microtubule polymerization through binding to β-tubulin and the stimulation of reactive oxygen species (ROS) production by inhibiting catalase activity. The increased ROS level inhibited PI3K/Akt/mTOR pathway and further suppressed the expression level of Cdc2, Cdc25C, and Cyclin B1, alongside stimulated the expression level of p21 and p27. Above 29.5% MDA-MB-231 cells were arrested at G2/M phase, subsequently undergoing apoptosis due to heightened levels of apoptosis-related proteins Bax and caspase 3. In summary, this study demonstrated that DMC concomitantly plays dual roles in apoptotic inducing by inhibiting the ROS consumption and microtubules formation in triple-negative breast cancer cells.
The food industry is adapting to evolving consumer demands for “healthy” and premium quality food by reducing the adverse effects of food packaging through innovative advancements in active and intelligent packaging technologies. These smart innovations offer diverse and creative ways to enhance food product quality and safety while extending shelf life. Emerging techniques are also improving the passive aspects of food packaging systems, such as thermal stability, barrier effectiveness, and mechanical strength. Notably, the use of plants, biodegradable materials, and nanomaterials in sustainable food packaging helps mitigate its negative environmental impact. By integrating intelligent, environmentally friendly, and active packaging technologies, a multipurpose food packaging system can be developed that maintains the integrity of all its components, representing the pinnacle of technological advancement in food packaging. This article reviews the fundamentals of food packaging systems, recent advancements in various packaging techniques, commercialized patents, future research trends, and the challenges that need to be addressed in food packaging.
The processing of vegetables generates by-products that are abundant in polyphenols and antioxidants. However, they degrade rapidly due to poor management and a short life expectancy. The present study aimed to evaluate the effect of in vitro digestion (IVD) on the phenolic compositions, antioxidant properties, and polyphenolic profile of the beetroot pomace (BP), carrot pomace (CP), and tomato pomace (TP) by-products. The results showed a reduction in phenolic compositions for total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and total proanthocyanidin content (TPAC), which ranged between 27.55% and 63.34%, 16.38% and 31.43%, 32.58% and 77.41%, and 28.81% and 60.78%, after IVD, respectively. Similarly, antioxidant activity evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis-3-ethylbenzothiazoline- 6-sulfonic acid (ABTS•+), Ferric-reducing antioxidant power (FRAP), metal chelating activity (MCA), and reducing power (RP), also showed a reduction. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis of individual polyphenols varied widely for free and bound phenolic fractions of samples. Among the polyphenolic fractions, catechin (CAT) and protocatechuic acid (PCA) were the highest in BP and CP, respectively in free forms, has shown to be increased after gastrointestinal digestion. Naringenin (NAR) was recorded with the highest both in their free and bound forms in TP and reduced postdigestion. To the best of our knowledge, the present study is the first report to evaluate the effect of IVD on free and bound individual polyphenolic content in evaluated samples.