Orlistat induces ferroptosis-like cell death of lung cancer cells
Orlistat induces ferroptosis-like cell death of lung cancer cells
Aberrant de novo lipid synthesis is involved in the progression and treatment resistance of many types of cancers, including lung cancer; however, targeting the lipogenetic pathways for cancer therapy remains an unmet clinical need. In this study, we tested the anticancer activity of orlistat, an FDA-approved anti-obesity drug, in human and mouse cancer cells in vitro and in vivo, and we found that orlistat, as a single agent, inhibited the proliferation and viabilities of lung cancer cells and induced ferroptosis-like cell death in vitro. Mechanistically, we found that orlistat reduced the expression of GPX4, a central ferroptosis regulator, and induced lipid peroxidation. In addition, we systemically analyzed the genome-wide gene expression changes affected by orlistat treatment using RNA-seq and identified FAF2, a molecule regulating the lipid droplet homeostasis, as a novel target of orlistat. Moreover, in a mouse xenograft model, orlistat significantly inhibited tumor growth and reduced the tumor volumes compared with vehicle control (P<0.05). Our study showed a novel mechanism of the anticancer activity of orlistat and provided the rationale for repurposing this drug for the treatment of lung cancer and other types of cancer.
orlistat / ferroptosis / FAF2 / lung cancer
[1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
CrossRef
ADS
Pubmed
Google scholar
|
[2] |
Gouw AM, Eberlin LS, Margulis K, Sullivan DK, Toal GG, Tong L, Zare RN, Felsher DW. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc Natl Acad Sci USA 2017; 114(17): 4300–4305
CrossRef
ADS
Pubmed
Google scholar
|
[3] |
Lu C, Ma J, Cai D. Increased HAGLR expression promotes non-small cell lung cancer proliferation and invasion via enhanced de novo lipogenesis. Tumour Biol 2017; 39(4): 1010428317697574
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
Singh A, Ruiz C, Bhalla K, Haley JA, Li QK, Acquaah-Mensah G, Montal E, Sudini KR, Skoulidis F, Wistuba II II, Papadimitrakopoulou V, Heymach JV, Boros LG, Gabrielson E, Carretero J, Wong KK, Haley JD, Biswal S, Girnun GD. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer. FASEB J 2018; 32(12): 7018−7027
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, Zhang J, Soo RA, Bhakoo K, Chin TM, Tenen DG. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med 2018; 10(3): e8313
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Sayin VI, LeBoeuf SE, Papagiannakopoulos T. Targeting metabolic bottlenecks in lung cancer. Trends Cancer 2019; 5(8): 457–459
CrossRef
ADS
Pubmed
Google scholar
|
[7] |
Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, von Bergmann K, Strobel W, Sjöström L, van der Veen EA. Orlistat (Ro 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obes Relat Metab Disord 1995; 19(4): 221–226
Pubmed
|
[8] |
Harp JB. Orlistat for the long-term treatment of obesity. Drugs Today (Barc) 1999; 35(2): 139–145
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Taja-Chayeb L, Morales-Barcenas R, Trejo-Becerril C, Perez-Cardenas E, Gonzalez-Fierro A, Dueñas-González A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27(5): 475–489
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
Sokolowska E, Presler M, Goyke E, Milczarek R, Swierczynski J, Sledzinski T. Orlistat reduces proliferation and enhances apoptosis in human pancreatic cancer cells (PANC-1). Anticancer Res 2017; 37(11): 6321–6327
Pubmed
|
[11] |
Xiao X, Liu H, Li X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells. Microb Pathog 2017; 112: 15–19
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
Czumaj A, Zabielska J, Pakiet A, Mika A, Rostkowska O, Makarewicz W, Kobiela J, Sledzinski T, Stelmanska E. In vivo effectiveness of orlistat in the suppression of human colorectal cancer cell proliferation. Anticancer Res 2019; 39(7): 3815–3822
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
You BJ, Chen LY, Hsu PH, Sung PH, Hung YC, Lee HZ. Orlistat displays antitumor activity and enhances the efficacy of paclitaxel in human hepatoma Hep3B cells. Chem Res Toxicol 2019; 32(2): 255–264
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
de Almeida LY, Mariano FS, Bastos DC, Cavassani KA, Raphelson J, Mariano VS, Agostini M, Moreira FS, Coletta RD, Mattos-Graner RO, Graner E. The antimetastatic activity of orlistat is accompanied by an antitumoral immune response in mouse melanoma. Cancer Chemother Pharmacol 2020; 85(2): 321–330
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
Zhang C, Sheng L, Yuan M, Hu J, Meng Y, Wu Y, Chen L, Yu H, Li S, Zheng G, Qiu Z. Orlistat delays hepatocarcinogenesis in mice with hepatic co-activation of AKT and c-Met. Toxicol Appl Pharmacol 2020; 392: 114918
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Cioccoloni G, Aquino A, Notarnicola M, Caruso MG, Bonmassar E, Zonfrillo M, Caporali S, Faraoni I, Villivà C, Fuggetta MP, Franzese O. Fatty acid synthase inhibitor orlistat impairs cell growth and down-regulates PD-L1 expression of a human T-cell leukemia line. J Chemother 2020; 32(1): 30–40
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 2002; 33(4): 473–490
CrossRef
ADS
Pubmed
Google scholar
|
[18] |
Angeles TS, Hudkins RL. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors. Expert Opin Drug Discov 2016; 11(12): 1187–1199
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
Calderón Guzmán D, Hernández García E, Juárez Jacobo A, Segura Abarca L, Barragán Mejía G, Rodríguez Pérez R, Juárez Olguín H. Effect of orlistat on lipid peroxidation, Na+, K+ ATPase, glutathione and serotonin in rat brain. Proc West Pharmacol Soc 2011; 54: 73–77
Pubmed
|
[20] |
Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 2017; 403: 143–170
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1-2): 317–331
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN, Jiang X. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019; 572(7769): 402–406
CrossRef
ADS
Pubmed
Google scholar
|
[23] |
Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D, Cramer SL, Triplett K, Roy R, Pardo OE, Seckl MJ, Rowlinson SW, Stone E, Lamb RF. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 2017; 18(11): 2547–2556
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
Li Y, Yang X, Yang J, Wang H, Wei W. An 11-gene-based prognostic signature for uveal melanoma metastasis based on gene expression and DNA methylation profile. J Cell Biochem 2019; 120: 8630–8639
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 | 〉 |